
Internet Engineering Task Force K.K. Ramakrishnan
INTERNET DRAFT Gisli Hjalmtysson
 Kobus van der Merwe
 (AT&T Labs. Research)
 Flavio Bonomi
 Sateesh Kumar
 Michael Wong
 (CSI Zeitnet/Cabletron)
 August 1998

UNITE: An Architecture for Lightweight Signaling
<draft-ramakrishnan-mpls-unite-00.txt>

Status of This Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at
 any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To view the entire list of current Internet-Drafts, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org US East Coast), or ftp.isi.edu (US West Coast).

 (Note that this ID is also available in Postscript and PDF formats)

Ramakrishnan et al. Expires February 1999 [Page i]

https://datatracker.ietf.org/doc/html/draft-ramakrishnan-mpls-unite-00.txt

Internet Draft UNITE August 1998

Abstract

 Communication networks need to support a wide range of applications
 with diverse service quality requirements. The current widespread
 use of best-effort communication also suggests that the overhead
 for establishing communication both in processing and latency needs
 to be kept at a minimum. With ATM signaling, every flow, including
 a best-effort flow, suffers the overhead of end-to-end connection
 establishment. ATM signaling complexity is further exacerbated by
 having variable length messages with a large number of information
 elements using a very flexible encoding, sent on a single control
 channel. The inclusion of QoS processing and connectivity in
 the initial setup of a connection requires sequential hop-by-hop
 processing. Variable length messages involves both a single point of
 resequencing as well as relatively slow, software based processing.
 In recognition of these shortcomings, the MPLS working group has
 opted to use topology driven label distribution as its default
 label distribution mechanism, while at the same time acknowledging
 the possible need for on-demand label distribution. We see these
 different approaches as points on a range of solutions and we do
 not wish to open a debate concerning the relative merits of each
 approach. However, we believe that if there is a need for on-demand
 label distribution, then there is a need to do this very efficiently.
 In this light we have decided to bring to the MPLS working group our
 architecture for lightweight signaling. While in its current form it
 is applicable to an ATM environment, we believe that it represent a
 step forward in the evolution of signaling for high speed networks.
 It holds the promise of processing signaling in hardware, thereby
 enabling substantial speed up of connection setup, so as to meet the
 needs of contemporary applications.

 Our proposed lightweight architecture for ATM signaling is called
 UNITE. The fundamental philosophy of UNITE is the separation of
 connectivity from QoS control. This has the potential to eliminate
 the round-trip connection setup delay, before initiating data
 transmission. Using a single cell with proper encoding, we avoid the
 overhead of reassembly and segmentation on the signaling channel.
 With fixed formats, we believe that a hardware implementation is
 feasible. Performing QoS negotiation in-band allows switches in the
 path to process QoS-requests in parallel, facilitates connection
 specific control policies, supports both sender and receiver
 initiated QoS, and allows for uniform treatment of unicast and
 multicast connections.

Ramakrishnan et al. Expires February 1999 [Page ii]

Internet Draft UNITE August 1998

Note on Applicability

 This Internet Draft is based on an ATM Forum contribution and as
 such is written within an ATM context. However, we believe that
 the UNITE approach to signaling might also be of value within the
 context of MPLS and have therefore decided to present it to the MPLS
 working group to solicit feedback. We hope to extend and modify this
 Internet Draft to be applicable for on-demand label distribution in
 MPLS based on the feedback received.

1. Introduction

 The goal of lightweight signaling is to reduce the penalty of
 connection setup, while supporting service guarantees. A lightweight
 signaling protocol should ideally support and enhance both
 connectionless and connection-oriented services. Because of a desire
 to foresee the signaling needs of any and all applications that are
 likely to use the network, current ATM signaling is complex and
 slow, multiple messages are required to set up a connection, and
 considerable processing is required to parse the complex signaling
 messages.

 In this internet draft, we describe UNITE, a lightweight signaling
 protocol for ATM networks. We are motivated by the need to more
 efficiently support data applications that typify current Internet
 traffic while providing facilities to support applications that
 require stringent quality-of-service such as telephony. Furthermore,
 this work is aimed at reducing the complexity of ATM signaling,
 improving the performance of ATM call processing, and improving ATM
 as a general purpose transport infrastructure.

 The principal idea behind UNITE is a complete separation of
 connectivity from quality-of- service, or more generally, service
 attributes. The connectivity setup message is reduced to a single
 ATM cell, with fixed field sizes and positions, avoiding the overhead
 of reassembly and segmentation on the signaling channel, allowing
 it to be fully processed in hardware. Exploiting per-VC queueing,
 data can be forwarded immediately after a one-hop exchange, rather
 than suffering a full-round-trip latency. However, we recognize
 that not all switches are likely to have per-VC queues, and switches
 may initially want to support connection establishment in software.
 For this reason UNITE accommodates both software processing and
 FIFO switches using a marker/marker-acknowledgment protocol between

Ramakrishnan et al. Expires February 1999 [Page 1]

Internet Draft UNITE August 1998

 switches. UNITE reduces connection setup cost sufficiently, so
 that establishing connectivity becomes comparable to forwarding
 and populating a cache in a router. A UNITE switch can therefore
 reasonably be expected to setup new connections at a rate competitive
 with routing in a connectionless networks. Conversely, IP-type
 best effort data flows suffer sufficiently small delay penalty for
 establishing a connection over the ATM infrastructure that it becomes
 viable to set up a connection even for the shortest of flows. Thus,
 UNITE is ideally matched to carry Internet traffic (IP) over ATM
 networks.

 UNITE uses in-band messages for QoS establishment. It builds on
 the extensive work done for QoS in ATM networks, including the
 specification of classes of service, admission control and related
 issues such as conformance and policing. Because the QoS messages
 are sent on the established VC, we can exploit parallelism to improve
 the throughput and latency for QoS establishment.

 In part due to its simplicity, UNITE supports both source and
 destination initiated QoS, supports multipoint-to-multipoint
 connections and recognizes the possible need for variable QoS to
 different participants [i, ii] (variegated multicast trees).

