
Network Working Group M. Ramalho
Internet-Draft Cisco Systems, Inc.
Expires: August 29, 2003 February 28, 2003

RGL Codec Description Document
draft-ramalho-rgl-desc-01.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 29, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document describes the operation of the RGL codec which obtains
 significant lossless compression of speech/audio packet payloads
 encoded with ITU-T Recommendation G.711 PCM (mu-law or A-law, IETF
 RTP payload types PCMA or PCMU) with trivial complexity and virtually
 no delay. Full documentation can be found at www.vovida.org [14].

 The RTP payload format proposed for this codec is described in
draft-ramalho-rgl-rtpformat-01.txt [4].

Ramalho Expires August 29, 2003 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/draft-ramalho-rgl-rtpformat-01.txt

Internet-Draft The RGL Codec February 2003

Table of Contents

1. Introduction . 3
2. Conventions . 5
3. Companding Codec Background Information 6
4. RGL Codec Description . 8
4.1 Basic RGL Encoding Algorithm 12
4.2 Detailed RGL Encoding Algorithm 14
4.3 RGL Frame Encoding . 16
4.4 RGL Frame Decoding . 18
5. Analysis of RGL Codec . 20
6. Future Extensions for RGL Codec 22
7. Changes from Previous Versions of RGL Codec 23
8. Open Source/IPR Issues . 24
9. Security Considerations 25
10. IANA considerations . 26
11. End Notes . 27

 References . 28
 Author's Address . 29
 Intellectual Property and Copyright Statements 30

Ramalho Expires August 29, 2003 [Page 2]

Internet-Draft The RGL Codec February 2003

1. Introduction

 This document describes the operation of the RGL (short for Ramalho
 G.711 Lossless) codec which obtains significant lossless compression
 of speech/audio packet payloads encoded with ITU-T Recommendation
 G.711 PCM (mu-law or A-law, IETF RTP payload types PCMA or PCMU) with
 trivial complexity and virtually no delay. Full documentation for
 this codec can be found at www.vovida.org [15]. The remainder of this
 introduction provides the motivation behind the creation of the RGL
 codec.

 To improve bandwidth efficiency for IP transport of normal telephony
 audio signals, audio signals are often compressed by the interworking
 hardware between the PSTN/GSTN and the transport IP network. The
 types of audio compression used are often optimized for speech, such
 as G.723.1 and G.729A. These coders compress the PSTN/GSTN PCM
 signals (defined in ITU-T Standard G.711) from 64 kbps to bit rates
 of 8 kbps or less.

 There is a desire, and sometimes an absolute need, in many VoIP
 applications to send voice data over IP networks to the end systems
 in the identical PCM format it was presented to the VoIP system by a
 PSTN/GSTN interworking device. Most examples of this need are
 associated with the fact that many voice coders do not transport the
 signal with the required fidelity for the application using the
 channel (e.g., DTMF/TTY/TDD pass-through and modem or FAX
 pass-through).

 For example, generalized audio is often poorly reproduced when coded
 and decoded by most speech coders (e.g., music on hold). This
 particular problem could be resolved via the use of slightly higher
 bandwidth audio coders (on the order of 16 kbps for voiceband
 quality). Another example, arguably more important, is the case when
 a voiceband modem signal is being transported. V.90 modems typically
 require the entire 64kbps signal to be transported unmodified from
 end-to-end[EndNote:1]. A "codec switch" from a speech codec to G.711
 upon determination that a voiceband modem is present could also
 resolve this problem with a slight increase of modem set-up delay. A
 third example is in a network where bandwidth is plentiful and there
 is no need or desire to further degrade the PSTN signal via a lossy
 transcoding. As many VoIP transport providers desire not to degrade
 the audio quality over the distortions already created by the G.711
 companding, there is often a need to transport the signal in the
 identical PCM format presented to the PSTN/GSTN interworking
 device[EndNote:2].

 Additionally, a method of lossless compression for G.711 signals may
 be of utility at the beginning of end-to-end media transmission.

Ramalho Expires August 29, 2003 [Page 3]

Internet-Draft The RGL Codec February 2003

 During this time, lossless compression can be used until it is
 determined whether the channel is being used only for normal speech
 (i.e., not music or other audio signals or modems) and an informed
 decision to transition to a speech-specific codec (or other general
 audio codec) can be made. For the case where the call is a normal
 voice call and an informed decision has yet to be made, the lossless
 compression techniques described below can be used to obtain
 compression gain over G.711 during this period[EndNote:3].

Ramalho Expires August 29, 2003 [Page 4]

Internet-Draft The RGL Codec February 2003

2. Conventions

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when
 they appear in this document, are to be interpreted as described in

RFC2119 [2].

Ramalho Expires August 29, 2003 [Page 5]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft The RGL Codec February 2003

3. Companding Codec Background Information

 ITU-T Recommendation G.711 specifies the dominant companding methods
 used in the PSTN/GSTN, the so-called mu-law and A-law companding
 (with mu=255 and A=87.56). The companding codecs in this
 specification are actually piecewise linear approximations to the
 non-linear mu-law and A-law defining equations and these equations
 may be found in many coding and telecommunications textbooks [5],[6].
 The primary aim of both "mu-255" and "A 78.56" law codecs is to
 quantize larger signals more coarsely and smaller signals more
 finely, resulting in a "flatter" SNR over a wider dynamic range while
 using only 8 bits. For example, the (eight bit) "mu-255" companding
 coder approximates the SNR attained by a 13 linear codec for low
 signal input levels[Endnote:4]. The tradeoff is less SNR at high
 signal levels than the equivalent 13 bit linear codec owing to the
 coarser quantization of larger input signals. This tradeoff saves 5
 bits (13-8) or 40kbps!

 Both mu-law and A-law companding effectively use eight linear
 segments on either side of analog zero (16 linear segments). The
 "mu-255" law consists of a 15 segment characteristic with the two
 innermost segments about zero having the identical slope; the "A
 78.56" law has the four innermost segments having the identical
 slope, resulting in 13 areas of distinct slope.

 In both cases, log 16 = 4 bits convey the segment information.
 Further, the amplitudes within each segment are quantized to 16
 levels, requiring an additional 4 bits. These eight bits are
 organized as:

 Bit 1: Sign (p bit)
 Bits 2 to 4: Segment number (s bits)
 Bits 5 to 8: Level within a segment (l bits)

 Although not necessary for description here, a natural binary code
 (NBC) has been used in both G.711 specifications for representing the
 segment number s and the level number l. The same NBC representation
 being used for both positive and negative values, resulting in a
 folded binary code. Lastly, in accordance with limitations of early
 transmission systems that had a "ones density" requirement, the
 "mu-255" code was constructed so that low amplitude signals are
 represented with codewords with more ones than zeros[Endnote:6].
 Unfortunately this particular coding of the linear segments (bits
 1-4) is such that adjacent segments S(i) and S(i+1) are such that
 adjacent segments usually differ in coding by more than one bit.

 The important thing to note, however, is that small signals do not
 "excite" the linear segments that represent the larger segments. For

Ramalho Expires August 29, 2003 [Page 6]

Internet-Draft The RGL Codec February 2003

 example, low "background noise" (a very quiet input signal) may only
 span quantization levels in the two linear segments about zero. In
 this case, Bit 2, Bit 3 and Bit 4 remain constant for every sample
 during this "background noise" interval ("111" for "mu-255" and "000"
 for "A 78.56"). Therefore, if one knew a priori that the signal
 contained in a given audio frame only spanned these two segments, you
 need not transmit Bits 2, 3, or 4 - resulting in a 37.5% bandwidth
 savings. The lossless compression for G.711 signals of the RGL codec
 exploits similar opportunities to save bandwidth at trivial
 additional computational cost.

 Before describing the method, it is instructive to note an important
 property of the resultant coding produced by speech/audio signals
 that have been coded by G.711 coders. The speech/audio so encoded
 will typically be zero mean. This is because these signals typically
 are: 1) based on acoustic signals (which are usually zero mean over
 any significant observation interval), 2) have been coupled by
 devices that are only able to transduce acoustic signals to
 electrical signals in a zero mean sense (ignoring "dc biasing" of
 such transducers as microphones), and 3) the signals have been high
 pass filtered (typical PSTN/GSTN cutoffs of around 100 Hz). As a
 result, virtually all real world (i.e., not artificially generated)
 G.711 encodings are expected to be biased around the signal
 magnitudes about the "analog" zero. Nevertheless, the RGL coding
 methodology accommodates, although sometimes less efficiently, G.711
 encodings where this real-world property does not hold (i.e.,
 artificially generated signals).

Ramalho Expires August 29, 2003 [Page 7]

Internet-Draft The RGL Codec February 2003

4. RGL Codec Description

 G.711 PCM is grouped into "speech/audio" frames for transport over
 packet networks. The default audio segment size currently specified
 in RFC 1890 [8] for G.711 VoIP packets is 20 msec, which would
 result in 160, eight-bit samples or 160 bytes of G.711 coded audio.
 Typical frame sizes for speech encoders are 10 msec (e.g., G.729), 20
 msec (e.g., GSM), and 30 msec (e.g., G.723.1). One can also place
 more than one speech/audio frame per packet. The following RGL method
 described in this document operates on speech/audio frames
 independent on their length and each such frame is referred to as an
 "audio frame". In the description that follows "audio samples"
 (individual G.711 PCM sample encodings) are indexed with the sample
 index i and the audio frames are indexed with the frame index j.

 For each sample we map the G.711 mu-law and A-law output alphabet
 from the most negative value to the most positive value according to
 the following table. This table maps the most negative quantization
 level of the G.711 alphabet (either mu-law or A-law) to q(0) and the
 most positive to q(255); the anchoring codepoint column will be
 described shortly.

 Table 1: G.711 (mu-law and A-law) to 0-255 Linear Codepoint Mapping
 --
 | 0-255 Linear | G.711 | G.711 | Anchor Codepoint |
 | Quantization | mu-law | A-law | (value) |
 | Codepoint | encoding | encoding | |
		[EndNote:7]	
q(255); most +	1000 0000	1111 1111	
q(254)	1000 0001	1111 1110	
q(253)	1000 0010	1111 1101	
******	**** ****	**** ****	
q(137)	1111 0110	1000 1001	
q(136)	1111 0111	1000 1000	
q(135)	1111 1000	1000 0111	
q(134)	1111 1001	1000 0110	
q(133)	1111 1010	1000 0101	
q(132)	1111 1011	1000 0100	
q(131)	1111 1100	1000 0011	
q(130)	1111 1101	1000 0010	
q(129)	1111 1110	1000 0001	00000= 0 (B(j)={0,1 ... 7})
q(128); 0+ lvl	1111 1111	1000 0000	00001= 1 (B(j)={0,1 ... 7})
q(127); 0- lvl	0111 1111	0000 0000	00010= 2 (B(j)={0,1 ... 7})
q(126)	0111 1110	0000 0001	00011= 3 (B(j)={0,1 ... 7})
q(125)	0111 1101	0000 0010	00100= 4 (B(j)={0,1 ... 7})

https://datatracker.ietf.org/doc/html/rfc1890

Ramalho Expires August 29, 2003 [Page 8]

Internet-Draft The RGL Codec February 2003

q(124)	0111 1100	0000 0011	00101= 5 (B(j)={0,1 ... 7})
q(123)	0111 1011	0000 0100	00110= 6 (B(j)={0,1 ... 7})
q(122)	0111 1010	0000 0101	00111= 7 (B(j)={0,1 ... 7})
q(121)	0111 1001	0000 0110	01000= 8 (B(j)={0,1 ... 7})
q(120)	0111 1000	0000 0111	
q(119)	0111 0111	0000 1000	01001= 9 (B(j)={0,1 ... 7})
q(118)	0111 0110	0000 1001	
q(117)	0111 0101	0000 1010	01010=10 (B(j)={0,1 ... 7})
q(116)	0111 0100	0000 1011	
q(115)	0111 0011	0000 1100	01011=11 (B(j)={0,1 ... 7})
q(114)	0111 0010	0000 1101	
q(113)	0111 0001	0000 1110	00001=12 (B(j)={0,1 ... 7})
******	**** ****	**** ****	SEE NEXT TABLE FOR ALL
******	**** ****	**** ****	ANCHORING POINT LOCATIONS
q(4)	0000 0100	0111 1011	
q(3)	0000 0011	0111 1100	
q(2)	0000 0010	0111 1101	
q(1)	0000 0001	0111 1110	
q(0); most -	0000 0000	0111 1111	B(j) = 8 anchoring location
 --