 UNITE has been implemented in a software prototype. Early
 performance measurements confirm our expectations for a higher
 signaling throughput and lower call setup latency. In the next
 section we describe UNITEs connection setup for best effort
 connections. Subsequently, in Section 3, we describe UNITEs support
 for multicast. In Section 4, we provide details of UNITEs QoS
 Management, and then deal with interoperability issues, both with UNI
 as well as with existing switches. Section 7 summarizes the benefits
 of UNITE and then we conclude. Finally, in Section 9, we briefly
 consider the applicability of UNITE in an MPLS environment.

2. UNITE Connection Setup

 UNITE uses a separate, initial mechanism for setup of connectivity to
 enable a fast connection setup. This is shown in Figure 1.

 Figure 1: The UNITE Connection Setup

Ramakrishnan et al. Expires February 1999 [Page 2]

Internet Draft UNITE August 1998

 The calling station issues a micro-setup, which is a single cell, on
 the signaling channel that includes all the information necessary
 to establish a best-effort connection with a remote called station.
 The switch that receives the micro-setup determines the route (based
 on the destination address and a broad QoS class identification)
 to forward the micro-setup on the correct output port. After
 allocating VC resources on the upstream link for the connection
 and forwarding the micro-setup, the switch returns a single cell
 micro-acknowledgment to the upstream node on the signaling channel.
 If appropriate, the switch may allocate per- VC buffers for the
 switch at that time also. On receiving the micro-ack, the upstream
 node transmits a single cell marker on the established VC (in-band).
 This marker serves as the 3rd step of a three-way handshake.
 Subsequent to transmitting the marker, the upstream node may
 transmit data on the VC, on a best-effort basis. The above sequence
 of steps is repeated at each hop. Virtual Circuits established
 are bi-directional, with VC-ids allocated in the conventional
 manner by switches. While we believe we can accommodate multiple
 address formats, we are currently using existing NSAP addresses
 and address allocation methodologies. We assume the existence of
 link-layer management, such as ILMI. The micro- setup is routed to
 the destination on a hop-by-hop basis, using routing tables that
 are setup based on existing PNNI information dissemination and
 route-computations. We also use existing cell-formats and currently
 defined AAL5 framing.

 The commitment provided by the connection is that data is transmitted
 on a best-effort basis. Since the QoS class information is provided
 in the micro-setup, the path selected even for the best-effort
 connection may be on a more informed basis than pure best-effort with
 no a priori knowledge. Data may begin flowing from an upstream node
 to the downstream node immediately upon completion of the micro-setup
 on that hop. The latency suffered by a best- effort flow to use the
 connection-oriented nature of ATM is thus only a single hop round-
 trip propagation delay, plus the time needed to setup state on that
 hop. Data is buffered on a switch (with per-VC buffers) when it
 arrives on a VCid for which a forwarding table entry has yet to be
 setup. In a subsequent section in this draft, we describe methods
 to accommodate FIFO switches, and also when the processing of the
 signaling messages is performed in software. This is enabled by the
 use of an optional marker-acknowledge, that allows for a downstream
 switch (or node) to require the upstream switch (or node) to delay
 transmitting of data until it is ready to receive data. To ensure
 that no persistent loops form, UNITE uses a combination of a unique
 Flow-ID for the connection and an end-end acknowledgement. When
 the destination receives the micro-setup, it sends an in-band (on

Ramakrishnan et al. Expires February 1999 [Page 3]

Internet Draft UNITE August 1998

 the established VC) end-end ack to the source. This indicates to
 the source that a loop-free path has been established. Only upon
 receiving the end-end ack does the source issue a RELEASE at any time
 in the future when it needs it. Issuing a RELEASE prior to receiving
 the end-end ack may erase the Flow-ID maintained at a switch. This
 is undesirable because it will be unable to recognize the micro-setup
 that may come back as a result of a loop. The combination of the
 unique Flow-ID and holding back the RELEASE until the end-end ack is
 received enables us to avoid loops.

2.1. ESTABLISHING CONNECTIVITY, PHASE 1: THE MICRO-SETUP

 The micro-setup and the associated micro-acknowledgment are sent on
 a well-known signaling VC. The processing of the micro-setup at the
 switch includes the following functions, in order:

 1. A route lookup for the micro-setup, identifying the port on which
 to forward the micro- setup.

 2. Allocation of a VC from the VC address space on the upstream
 link. We assume that all connections are created bi-directional (to
 minimize the overhead of both ends establishing connections).

 3. Allocation of a reasonable amount of buffering at the switch for
 that VC, if appropriate.

 4. Initiating an ACK-timer for the micro-setup. This timer is for
 error recovery when the micro- setup is lost or when the downstream
 switch does not successfully progress the micro- setup.

 5. Forwarding the micro-setup downstream on the link that the
 route-lookup function determined as the best path towards the
 destination end-system.

 6. Mark the incoming VC state as DISCARD, so that the switch
 discards all incoming cells on this VC. This enables us to clear
 previously buffered cells for the upstream link on the newly assigned
 VC, if there are any. The VC state transitions to FORWARD state
 subsequently, when a MARKER acknowledging the ACK is received.

Ramakrishnan et al. Expires February 1999 [Page 4]

Internet Draft UNITE August 1998

 7. Finally, a VC id is returned to the upstream switch in the
 micro-ACK. The upstream node may begin transmitting data on receipt
 of the micro-ACK. The forwarding of the data to the downstream next
 hop has to await the completion of the processing at the next hop
 switch and the return of a corresponding VC id for the flow.

 We have chosen to provide reliable delivery within the UNITE
 signaling framework itself, rather than layering it on top of
 another reliable transport mechanism. Current ATM UNI signaling
 uses a reliable transport protocol, SSCOP for transporting signaling
 messages thus re-incorporating some of the overhead for processing a
 signaling message, and makes it difficult to implement in hardware.
 The 3-way handshake obviates the need for a reliable transport for
 carrying signaling messages.