 For a given audio frame j, we note the most negative and most
 positive quantization level spanned by the signal in this frame.
 Label these levels as Y[POS](j) and Y[NEG](j), respectively and let
 their value be equal to their q(.) codepoint. Let Y[MAX](j) be the
 number of contiguous codewords spanned from Y[POS](j) to Y[NEG](j),
 inclusively, for audio frame j (i.e., Y[MAX](j) = [Y[POS](j) -
 Y[NEG](j) +1]). Let B(j) be The minimum number of bits needed to
 assign the Y[MAX](j) number of quantization levels. That is B(j) =
 ceil(log2 Y[MAX](j)) where "ceil()" denotes the integer ceiling
 function and "log2" is the logarithm base 2. For example, if the
 resultant sample encoding spanned fifteen contiguous quantization
 levels, four bits can be used to encode (describe) these 15 levels.
 The RGL encoding to be described will always use B(j) number of bits
 per sample to encode each sample in frame j.

 The RGL encoder codes the individual sample points i of frame j
 (which span from Y[POS](j) to Y[NEG](j)) by a binary count up from an
 "anchoring location". If possible, this anchoring location is
 specified by an "anchoring codepoint" which is encoded as "side
 information" for the RGL frame j. All possible anchoring codepoint
 locations are shown in the following table. On rare occasion, we will
 use an "explicit anchor" whereby the anchoring location is not an
 anchoring codepoint quantization level, but rather an explicit
 location conveyed via a second byte of "side information" in the RGL
 frame. We call this explicit anchoring location an "explicit anchor".

Ramalho Expires August 29, 2003 [Page 9]

Internet-Draft The RGL Codec February 2003

 The exact algorithm that determines whether an "explicit anchor" byte
 is required will be described shortly.

 The RGL encoding endeavors to send as "side information" (the number
 of bits, B(j), and the location of the "anchor codepoint") in one
 "overhead" byte for majority of frame encodings. As mentioned above,
 on rare occasions it is required that two bytes of side information
 be sent. Since B(j) can range from 0 bits (only one G.711 value was
 contained for the every sample i in frame j) to 8 bits (almost or all
 of the entire G.711 encoding range was used in the frame), we would
 normally require 4 bits to encode this information; however we are
 able to use three bits by using an anchoring codepoint reserved to
 signal the B(j) = 8 case (this will be described later). These three
 bits are defined as the "N bits" of the first overhead byte. Because
 a goal of the RGL codec is to use only one overhead byte for most
 encodings, 5 bits remain in the first overhead byte that are used to
 describe (encode) an anchoring codepoint location. These five bits
 are defined as the "A bits" of the first overhead byte. This, in
 turn, allows for up to 32 possible "anchoring codepoint" locations.
 We will use one of these possible codepoint locations to signal when
 we require an "explicit anchor" be sent in the second overhead byte.
 Additionally we will also use another anchoring codepoint location to
 signal a B(j) = 8 encoding (this will be described shortly in the N
 bit table discussion below). Thus there are 30 locations (32-2)
 available for use as anchoring point locations.

 Recalling that most real-world signals are zero mean, we begin with
 the assumption that the signal (linear q(.)) range will be about the
 "analog zero" level (i.e., about the q(127) or q(128) levels in the
 above table). Assuming that we wish to anchor the codepoint on the
 most negative value of Y[NEG](j), the anchoring point need only be
 specified to reside in the negative portion of the codespace. If B(j)
 = 8 (i.e., no RGL compression possible) the anchor is defined to be
 the most negative quantization level (q(0)). If B(j) does not equal
 8, then a near-optimal strategy for defining the anchoring codepoint
 locations would be to assign the 30 anchoring locations approximately
 logarithmically from the quantization level representing zero
 amplitude.

 The anchoring codepoint locations chosen are defined in the following
 table.

 Table 2: Full Listing of All Anchoring Point Locations

 | 0-255 Linear | Anchor Codepoint |
Quantization	{A5,A4,A3,A2,A1}
q(129)	00000 = 0 (if B(j) = {0,1 ... 7})

Ramalho Expires August 29, 2003 [Page 10]

Internet-Draft The RGL Codec February 2003

q(128); 0+ lvl	00001 = 1 (if B(j) = {0,1 ... 7})
q(127); 0- lvl	00010 = 2 (if B(j) = {0,1 ... 7})
q(126)	00011 = 3 (if B(j) = {0,1 ... 7})
q(125)	00100 = 4 (if B(j) = {0,1 ... 7})
q(124)	00101 = 5 (if B(j) = {0,1 ... 7})
q(123)	00110 = 6 (if B(j) = {0,1 ... 7})
q(122)	00111 = 7 (if B(j) = {0,1 ... 7})
q(121)	01000 = 8 (if B(j) = {0,1 ... 7})
q(119)	01001 = 9 (if B(j) = {0,1 ... 7})
q(117)	01010 = 10 (if B(j) = {0,1 ... 7})
q(115)	01011 = 11 (if B(j) = {0,1 ... 7})
q(113)	01100 = 12 (if B(j) = {0,1 ... 7})
q(111)	01101 = 13 (if B(j) = {0,1 ... 7})
q(108)	01110 = 14 (if B(j) = {0,1 ... 7})
q(105)	01111 = 15 (if B(j) = {0,1 ... 7})
q(102)	10000 = 16 (if B(j) = {0,1 ... 7})
q(99)	10001 = 17 (if B(j) = {0,1 ... 7})
q(96)	10010 = 18 (if B(j) = {0,1 ... 7})
q(92)	10011 = 19 (if B(j) = {0,1 ... 7})
q(88)	10100 = 20 (if B(j) = {0,1 ... 7})
q(84)	10101 = 21 (if B(j) = {0,1 ... 7})
q(80)	10110 = 22 (if B(j) = {0,1 ... 7})
q(75)	10111 = 23 (if B(j) = {0,1 ... 7})
q(70)	11000 = 24 (if B(j) = {0,1 ... 7})
q(65)	11001 = 25 (if B(j) = {0,1 ... 7})
q(60)	11010 = 26 (if B(j) = {0,1 ... 7})
q(54)	11011 = 27 (if B(j) = {0,1 ... 7})
q(48)	11100 = 28 (if B(j) = {0,1 ... 7})
q(41)	11101 = 29 (if B(j) = {0,1 ... 7})
q(0); most neg	11110 = 30 (only if B(j) = 8) *Note 1*
Explicit Anchor	11111 = 31 (if B(j) = {0,1 ... 7}) *Note 2*