 A simple, efficient encoding of the setup is vital: we use a single
 cell for the micro-setup, with only essential components in it, thus
 allowing for hardware implementation. In addition, it allows for
 distributed call setup to be implemented in a switch (especially
 important when there are a large number of ports). The micro-setup
 uses a unique end-to-end Flow-id. All control exchanges use this
 Flow-id. Included in the micro-setup is whether the call is unicast
 or multicast capable. Multicast and unicast connections have nearly
 identical mechanisms for both connection setup and QoS setup.

 UNITE adopts hop-by-hop routing of the micro-setup, in contrast
 to the traditional source- routing used in ATMs PNNI routing
 protocols. However, source-routing has been used to avoid loops
 in connection-oriented networks. Since UNITEs Flow-id is a unique
 end-to- end call-reference identifier, this may be used to detect
 loops. When a duplicate micro-setup is received with the same
 Flow-id, without it being a retransmission (or on a different port
 than the port the earlier copy was received on) it indicates a
 routing loop. UNITE suppresses multiple micro-setups (a mechanism
 we also use for multicast connections for normal operation). A
 controller might also send a release in the backward direction for
 the Flow-id (or allow timers to subsequently close the connection).
 This mechanism along with the rules for issuing a RELEASE after
 an end-end acknowledge is received by the source ensures that a
 successful connection does not contain a loop. Routing loops are
 mostly transient inconsistencies in routing tables, which we expect
 to be corrected by subsequent updates as part of the normal operation
 of the routing protocols.

Ramakrishnan et al. Expires February 1999 [Page 5]

Internet Draft UNITE August 1998

 The micro-setup being a single cell allows the switch to avoid
 re-assembly and segmentation. In addition, all of the requirements
 to keep the cells in sequence may be ignored: a micro-setup cell
 may be served in any order, relative to the others. Thus, we could
 choose to process the micro- setup for some classes in hardware,
 and others in software, if so desired. Furthermore, it allows for
 a truly distributed implementation of the micro-setup because there
 is no need for a single point of re-sequencing the cell streams for
 signaling messages arriving on different ports. A fixed format
 micro-setup cell also assists hardware implementations.

 The fields of the micro-setup cell are as follows, with reference to
 Figure 2:

 1. Flow-id (8 bytes) - A unique (end-to-end) Flow-id identifying the
 micro-setup from source. This comprises two sub-fields:

 a) A unique source identifier. For example, this could be the host
 Ethernet address, that is unique through the use of an address ROM (6
 bytes).

 b) A source unique sequence number (2 bytes).

 2. Type (1 byte) - type of signaling cell. Includes a Retransmit
 bit.

 3. QoS Class (1 byte) - for minimal QoS sensitive routing.
 (Potentially broken up into a nibble for class definition and a
 nibble for specification of the size of the dominant parameter for
 that class.

 4. Reserved (1 byte) - for future use. Anticipating the potential
 use of a Virtual Private Network Identifier, we could include 3 bytes
 for a VPN ID by removing the User-User Information byte from the AAL5
 trailer. The use of such a VPN ID is for further discussion.

 5. Protocol ID (5 bytes) - allows the caller to specify the network
 layer entity addressed at the called station and eliminates a need
 for a second exchange to establish this connectivity. SNAP encoding
 is assumed by default. The 5 bytes includes the OUI and PID fields.

 6. Destination Address (20 bytes) - destination NSAP address.

Ramakrishnan et al. Expires February 1999 [Page 6]

Internet Draft UNITE August 1998

 7. A VPI/VCI that is assigned by the upstream node for the
 connection when it is appropriate. This is determined by which
 end of a link is supposed to allocate the VPI/VCI value for a new
 connection, just like the current convention.

 8. AAL5 Trailer (8 bytes) - the standard ATM AAL5 trailer including
 the CRC and length. In addition, of course, is the 5 byte ATM cell
 header. The VC id on which the micro-setup is transmitted is a
 common, well-known signaling VC.

 A switch maintains a timer associated with the micro-setup that
 has been transmitted to the downstream hop. This timer is cleared
 upon receiving the ACK from the downstream switch. A switch that
 has timed out after transmission of the micro-setup retransmits the
 micro-setup request. The re-transmitted micro-setup is identical to
 the previous except for a retransmit bit in the type field. As a
 result it can be retransmitted by hardware.

2.2. Establishing connectivity, Phase 2: The ACK for the Micro-setup

 The micro-Acknowledgment of the connection setup upon successful
 processing of the micro-setup is returned upstream to the previous
 switch or host. The information provided has to be adequate for
 appropriate processing at the upstream switch or the original
 host requesting the connection. The downstream switch maintains
 a timer associated with the micro-ACK transmitted upstream, for
 re-transmitting micro-ACKs. (This timer is cleared when the MARKER
 is received in the third phase of the micro-setup and therefore also
 protects against loss of the MARKER.) The micro-ACK has the following
 fields:

 1. Flow-id (8 bytes): the Flow-id received in the micro-setup, to
 enable to upstream node to match this ACK to the request.

 2. VPI/VCI returned for the request (3 bytes)

 3. The NSAP address that was the same as the one received in the
 micro-setup.

 4. There is also a bit to indicate to the upstream whether a
 Marker-Acknowledge is to be expected or not, before transmitting
 data. A second bit is used to inform the upstream switch on whether

Ramakrishnan et al. Expires February 1999 [Page 7]

Internet Draft UNITE August 1998

 it should delay sending its marker-acknowledge until it has received
 one from downstream (Refer to Section 5.2).

2.3. Establishing connectivity, Phase 3: The Use of a Marker

 The final part of the 3-way handshake on the hop-by-hop micro-setup
 is an in-band MARKER. The MARKER serves not only to acknowledge the
 micro-ACK message, but is also essential to mark the beginning of the
 new data flow. The use of the 3-way handshake ensures that data at
 both the upstream node and the link related to the newly allocated
 VC id are flushed of old data at the time the downstream switch
 receives the MARKER. The 3-way handshake also allows for recovery
 from loss of the micro-ACK. The MARKER is the first cell sent in-
 band by the upstream node. Everything that follows this marker is a
 valid data cell for the new flow. The MARKER includes the Flow ID,
 the NSAP address of the connection initiator (source), and a bit to
 indicate if the version of the MARKER is a retransmission or not.
 The switch controller may, for example, use the source NSAP address
 for functions, such as VC re-routing or generating an out-of-band
 RELEASE.

 The upstream node, after sending the MARKER, sends data on this VC id
 if the downstream node has not requested that a Marker-Acknowledge
 is to be expected. If a Marker-Acknowledge is to be expected,
 then the upstream node transmits data only after receiving the
 Marker-Acknowledge.

3. Call Setup for Multicast

 UNITE incorporates the functionality of having multipoint-to-multipo*
 *int
 communication [iv] as an integral part of the signaling architecture.
 The simpler cases of point-to- multipoint multicast calls are
 simple sub-cases of this overall multicast architecture. The simple
 difference between a unicast call and a multicast call is that
 the micro-setup issued indicates that the call is potentially a
 multicast call. For the purposes of this discussion we assume that
 the underlying network forwarding mechanism can manage issues such as
 cell interleaving [iv]. Therefore, we describe procedures that are
 applicable for core-initiated joins (for core based trees [v,vi]),
 which are similar for source-initiated join for a source- based tree.
 We then describe leaf-initiated joins for other participants that
 join subsequent to the call being setup [vii,viii].

Ramakrishnan et al. Expires February 1999 [Page 8]

Internet Draft UNITE August 1998

3.1. Core/Source Initiated Joins

 Core initiated joins (or source initiated joins) are relevant when
 the set of participants is known initially. The core issues a
 micro-setup knowing the NSAP address of each individual participant.
 Since there is no way to package more than one NSAP address in the
 micro- setup, an individual micro-setup is issued for each of the
 participants. We think this is not as important, because, (a) the
 micro-setup is relatively cheap and (b) the number of participants
 that subsequently join using the leaf-initiated joins may dominate.

 The first micro-setup issued to a participant includes a label (in
 the Type field) to indicate that it is a multicast-capable call
 setup. The rest of the micro-setup is similar to that described
 for a unicast call. The Flow-id is determined by the originator
 (i.e. the core or sender). The Flow-id acts as a call-reference
 identifier for the multicast call. The micro-setup issued for
 joining subsequent participants uses the same Flow-id, again labeled
 as a multicast. The micro-ACK that comes back from the downstream
 hop returns a VC id as with unicast calls. The MARKER transmitted by
 the core (or source) is sent in-band, on the VC id returned in the
 ACK.

 The Flow-id used in the micro-setup is retained at the switch, as a
 means of identifying the multicast call. During joins, the switch
 sending the micro-setup maintains state, which includes the Flow-id
 and the destination NSAP address to which the setup was issued (the
 new leaf). This way, ACKs that return for the individual setups
 issued may be matched up by the switch, for purposes of managing
 their retransmission.

 Figure 3: Core initiated join. Observe, that the marker on the last
 hop to B is generated by the controller at the branch point.

 The initiator of the micro-setup (core or source) sends the MARKER
 when it receives the first micro-ACK. Upon receiving subsequent
 micro-ACKs, the source/core knows that the VC is already open
 (operational) and therefore, doesnt generate a further MARKER. At a
 new branch point on the multicast tree, however, a MARKER is required
 to the new destination: this is because that branch of the tree
 needs to be flushed of any old data that is currently in existence
 for that VC identifier. The controller is responsible for generating
 and sending this in-band MARKER. Subsequently, data may be forwarded

Ramakrishnan et al. Expires February 1999 [Page 9]

Internet Draft UNITE August 1998

 on that VC id, as a result of a proper 3-way handshake. Figure 3
 illustrates this scenario.

3.2. Leaf Initiated Joins

 Figure 4 : Leaf Initiated Join: As LIJ is progressed to switch
 four. Bs LIJ is suppressed at switch two.

 The mechanisms for Leaf Initiated Joins (LIJ) are similar to those
 suggested in the conventional ATM Forum UNI 4.0. However, instead of
 having a separate LIJ and Add- Party mechanism, UNITE uses the same
 mechanisms of the micro-setup for performing a LIJ. Consider Figure
 4, where two participants A and B wish to join the multicast tree,
 that currently ends at Switch 4. The LIJ is a micro-setup (the Type
 indicator indicates that this is a LIJ for a multicast call) from
 one of the participants, that is directed towards the core/source,
 using the NSAP address corresponding to the core/source. The Flow ID
 used in the micro setup is the multicast call reference identifier,
 and is stored at the switches as the micro setup is forwarded
 upstream towards the core. We assume that the underlying call
 routing mechanisms direct the micro-setup towards the source/core
 in accordance with the appropriate criterion (e.g., shortest-path
 or least cost). When a LIJ arrives at a switch from another
 participant, such as B, the Flow ID is recognized as already existing
 at the switch, and the forwarding of Bs micro-setup is suppressed.
 This may be done only if the core does not wish to be notified of
 the address of an individual leaf joining. Note that this happens
 even though the LIJ of the first participant added on this branch,
 has not yet reached the tree at Switch 4. When the micro-setup
 from A is issued, the 3-way handshake results in the marker being
 forwarded by the switches upstream. This effectively opens up the
 VC from the node A up to the branching point, at Switch 4. Along
 with the suppression of the micro-setups, subsequent markers are also
 suppressed at the switches.