 Note 1: If B(j)=8, codepoint {11110} is used to signal an 8 bit per
 sample encoding (see N bit table and discussion below). All
 B(j)=8 bit encodings are anchored at q(0).
 Note 2: The anchoring location is explicitly provided via a second
 overhead byte (see discussion below).

 Note that a few anchoring codepoints are placed above the 0- level to
 compensate for potentially inaccurate analog G.711 A/D encoding bias
 (small positive DC offset in the analog A/D converter front end
 circuitry). These remaining anchor codepoints are spaced
 approximately logarithmically from the "analog zero" to the most
 negative quantization level.

 The following table specifies the value of the N bits.

Ramalho Expires August 29, 2003 [Page 11]

Internet-Draft The RGL Codec February 2003

 Table 3: Mapping for the N bits of First Overhead Byte

B(j)	N Codepoint {N3, N2, N1}
Eight Bits (if A bits = {11110})	000
Zero Bit (if A bits != {11110})	000
One Bits	001
Two Bits	010
Three Bits	011
Four Bits	100
Five Bits	101
Six Bits	110
Seven Bits	111

 Figure 4

 First note that a B(j)=8 encoding is signaled by the N bits all zeros
 AND the A bits = 30 ({11110}). All other N bit combinations with A
 bits = 30 are reserved for use by the RTP payload format or for other
 future signaling use. As we will later see in RGL encoding section,
 the N bits and the A bits are packed in the first RGL overhead byte.
 Thus there are seven reserved first overhead bytes; they are when the
 A bits = 30 and the N bits are not all zeros (0x3E, 0x5E, 0x7E, 0x9E,
 0xBE, 0xDE and 0xFE). The RGL RTP payload format will make use some
 of these codes to define the RGL frames in the RTP payload. As of the
 writing of this document, the details of the RTP payload format for
 the RGL codec have not been agreed upon at the IETF. The present
 draft for the RGL RTP payload format is

draft-ietf-ramalho-rgl-rtpformat-01.txt [16].

 Note that all B(j) = 8 encodings are always anchored at q(0). A
 second item to note is for any encoding other than an eight bit
 encoding (i.e., B(j) != 8) that the anchoring location is determined
 via the A bits. Lastly note that A codepoint {11111} (= 31) is used
 to signal that an "explicit anchoring location" is required to be
 sent in the second overhead byte (i.e., an explicit anchor byte). We
 will discuss when this byte is needed in the following section.

 The second item to note is for any encoding other than an eight bit
 encoding (i.e., B(j) != 8) that the anchoring location is determined
 via the A bits. Lastly note (also for B(j) != 8) that A codepoint
 {11111} (= 31) is used to signal that an "explicit anchoring
 location" is required to be sent in the second overhead byte (i.e.,
 an "explicit anchor byte").

4.1 Basic RGL Encoding Algorithm

https://datatracker.ietf.org/doc/html/draft-ietf-ramalho-rgl-rtpformat-01.txt

Ramalho Expires August 29, 2003 [Page 12]

Internet-Draft The RGL Codec February 2003

 Before describing the detailed RGL encoding details, it is
 instructive to describe in rough terms what the RGL encoding
 endeavors to do and then to describe some atypical corner cases that
 accommodate all possible, including "non real-world", G.711 encodings
 (e.g., artificially generated G.711 encodings).

 The basic RGL encoding methodology is as follows. First we map the
 G.711 mu-law or A-law encoding to the 0-255 linear codepoint
 representation in the above table for each sample i in frame j. Then
 we determine the signal range in a given frame j by noting Y[POS](j)
 and Y[NEG](j) and determine B(j) = ceil(log2 Y[MAX](j)) as
 discussed above. If B(j)=8, then the default anchoring codepoint is
 q(0), the N and A bits in the first overhead byte are defined as
 above and all samples i in frame j are encoded as a binary count up
 from q(0). For all other cases (i.e., B(j) != 8) we determine if
 Y[NEG](j) can be represented by an existing codepoint location. If it
 can, then we simply chose that codepoint, set the N and A bits in the
 first overhead byte as appropriate, and encode all samples i in frame
 j as a binary count up from this anchoring codepoint location. If
 Y[NEG](j) is not an anchoring codepoint location, then we choose a
 tentative anchoring location to be the next most negative codepoint
 location, denoted Y[ANCHOR](j). If the number of contiguous codewords
 spanning from Y[POS](j) and Y[ANCHOR](j) can still be represented by
 B(j) bits, then we simply chose that codepoint, set the N and A bits
 in the first overhead byte as appropriate, and encode all samples i
 in frame j as a binary count up from this anchoring codepoint
 location. However, it is possible that the difference between the
 tentative anchor Y[ANCHOR](j) from Y[NEG](j) could have resulted in a
 span that required more than B(j) bits to represent. In this case, we
 can save one or more bits per sample (e.g., 80 bits for an 80 byte
 G.711 frame or 160 bits for a 160 byte G.711 frame) by simply
 encoding Y[NEG](j) exactly (using 8 bits) at the cost of sending a
 second overhead byte: the so-called "explicit anchor byte". In this
 case, we set the N bits (according to B(j)) and the A bits (to denote
 use of an explicit anchor), send the explicit anchor in the second
 overhead byte (Y[NEG](j), coded as a binary count up from q(0)) and
 we encode all samples i in frame j as a binary count up from the
 location of the "explicit anchor" (i.e. Y[NEG](j)) location.