4. DETAILS OF QoS MANAGEMENT

 The second part of UNITE is a separate means of full QoS
 specification and negotiation. This allows both a very flexible
 QoS management process, as well as the ability to incorporate QoS
 renegotiation with ease. As discussed in the previous sections, the
 micro-setup includes a QoS byte that can be used in the original

Ramakrishnan et al. Expires February 1999 [Page 10]

Internet Draft UNITE August 1998

 connection setup to support coarse or aggregate level QoS (e.g.,
 by allowing some differentiated decision for the forwarding of the
 micro-setup). UNITE supports detailed QoS signaling (or full QoS
 signaling) that is performed in-band on the already established
 best-effort VC. We anticipate that a large subset of flows will
 not use the additional phase of a QoS setup for establishing a
 distinctive quality of service. The QoS class specification that is
 provided in the initial micro-setup may be adequate for a reasonably
 large subset of best-effort flows (e.g., a large class of TCP/IP and
 UDP/IP flows carrying non-real-time data clearly dont need to have a
 subsequent QoS setup phase). Similarly, well-understood real-time
 flows such as uncompressed telephony traffic (mu-law, a-law) may be
 adequately specified as being delay- sensitive. The assured QoS for
 the flow begins after the QoS negotiation completes, end-to-end,
 in a similar fashion to the conventional UNI QoS setup. Also, we
 believe that most of the more sophisticated QoS management will be
 handled in software as is the case in the current UNI framework.
 However, UNITEs framework provides a more flexible and efficient QoS
 management in the following dimensions:

 1. UNITE QoS requests may be initiated by the source or the
 destination of the original best effort connection setup. In the
 more general case of multicast connections, QoS requests may be
 source/core initiated or leaf initiated.

 2. UNITE QoS in-band signaling allows QoS renegotiation originating
 from any of the connection end points.

 3. UNITE QoS in-band signaling enables potentially different QoS
 negotiation modalities and implementations taking advantage of
 parallelism in the processing of the QoS setup across multiple
 switches in the end-to-end path.

 Figure 5 : Protocol for Establishing QoS in UNITE.

 For those flows that require a detailed QoS negotiation, we use
 the process of QoS setup described in Figure 5. The QoS request
 may immediately follow the marker, as shown in Figure 5, or may
 be submitted after the call is established. The receiver, after
 processing the request sends a QoS Commit, that commits the
 reservation. To adjust over-committed reservations, and to confirm
 the QoS reservation to the receiver, the originator sends a QoS
 Ack. The delay until a QoS flow begins on the forward path is an
 end-to-end round-trip plus the processing at the destination. On the

Ramakrishnan et al. Expires February 1999 [Page 11]

Internet Draft UNITE August 1998

 reverse path, a confirmed QoS flow begins one round-trip after the
 QoS Commit is issued from the destination. For compatibility with
 existing ATM, we anticipate that the QoS request, Commit and Ack,
 would be encoded as in the UNI connection setup and connect messages,
 as far as the QoS information is concerned. For our purposes in
 this section, we treat the end-system that initiates the QoS setup
 request as the QoS source. The end-system that responds to the QoS
 setup request at the other end is the QoS destination. During the QoS
 negotiation, data may still flow on the connection on a best-effort
 basis. Cells that belong to the QoS negotiation message are marked
 with a Payload-Type Indicator (PTI), possibly as RM cells, so that
 it may flow to the controller on the switch. Thus, in fact, QoS
 signaling and data cells (or messages) may be interleaved because of
 the PTI value being distinct from one another.

 Figure 6: Three Way QoS Setup.

 Various alternatives for detailed QoS negotiation can be considered
 here, including the conventional three way setup described in Figure
 6, and one which is consistent with the RSVP-like signaling proposed
 for IP networks. With reference to Figure 6, the QoS request is
 multicast to all switch controllers in the path and to the next link
 at each switch, facilitating parallel processing in the controllers
 (1). The Commit message traverses the reverse path, slaloming to
 every controller, collecting the commitments (2). The QoS Ack.
 multicasts the commitment to all controllers (3).

 In UNITE a QoS request may be initiated by any participant of a
 multicast, the core (if present), source or a leaf. Moreover,
 unless otherwise dictated by higher level policies, core/source and
 leaf initiated QoS may all be used at different times for the same
 multicast. As an illustration of the potential of UNITE, we describe
 the case of Leaf Initiated QoS request by referring to Figure 7.

 The leaf initiated QoS requests carry the demand from the receivers
 upstream. When the QoS request arrives at a switch, the demand is
 noted at the switch. The switch conveys upstream, the maximum of all
 the demands observed from the different branches (a leaf node or a
 switch may be at the end of the branch). Note that different leaves
 may issue their QoS requests at different times. The switch examines
 each QoS request and transmits a request upstream only if the QoS
 request is higher than the current maximum. When the demands arrive
 at the core/sender, the permit returned is the minimum of the offered
 capacity, the demands received from the leaves and the available link
 capacity. Note that each switch needs to maintain state, which is

Ramakrishnan et al. Expires February 1999 [Page 12]

Internet Draft UNITE August 1998

 the demand and the permit returned for each branch for the multicast
 call. The leaf may be a source or a receiver, requesting a QoS on a
 shared distribution tree (e.g., CBT).

 Figure 7: Multicast QoS. Leaf initiated QoS, a) demand phase, b)
 permit phase.

5. Interoperability Issues

 In this section, we describe how to use UNITE with existing switches
 including software based implementations and FIFO switches.

5.1. Interoperability with existing Switches

 The proposed UNITE protocol discussed in Section 2 assumes that
 switches will be able to do per-VC queueing and furthermore will be
 able to handle the processing of the Marker in- band. Processing of
 the Marker involves changing the state of the per-VC queue so that
 arriving cells are buffered rather than dropped. (This ensures that
 valid data cells, that might follow the marker back-to-back, will
 be queued, while any invalid cells, e.g. cells in flight from an
 erroneous connection, will be dropped.) Current ATM switches do not
 necessarily provide these capabilities, however, and it is crucial
 that UNITE can still function on such legacy switches. An extra (but
 optional) Marker-Acknowledge message is introduced to deal with these
 issues.

 If a switch is processing the Marker in software, it cannot guarantee
 that queue state will change from discard to queueing in time to
 cater for valid data cells following the Marker. In fact because of
 different switch architectures and implementations, the amount of
 time it takes to process the Marker in software will vary greatly.
 An upstream node therefore has no way of knowing how long to delay
 before it can start forwarding data cells. By having a downstream
 node sending the Marker-Acknowledge message only when it is ready
 to receive data from the upstream node, this problem is solved. An
 illustration of the optional use of the Marker-Acknowledge is given
 in Figure 9. A downstream node indicates in the micro-Acknowledge
 message whether it requires the upstream node to wait for a
 Marker- Acknowledge or not. The Marker-Acknowledge mechanism can
 therefore be used on a hop- by-hop basis as dictated by local switch
 capabilities. When a downstream node has requested the use of the

Ramakrishnan et al. Expires February 1999 [Page 13]

Internet Draft UNITE August 1998

 Marker-Acknowledge message, the upstream node starts a timer when
 it sends the Marker downstream. This timer is cleared when the
 Marker-Acknowledge message is received from downstream, or, if the
 timer expires the Marker is retransmitted. Note that the penalty
 for using the Marker-Acknowledge is two round-hop worth of delay as
 opposed to one round hop in the ideal case. The hop-by-hop nature of
 the original protocol is however maintained

 The Marker-Acknowledge message is also used to cater for FIFO
 switches, as illustrated in Figure 10. A FIFO switch will not
 be able to buffer data cells until it receives an acknowledgment
 from downstream. (Indeed some FIFO switches might not even be
 able to accept cells into the switch without having received the
 outgoing VCI from the downstream switch.) A FIFO switch will then
 simply delay sending the Marker-Acknowledge until it is capable of
 forwarding data cells. This in itself is however not enough. If
 the upstream switch is itself a FIFO switch, then the second FIFO
 switch has to also indicate to the upstream switch that it should not
 send a Marker-Acknowledge message upstream until it has received a
 Marker-Acknowledge message from downstream. (In the non-FIFO case
 described above, a switch can send a Marker-Acknowledge message
 upstream, as soon as it is capable of receiving data. If both the
 upstream and the downstream switches are FIFO switches, however, the
 upstream switch should wait until the downstream switch is capable of
 receiving data.) The Acknowledgment message therefore also needs to
 indicate to the upstream node whether it should wait for a downstream
 Marker-Acknowledge, before it can send its Marker-Acknowledge
 upstream. (If the upstream node is not a FIFO switch and is capable
 of buffering data, it can simply ignore this indication in the
 Acknowledgment message.)

 Figure 9: Use of the Optional Marker Acknowledge to enable
 downstream switches to control upstream switch transmission of data
 until it is ready

 This approach has the effect of changing the hop-by-hop delay of the
 UNITE protocol into a partial end-to-end delay across consecutive
 FIFO switches. (A setup request will proceed, with data following,
 on a hop-by-hop basis until a FIFO switch or switches are reached.
 Forwarding of data will then be delayed until the last FIFO switch in
 the sequence is ready to receive the data.)

Ramakrishnan et al. Expires February 1999 [Page 14]

Internet Draft UNITE August 1998

6. CONSIDERATIONS ON UNITE IMPLEMENTATION.

 The fundamental features of UNITE, namely, the separation of
 connectivity from full QoS processing, the specification of single
 cell signaling messages and the simplified reliability support via
 timers and retransmission of basic messages, enable a broad range of
 implementation scenarios for UNITE.

 At one extreme, UNITE may be implemented completely at the software
 level. The only functionality required at the hardware level is the
 ability to recognize in-band control cells used for UNITE signaling
 arriving at the switch ports, and to route such cells to the switch
 controller. In the most basic software implementation per VC queuing
 would not be required, and early data transmission (before end-to-end
 acknowledgment) may not be supported. We believe that, while the
 full latency improvement potential of UNITE is not achieved with
 such an implementation, significant improvement in call processing
 capacity as well as fairness improvements may indeed be achieved.

 Figure 10: Use of the Marker Ack with a sequence of FIFO switches.

 At the opposite extreme in the range of implementations of UNITE
 is the scenario where as much call processing functionality is
 implemented in the hardware, most likely located in the switch line
 cards and host adapters, and the switch supports advanced queuing and
 scheduling schemes. In this scenario the full potential of UNITE
 may be manifested, with close to a single hop round trip latency
 before the inception of data transmission, and vast call set up
 capacity increases for best effort or basic QoS calls. Such capacity
 increases are naturally scaleable with the switch port capacity
 and the number of ports on the switch, thanks to the distributed
 nature of the implementation enabled by UNITE. We believe that a call
 processing capacity of several thousand calls per second per OC-3
 port is feasible within a UNITE framework. Note that even in an
 advanced implementation the full QoS call processing would be handled
 at the software level.

 It is reasonable to conceive a UNITE implementation in which the port
 processing modules on the port cards support the following functions
 in hardware:

 1. Capture/injection of UNITE signaling cells.

Ramakrishnan et al. Expires February 1999 [Page 15]

Internet Draft UNITE August 1998

 2. Management of timers, retransmissions and state changes in the
 call processing state machine.

 3. Forwarding of micro-setup to the correct outgoing link, based on
 fast address lookup.

 4. Allocation of incoming labels (i.e., incoming/outgoing VPI/VCI
 and Tags used for routing through the fabric) out of local label
 pools managed (on longer time scales) by the central switch
 controller.

 5. Basic QoS support. This may imply forwarding and
 queueing/scheduling based on a the QoS byte in the micro-setup.

 6. Control of queue scheduling based on UNITE control messages
 received (e.g., blocking until a message is received).

 A subset of the functionality listed above may also be implemented
 within the Adapter SAR ASIC, namely, signaling control cell
 capture/injection and management of timers, retransmissions and state
 changes in the call processing state machine. The switch control
 processor would, in this scenario, be responsible for:

 1. Monitoring and management of label pools allocated in real time
 by the Port Processing Modules.

 2. Call accounting and monitoring.

 3. Switch level resource management.

 4. Full QoS call processing, including Call Admission Control and
 support of sophisticated bandwidth reservation schemes and management
 of appropriate scheduling schemes.