 Now, before describing the detailed RGL algorithm, it is instructive
 to consider two atypical corner cases.

 Atypical Case One:

 The first atypical case is the case when the entire mu-law or
 A-law frame contains only one value, which we call the "zero bit
 per sample" (B(j)=0) case. To make room for signaling this case,
 the table above uses the same N codepoint to signal both the eight

Ramalho Expires August 29, 2003 [Page 13]

Internet-Draft The RGL Codec February 2003

 bit and zero bit case depending on the value of the A bits. An
 eight bit encoding is signaled in the overhead byte by using the N
 = {0 0 0} bits and the A = {1 1 1 1 0} codeword. Note that when a
 "zero bit" encoding case occurs in a typical embodiment of a
 mu-law or A-law PCM system, the one value is most likely a value
 around the "natural zero" of the G711 encoded space (i.e., near
 the 0+ (q(128)) or 0- level (q(128))). Since we have anchoring
 codepoints at these levels (actually we have continuous anchoring
 codepoints from q(121) through q(129), inclusive), we expect to be
 able to compress this frame to exactly one byte! However, to
 accommodate all possible artificially generated G711 signals that
 could have the single level at any quantization level, we must use
 an "explicit anchor" if an anchoring codepoint is not available at
 that quantization level.

 Atypical Case Two:

 The second atypical case to consider is when less than eight bits
 can represent the signal range (Y[POS](j) to Y[NEG](j), inclusive)
 and Y[NEG](j), is below the most negative anchoring codepoint
 location. If the signal range is less than 8 bits, we expect that
 the signal range should be such that Y[NEG](j), is well above the
 most negative codepoint available, q(41), as natural signals are
 zero mean signals. Thus, for example, a 7 bit encoding
 (representing up to a 128 bit range) is expected to live
 approximately between q(64) (about 64 levels below 0-) and q(192)
 (about 64 levels above 0+); note that q(64) is well q(41).
 However, to represent all possible artificially generated G711
 signals, we must resort to using an "explicit anchor" to represent
 Y[NEG](j) if Y[NEG](j) is below the lowest available anchoring
 codepoint (for zero through seven bit encodings, as all eight bit
 encodings are always anchored at q(0)).

4.2 Detailed RGL Encoding Algorithm

 Knowing the constraints presented by the two atypical cases above,
 the algorithm for the RGL coder follows the following six steps:

 Step 1: Map the G711 A-law or mu-law quantization codepoints to their
 0-255 linear quantization codepoints.

 Step 2: Calculate the number of bits per sample required for this
 coding. The number of bits required is B(j) = ceil(log2(Y[MAX](j))
 where Y[MAX](j) is the number of contiguous codewords spanned from
 Y[POS](j) to Y[NEG](j), inclusive, for audio frame j. Set the N

Ramalho Expires August 29, 2003 [Page 14]

Internet-Draft The RGL Codec February 2003

 bits to represent this number of bits.

 Step 3: If B(j)=8 (the anchoring location for this frame is q(0) by
 default) set Y[ANCHOR](j)= q(0), set the A bits appropriately
 (i.e., to {11110}) and >> Skip To Step 5 << below. Otherwise
 continue.

 Step 4: For B(j) !=8, find the "tentative anchoring codepoint"
 location Y[ANCHOR](j).

 If Y[NEG](j) is more negative than the lowest anchoring codepoint,
 q(41), >> Skip To Step 4A <<.

 If Y[NEG](j) is an anchoring codepoint location,
 >> Skip To Step 4B <<.

 If Y[NEG](j) does not represent an anchoring codepoint location
 but is above the lowest available anchoring codepoint,
 >> Skip To Step 4C <<.

 Step 4A: An explicit anchor must be used to represent Y[NEG](j)
 for this case (i.e., set Y[EXPLICIT_ANCHOR](j) = Y[NEG](j)).
 This explicit anchor will need to be encoded and will sent as a
 second overhead byte. When an explicit anchor is required, the
 A bits need to be set to reflect that an explicit anchor will
 be used (i.e., set to {1 1 1 1 1}), code the explicit anchor as
 a binary count up from q(0), and place this value in the second
 overhead byte (details on how to pack this explicit anchor are
 described below). >> Skip To Step 5 <<.

 Step 4B: Set Y[ANCHOR](j) = Y[NEG](j) and set the A bits to
 reflect this anchoring location. >> Skip To Step 5 <<.

Ramalho Expires August 29, 2003 [Page 15]

Internet-Draft The RGL Codec February 2003

 Step 4C: Set Y[ANCHOR](j) to the next most negative anchoring
 codepoint location. Find the number of bits required for coding
 with the tentative anchor Y[ANCHOR](j). Let Y[NEW_MAX](j) be
 the number of contiguous codewords spanned from Y[POS](j) to
 Y[ANCHOR](j), inclusive. Define the number of bits per sample
 needed if the tentative anchor is used, B[NEW](j), to be
 B[NEW](j) = ceil(log2(Y[NEW_MAX](j))). If B[NEW](j) = B(j),
 then Y[ANCHOR](j) is to be used as the anchor location for this
 frame j, set the A bits to signal the use of this anchor (there
 will not be a second overhead byte used for this case) and
 >> Skip To Step 5 <<.

 If B[NEW](j) is more than B(j), the setting an explicit anchor
 is required (as it s use will result in a more efficient coding
 of the samples) and >> Skip To Step 4A <<.

 Step 5: If the coding is not a "zero bit" per sample encoding (i.e.,
 B(j) != 0), anchor the "all zeros" codepoint containing B(j) bits
 at Y[ANCHOR](j) (if explicit anchor not needed) or
 Y[EXPLICIT_ANCHOR](j) (if explicit anchor was required) as
 appropriate.

 Step 6: If the coding is not a "zero bit" per sample encoding (i.e.,
 B(j) != 0), use a simple binary counting up from the anchoring
 location (Y[EXPLICIT_ANCHOR](j)] or Y[ANCHOR](j), as appropriate)
 for each successive, more positive quantization level up to
 Y[POS](j) (this is possible using exactly B(j) bits) for every
 sample in the frame j. Label these bits as Z bits beginning with
 Z1 as the least significant bit through as many Z bits are
 necessary for the coding (again, exactly B(j) bits for each
 sample). For example, a five bit encoding would have bits
 Z5,Z4,Z3,Z2,Z1. Pack the Z bits for all samples in the G711 frame
 as defined in the following section.

4.3 RGL Frame Encoding

 The RGL encoding for a given frame j is described in this section.

 The first byte of an encoded frame is the side information, encoded
 as: {N3,N2,N1,A5,A4,A3,A2,A1}. The N bits are as defined in the N bit
 table above and the A bits are defined using the algorithm above and

Ramalho Expires August 29, 2003 [Page 16]

Internet-Draft The RGL Codec February 2003

 set in accordance with Table 2.

 Note that if a second overhead byte (the explicit anchor byte) is
 determined to be necessary, it will follow the first overhead byte
 and the first overhead byte will have all A bits set to one. If this
 explicit anchor is required, the location of the explicit anchor is
 coded as a binary count up from q(0) and is defined by the "E bits".
 The E bits are labeled as E1 through E8, with E1 being the least
 significant bit. The format of the explicit anchor byte is
 {E8,E7,E6,E5,E4,E3,E2,E1}.

 For example, a three bit encoding anchored at Y[NEG](j) = q(124)
 would be encoded {0 1 1 0 0 1 0 1}. For example, a five bit encoding
 anchored at Y[NEG](j) = q(121) would be encoded {1 0 1 0 1 0 0 0}.
 For example, a seven bit encoding that requires an explicit anchor at
 level q(58) (00111010 in binary) would have the first overhead byte
 encoded {1 1 1 1 1 1 1 1} and a second overhead byte encoded
 {0 0 1 1 1 0 1 0}. Any eight-bit encoding is anchored, by default, at
 the most negative quantization level (i.e., q(0)) and will have the
 first byte encoded as {0 0 0 1 1 1 1 0}. It is interesting to note
 that the eight bit per sample encodings always expand the input G.711
 frame of samples by one byte and that the first byte of an RGL frame
 will always be {0 0 0 1 1 1 1 0}. This fact will be exploited in the
 RTP payload format defined for use with the RGL codec [4].

 If the encoding is a "zero bit" per sample coding (i.e., B(j)=0) we
 are finished. If the coding is not a "zero bit" per sample encoding
 (i.e., B(j) !=0), the remaining bytes of an encoded frame contain
 the Z bits. Each sample is encoded and sent by concatenating the
 appropriate number of Z bits (i.e., exactly B(j) bits), for every
 sample in frame j. We label the first sample in frame j as sample i
 and the last sample in a M sample frame as sample (i+M-1). For
 example, a three bit audio frame would be encoded:

 {Z3(i) Z2(i) Z1(i) Z3(i+1) Z2(i+1) Z1(i+1) Z3(i+2) Z2(i+2)
 Z1(i+2) ... Z3(i+M-1) Z2(i+M-1) Z1(i+M-1) }.

 Pack these Z bits into bytes for transmission as a "RGL encoded"
 frame. If Z1(i+M-1) is not the least significant bit in the last
 byte, pad remaining bits in the last byte to zero.

 Thus an encoded RGL frame consists of:

Ramalho Expires August 29, 2003 [Page 17]

Internet-Draft The RGL Codec February 2003

 First overhead byte: {N3,N2,N1,A5,A4,A3,A2,A1}
 (always present)

 Explicit anchor byte: {E8,E7,E6,E5,E4,E3,E2,E1}
 (only if all A bits in first
 overhead byte are equal to 1)

 The Z bits, packed into bytes per above: {Z[B(j)](i) ... Z1(i+M-1)}
 (only if B(j) !=0)

 Note that the Z bits may have zero padding after bit Z1(i+M-1), if
 required.

 It is possible to calculate the length of the RGL encoded frame by
 knowing only two pieces of information: the length M (number of
 samples) of the G.711 input frame and the first overhead byte. Since
 different encoding systems can use different frame sizes, the frame
 size M must be passed to the RGL encoding function. This fact will be
 noted in the RTP payload format defined for use with the RGL codec
 [4]. A reference implementation of this encoding is provided as a
 C-language function at www.vovida.org [17].

4.4 RGL Frame Decoding

 Determine from the first overhead byte the number of bits used in the
 encoding and if a second overhead byte containing an explicit anchor
 was used for this frame. If all A bits are ones (i.e.,
 {A5,A4,A3,A2,A1}={1,1,1,1,1}), then the next byte is an explicit
 anchor byte. This byte represents the explicit anchor and was
 computed by counting in binary up from counting from the most
 negative quantization level (i.e., q(0)). Otherwise, the anchoring
 codepoint or the default anchor of q(0) for the B(j)=8 case is used
 as the anchor for this frame.

 Determine the number of bits per sample by decoding the N bits (and
 the A bits, if necessary, to determine between zero or eight bit per
 sample encodings). If a zero bit per sample encoding was used,
 duplicate the 0-255 linear codepoint corresponding to the anchor for
 each sample in the entire frame. If a one or more bit per sample
 encoding was made, decode the Z bits for each sample in the frame and
 then add the anchoring code point quantization value to each sample
 to obtain the 0-255 linear quantization level for each sample in the
 frame. Finally, map the 0-255 linear codepoints to their A-law or
 mu-law counterparts, as appropriate.

 Lastly, note that there are seven "reserved" first overhead byte
 combinations; those containing {A5,A4,A3,A2,A1} = {1 1 1 1 0} and
 {N3,N2,N1} != {0 0 0}. These seven "reserved" first overhead bytes

Ramalho Expires August 29, 2003 [Page 18]

Internet-Draft The RGL Codec February 2003

 (0x3E, 0x5E, 0x7E, 0x9E, 0xBE and 0xFE) should never be generated by
 a RGL encoder (version 1.0.0 or later). Prudence dictates that if
 they are found in the decoding that the RGL decoder should indicate
 an error. A reference implementation of this decoding is provided as
 a C-language function at www.vovida.org [18] and has this and other
 error reporting mechanisms fully commented.