 5. Initialization, monitoring of error conditions and switch level
 management. A range of UNITE implementations falling in between the
 extremes described above can naturally be conceived, including the
 case of the current generation of switches supporting per VC queuing
 in the switch fabric, but still handling UNITE control cells in
 software. Large signaling performance advantages could be gained in
 this case by exploiting the early data transmission feature of UNITE.

Ramakrishnan et al. Expires February 1999 [Page 16]

Internet Draft UNITE August 1998

 In order to explore the implications of a basic UNITE software
 implementation we developed a UNITE prototype completely in software
 over a network including two ATM switches and two adapter cards.
 A picture of the prototype setup is shown in Figure 11. In the
 prototype in-band UNITE signaling cells are supported by OAM cells.
 To evaluate the performance improvement with UNITE, we compared the
 performance of UNI 3.0 versus the prototype UNITE implementation.
 The tests used a mature UNI 3.0 implementation, a Radcom test box
 acting as a source and destination, and a Cabletron ATM Switch. The
 UNITE tests used two Sun workstations with Cabletron/Zeitnet ATM
 adapters.

 One important issue for connection-oriented communication is the
 amount of memory used to keep state for each individual connection.
 At least comparatively, UNITE is efficient in using memory for VC
 state, using only 128 bytes per best-effort VC in our prototype. In
 contrast, UNI uses almost 1500 bytes for a best-effort VC. Thus,
 there is the potential for UNITE to support a much larger number of
 VCs on switch ports.

 We measured the UNITE connection setup latency and throughput.
 Our preliminary results, using 100 microsecond clock granularity
 in our measurements, were as follows: The best effort connection
 setup latency through an individual switch was 1.7 ms with UNITE.
 In comparison, a best-effort UNI connection took 10.9 milliseconds.
 The various components of this service time are shown in Table 1.
 In terms of throughput, UNITE got approximately 700-800 calls/sec,
 while with UNI we got approximately 130 calls/sec. We believe that
 with some simple optimizations, UNITE could easily get over 1000
 calls/sec. We expect that even more substantial improvement could be
 achieved with UNITE with a streamlined/hardware implementation.

7. BENEFITS OF UNITE

 In this section we summarize and reorganize, as a quick reference,
 the benefits of UNITE discussed in this internet draft.

 1) Separating connectivity from QoS enables UNITE to:

 a) Achieve high throughput for establishing connections.

Ramakrishnan et al. Expires February 1999 [Page 17]

Internet Draft UNITE August 1998

 b) Have a very low latency to begin data transmission because we dont
 have to wait for an end-end message exchange.

 c) Have throughput and latency for connection establishment be
 independent of the complexity of the QoS class and other service
 characteristics. Complex QoS specifications are allowed for those
 connections that need it.

 d) Support QoS establishment and renegotiation in a similar fashion.
 This enables simple ways to change parameters for flows.

 e) Allow for communication on a best-effort basis even upon failure
 of a QoS request.

 2) UNITE is ideally matched to carry Internet traffic over ATM
 networks.

 3) UNITE is optimized for distributed hardware implementation of
 signaling within a switch on a per-port basis.

 a) A single cell, fixed length, fixed format micro-setup allows for
 high-speed processing of the setup message.

 b) No single point of re-sequencing or SAR is needed, and no software
 stack such as SSCOP is required for supporting basic connection
 establishment.

 c) Reliability is achieved via simple timers and retransmissions that
 are easily implemented in hardware.

 d) State and context information for connectivity requires only a
 small amount of memory and can be kept in a distributed fashion, even
 on a line card.

 4) Separation of connectivity and QoS and sending QoS related
 messages in-band allows the network to have QoS setup initiated by
 sources or destinations.

 5) UNITE provides isolation of QoS negotiation to connections that
 require it

Ramakrishnan et al. Expires February 1999 [Page 18]

Internet Draft UNITE August 1998

 a) Multiple passes, complex QoS negotiation or other service
 characteristics may be allowed.

 6) Supports a full range of multicast architectures, including
 multipoint-to-multipoint.

 a) QoS can adapt to the capabilities of the branches of the tree.

 7) Builds on the QoS work done for ATM and IP.

 a) Accommodates a wide range of QoS models: UNI, RSVP and future
 evolution.

 9) Builds on substantial amount of the work done for PNNI for
 QoS-sensitive routing.

 10) Allows communication on a path selected based on a coarse class
 specification. Hence even simple connectivity can be better than
 true best-effort.

 11) Inter-works with existing UNI switches.

 12) Allows for legacy switches and various levels of hardware
 implementation complexity.

8. SUMMARY

 We have described a protocol for lightweight signaling. The key idea
 behind the protocol, is the separation of connection establishment
 and QoS processing. This makes connection setup independent of QoS
 processing complexity, benefiting most flows and best effort flows
 in particular, as the channel becomes immediately available on best
 effort basis. The separation allows all flow specific signaling,
 i.e., QoS messages to be carried in-band, thus protecting the shared
 signaling resources. UNITE signaling unifies initial QoS setup and
 renegotiation, and supports source/core initiated QoS as well as
 receiver initiated QoS requests.

 The connectivity setup message is a single ATM cell (called
 micro-setup). The micro-setup and micro-acknowledgment are exchanged

Ramakrishnan et al. Expires February 1999 [Page 19]

Internet Draft UNITE August 1998

 on a hop-by-hop basis on a signaling channel. By incorporating a
 minimal QoS class identification in the micro-setup request, UNITE
 has the ability to provide QoS sensitive routing. Data flow on
 the best-effort VC may begin without waiting for the setup to be
 completed over the entire end-end path. The use of per-VC queuing
 permits the source to start sending data on a best-effort basis as
 soon as the connection has been setup on the next hop.