Ramalho Expires August 29, 2003 [Page 19]

Internet-Draft The RGL Codec February 2003

5. Analysis of RGL Codec

 This section is an abbreviated version of an qualitative and
 quantitative analysis of the RGL codec that may be found at
 www.vovida.org [19].

 Before presenting the following RGL codec compression estimates it is
 instructive to note some properties of the RGL codec. The first
 property is that Voice Activity Detection (VAD) is not recommended
 for use with the RGL codec as the RGL codec obtains high compression
 during periods of non-speech. As will shortly be noted, the average
 compression is primarily a function of the compression obtained
 during "non-speech" segments. Therefore the compression results are
 highly related to the level (power) of the so-called "background
 noise condition".

 The following table presents average compression results using a
 speech corpus and methodology more fully described at www.vovida.org
 [20] (a small portion of the TIMIT database) and assumes various
 background noise conditions and Voice Activity Factors (VAFs).

 The following average compression results assume the following.

 o RGL codec compresses based on 10 millisecond G.711 frames.

 o The voice activity factor is varied from 35% to 40% to 45% to 50%.

 o "Worse Case Loudness" talkers and "Nominal Loudness" talkers.

 o "Artificial Zero", "Near Zero", "Very low", "Low" and "Moderate"
 background noise conditions.

 The 10 msec frame size is used because it is close to the optimum
 frame size during voiced periods of speech. Since most conversations
 only have one person speaking at a time, 50% is a reasonable
 real-world upper bound Voice Activity Factor (VAF). Most speech
 models assume a two state Markov (on-off) model with voice activity
 factor for speech bursts in the 40 to 45% range; however these models
 consider bursts as speech activity (energy) over a relatively long
 speech interval (e.g., 60 to 100 msec). As the RGL codec resolves to
 the frame size (in this case to 10 msec frames), a 45% VAF for most
 speech coders should equate to a lower "equivalent RGL" VAF. Thus a
 40 to 45% "RGL VAF" is somewhat conservative compression assumption
 for an average compression estimate. The "worse case loudness" talker
 was modeled by concatenated speech with virtually no silence between
 utterances and the resultant speech scaled to the worst case G.711
 input level (e.g., the absolute magnitude of the largest or smallest
 signal value was mapped to the highest or lowest G.711 quantization

Ramalho Expires August 29, 2003 [Page 20]

Internet-Draft The RGL Codec February 2003

 level, respectively). A moderate talker is one that typically
 exercises one less bit per sample per frame than the "worse case
 loudness" talker (6dB lower, resulting in 12.5% more compression than
 the worse case talker). The "Artificial Zero" noise condition is
 representative for an IVR system in which the silence periods between
 voice prompts are represented by a single G.711 quantization level.
 As described previously, frames consisting of a single quantization
 level near "analog zero" are compressed to one byte (an 80 to 1
 compression for 10 msec frames). Thus the "artificial zero" frames
 obtain 98.75% compression. This property makes this codec very
 attractive for IVR application where no loss of fidelity is desired.
 The noise conditions of "near zero", "very low", "low", "moderate"
 and "high" were simulated by white noise exciting approximating
 background noise levels of -52db, -46dB, -40dB, -33dB and -22dB
 relative to the maximum G.711 signal input level.

 Table 4: Example RGL Average Compression Results
 --
 | Talker | Background | Voice Activity Factor |
 | Loudness | Noise | 35% | 40% | 45% | 50% |
 |----------|-----------------|-------------------------------|
 | | Artificial Zero | 68.4% | 64.0% | 59.7% | 55.4% |
 | | Near Zero | 44.4% | 41.9% | 39.4% | 36.9% |
 | Loud | Very Low | 36.3% | 34.4% | 32.5% | 30.7% |
 | | Low | 28.2% | 26.9% | 25.7% | 24.4% |
 | | Moderate | 19.4% | 19.4% | 18.8% | 18.2% |
 |--|
 | | Artificial Zero | 72.8% | 69.0% | 65.3% | 61.6% |
 | | Near Zero | 48.8% | 46.9% | 45.0% | 43.2% |
 | Nominal | Very Low | 40.7% | 39.4% | 38.2% | 36.9% |
 | | Low | 32.5% | 31.9% | 31.3% | 30.7% |
 | | Moderate | 24.4% | 24.4% | 24.4% | 24.4% |
 --

 This table demonstrates that the average compression percentages are
 largely influenced by the background noise condition. Forty percent
 average compression is possible for relatively low noise conditions,
 while low to mid-twenty percent is possible for moderate background
 noise conditions. Recall that the RGL codec is a lossless codec that
 reproduces non-speech (e.g., music on hold) with present G.711
 fidelity and produces no fidelity loss under noise conditions that
 deteriorate the quality of most speech-only coders (lower MOS scores
 and lower speech intelligibility, see [11] or [12] for details). Note
 the high compression results for IVR applications (with low
 artificial background noise between prompts).

Ramalho Expires August 29, 2003 [Page 21]

Internet-Draft The RGL Codec February 2003

6. Future Extensions for RGL Codec

 Other coding methods could be employed to reduce the number of bits
 per sample needed to represent the signals between Y[POS](j) to
 Y[NEG](j). An example would be difference encoding whereby the data
 is sifted to find the median or average difference between individual
 samples and this difference taken out in order to re-code the
 resulting samples. Often such a technique will further reduce the
 range of the "difference" signal allowing it to be coded in a fewer
 number of bits. The author has investigated a "brute-force"
 first-difference and has determined that this technique alone is not
 very effective in a mu-law or A-law encoding due to the nature of the
 companding (a large difference occurs in the linear q(.) domain when
 the signal passes through the inner segments). Typical increases in
 compression efficiency is in the 3% range and therefore do not
 justify the added complexity required (although small, it requires an
 additional array to perform the first difference and the
 corresponding arithmetic and comparison operations).

 Yet another example would be variable bit length encoding that would
 exploit a histogram of the values between Y[POS](j) to Y[NEG](j) to
 obtain a more compact (in bits) representation of the signal span.
 Such techniques can be found in [13]. These techniques are obviously
 possible with the corresponding increase in complexity; however, the
 RGL codec has been designed for extremely low complexity. The author
 is working on a "first difference" scheme applied to the present
 methodology of the RGL codec that has a minor increase in complexity.