 Subsequently, QoS setup requests and acknowledgments flow in-band on
 the best-effort VC that is initially setup. The QoS for the flow
 is assured upon completion of the end-end exchange of the QoS setup
 and ack. The complexity of QoS messages and their processing is
 isolated to those VCs requiring it, without impacting other VCs. In
 addition, it allows for the QoS requester to be either the source or
 destination of the connection. The architecture recognizes the need
 for multipoint-to-multipoint connections, and the possible need for
 variable QoS to different participants in the multicast group.

9. Applicability OF UNITE to MPLS

 As we stated earlier, this Internet Draft is based on an ATM Forum
 contribution and as such is written within an ATM context. However,
 we believe that UNITE might also be of value within the context of
 MPLS and have therefore decided to present it to the MPLS working
 group to solicit feedback.

 Clearly, UNITE currently uses ATM addresses, to be applicable to
 ATM. However, we believe that the protocol could be used with IP
 addresses, with hop-by-hop forwarding of the micro-setup at the
 MPLS switches using conventional link-state routing, such as OSPF.
 Because of the inclusion of the QoS class in the micro-setup, we
 can take advantage of potential enhancements to IP to accommodate
 QoS-sensitive routing.

 We believe that UNITE might be applicable to the following objectives
 of the MPLS working group. We reiterate below these specific
 objectives:

 1. Specify standard protocol(s) for maintenance and distribution
 of label binding information to support unicast destination-based
 routing with forwarding based on label-swapping.

Ramakrishnan et al. Expires February 1999 [Page 20]

Internet Draft UNITE August 1998

 2. Specify standard protocol(s) for maintenance and distribution
 of label binding information to support multicast routing with
 forwarding based on label-swapping.

 4. Specify standard protocol(s) for maintenance and distribution of
 label binding information to support explicit paths different from
 the one constructed by destination-based forwarding with forwarding
 based on label-swapping.

 6. Specify a standard way to use the ATM user plane

 a) Allow operation/co-existence with standard (ATM Forum, ITU, etc.)
 ATM control plane and/or standard ATM hardware

 b) Specify a label swapping control plane

 c) Take advantage of possible mods/improvements in ATM hardware, for
 example the ability to merge VCs

 7. Discuss support for QOS (e.g. RSVP)

 UNITE is a framework that is efficient in providing connectivity,
 with very low latency for a source to begin transmitting data
 when using on-demand label distribution. An integral part of the
 framework is providing very flexible support for QoS, accommodating
 multiple QoS models including sender and receiver initiated QoS.
 Multicast support fits naturally in UNITE, with common procedures
 applicable for unicast and multicast (both source and receiver
 joins). UNITE allows the network to scale to large numbers of nodes
 because of the ability to support on-demand label distribution
 efficiently. Further, UNITE achieves scalability in the following
 dimensions:

 1. UNITE can achieve high throughput for label distribution.

 2. UNITE enables initiation of packet forwarding with low latency.

 3. UNITE minimizes the amount of state needed in the network.

 UNITE uses a QoS hint to route the setup. The explicit path
 established in this manner may therefore be different from

Ramakrishnan et al. Expires February 1999 [Page 21]

Internet Draft UNITE August 1998

 "default" destination based forwarding because it uses QoS sensitive
 destination based routing.

 As it is currently defined, UNITE is an ATM control protocol and is
 therefore directly applicable to objective (6).

 UNITE also directly addresses QoS issues without making any
 assumptions about the specific QoS model that is used. For example,
 RSVP can be combined with UNITE to perform the actual resource
 reservations.

 If particular MPLS switches do not support native IP forwarding,
 then the need for UNITE appears even more compelling, especially in
 an environment where services other than best- effort are provided.
 (e.g. in a Diffserv type of environment, it would be wasteful to
 distribute labels for all service classes across the whole network).

10. References

 [i] L. Zhang, S. Deering, D. Estrin, S. Shenker, RSVP: A New Resource
 ReSerVation Protocol, IEEE Network Magazine, Sept. 1993.

 [ii] Danny J. Mitzel, Deborah Estrin, Scott Shenker, and Lixia
 Zhang, An Architectural Comparison of ST-II and RSVP, Proceedings of
 Infocom94, 1994.

 [iv] M. Grossglauser & K.K. Ramakrishnan (1997) SEAM: Scalable and
 Efficient ATM Multicast, Proceedings of IEEE Infocom'97, April 1997,
 Kobe, Japan.

 [v] T. Ballardie, P. Francis, and J. Crowcroft, Core Based Trees
 (CBT), in Proc. ACM SIGCOMM'93, San Francisco, California, September
 1993.

 [vi] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L.
 Wei, An Architecture for Wide-Area Multicast Routing,' in Proc. ACM
 SIGCOMM'94, London, August 1994.

 [vii] ATM Forum, ATM User-Network-Interface (UNI) Signaling
 specification version 4.0, July 1996.

Ramakrishnan et al. Expires February 1999 [Page 22]

Internet Draft UNITE August 1998

 [viii] S. Deering, Multicast Routing in Internetworks and Extended
 LANs, in Proc. ACM SIGCOMM'88, Stanford, California, August 1988.

Authors' Addresses

 K. K. Ramakrishnan, Gili Hjalmtysson, Kobus Van der Merwe
 AT&T Labs. Research
 180 Park Avenue, Florham Park, N.J. 07932
 kkrama@research.att.com,gisli@research.att.com,kobus@research.att.com
 Phone:+1 973 360 8766
 Fax: +1 973 360 8871

 Flavio Bonomi, Sateesh Kumar, Michael Wong
 CSI ZeitNet/Cabletron
 5150 Great America Parkway, Santa Clara, CA, 95054
 fbonomi@ctron.com, skumar@ctron.com, mwong@ctron.com
 Phone: +1 408 565 9360
 Fax: +1 408 565 6501

Ramakrishnan et al. Expires February 1999 [Page 23]