Ramalho Expires August 29, 2003 [Page 22]

Internet-Draft The RGL Codec February 2003

7. Changes from Previous Versions of RGL Codec

 This draft describes the operation of the Version 1.0.0 RGL codec.
 The previous version (and only other version) was Version 0.1.0.

 The reason the RGL codec was revised to Version 1.0.0 was to
 accommodate a simple RTP payload format for it. The newly proposed
 RTP payload format is described in companion draft

draft-ietf-ramalho-rgl-rtpformat-01.txt [21]. To create a Table of
 Contents (TOC) required for some of the packetization formats
 proposed in the RTP payload document, the RGL codec was revised to
 Version 1.0.0 to create seven "reserved first RGL bytes". The seven
 reserved first overhead bytes were previously described in Section 4
 (Figure 4) and are 0x3e, 0x5E, 0x7E, 0x9E, 0xBE, 0xDE and 0xFE. These
 reserved overhead codes were created by deleting an anchoring
 codepoint location at q(36) which was present in the previous version
 of the RGL codec.

 The new, Version 1.0.0, RGL codec does not have q(36) as a potential
 anchoring codepoint location. This is not significant as this
 anchoring codepoint was not used for most (if not all) real-world
 signals (see discussion in the "Atypical Case Two" portion of Section

4.1 (Section 4.1) for an explanation of why this is so). If, by
 chance, the anchor codepoint at q(36) would have been used, the
 Version 1.0.0 RGL codec would instead use an explicit anchor to
 anchor at this location (at the cost of an additional byte in the RGL
 frame). Since no other anchoring codepoints were modified between RGL
 versions, all possible Version 1.0.0 RGL frames can be successfully
 decoded by an earlier version RGL decoder (as the earlier version
 would simply use the explicit anchor provided by the Version 1.0.0
 encoder). Thus this modification was made in a manner that is
 backwardly compatible with earlier version RGL decoders. Additionally
 since the anchoring codepoint at q(36) was not used by any of the
 speech files tested, this modification was accomplished in such a way
 as to not affect the affect the earlier compression results in

Section 5 (Section 5).

https://datatracker.ietf.org/doc/html/draft-ietf-ramalho-rgl-rtpformat-01.txt

Ramalho Expires August 29, 2003 [Page 23]

Internet-Draft The RGL Codec February 2003

8. Open Source/IPR Issues

 Reference implementations of the RGL encoder and the RGL decoder
 written as C-language functions can be found at www.vovida.org [22].
 Use of this open source reference code is subject to the "Vovida
 Software License" terms found at http://www.vovida.org/About/

license.html.

Ramalho Expires August 29, 2003 [Page 24]

http://www.vovida.org/About/license.html
http://www.vovida.org/About/license.html

Internet-Draft The RGL Codec February 2003

9. Security Considerations

 The RTP payload format proposed for the RGL codec is described in
draft-ramalho-rgl-rtpformat-01.txt [4]. The security considerations

 of using the RGL codec (with the RTP payload format) is described in
 that document. This document simply describes the operation of the
 RGL codec.

Ramalho Expires August 29, 2003 [Page 25]

https://datatracker.ietf.org/doc/html/draft-ramalho-rgl-rtpformat-01.txt

Internet-Draft The RGL Codec February 2003

10. IANA considerations

 As described in the companion RTP payload format document
draft-ramalho-rgl-rtpformat-01.txt [4], it is RECOMMENDED that this

 codec be referred to as: RGLv1 (v1 for version 1).

 When and if the RGL codec becomes mainstream, IANA registration may
 be necessary.

Ramalho Expires August 29, 2003 [Page 26]

https://datatracker.ietf.org/doc/html/draft-ramalho-rgl-rtpformat-01.txt

Internet-Draft The RGL Codec February 2003

11. End Notes

 [EndNote:1] Many PSTN/GSTN telephony systems use "robbed-bit"
 signaling, leaving only 56 kbps of the 64kbps channel transported
 reliably through the network. V.90 systems need access 64kbps
 channel and determine, using framing heuristics, the 56 kbps
 subset of the "reliable" bandwidth.

 [EndNote:2] This need is sometimes driven by the VoIP transport
 provider's desire to state to a governmental agency (e.g., a
 public utility commission) that they transport voice using the
 existing PSTN standards for voice quality.

 [EndNote:3] This is due to the facts that: 1) speech is typically
 present only in one direction of transmission, and 2) the speech
 (usually a "hello" or similar utterance) does not occupy the
 entire initial greeting period.

 [EndNote:4] See Figure 5.10, page 241 of for a graph showing SNRs
 versus input signal level for both single-frequency sinusoidal and
 Gaussian input characteristics.

 [EndNote:5] To be precise, A-law uses "seven" segments on either side
 of analog zero; the segment closest to zero is a "double width"
 segment (representing 32 quantization levels, whereas the other
 segments represent only 16 levels). For the purposes of this
 explanation, A-law can be thought of as having eight "16
 quantization level" segments, with the knowledge that the "double
 width" segment near zero has the same slope.

 [EndNote:6] A similar ones-density requirement existed for E1
 systems. Thus the "A 78.56" codebook design was, with a different
 technique, designed to have similar ends (i.e., high ones-density
 for low amplitude signals).

 [EndNote:7] For A-Law encoding, the "character bits" (bits to be
 sent) are obtained by inverting the even bits in this column (bits
 in this column are labeled 1,2 .. 8 from left to right). See the
 ITU-T G.711 standard for more information.

Ramalho Expires August 29, 2003 [Page 27]

Internet-Draft The RGL Codec February 2003

References

 [1] Bradner, S., "The Internet Standards Process -- Revision 3",
BCP 9, RFC 2026, October 1996.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October
 1998.

 [4] Ramalho, M., "RTP Payload Format for RGL Codec",
draft-ietf-ramalho-rgl-rtpformat-01.txt (work in progress),

 February 2003.

 [5] Jayant, N., "Digital Coding of Waveforms", Prentice-Hall,
 Englewood Cliffs, NJ, ISBN 0-13-211913-7, 1984.

 [6] Haykin, S., "Digital Communications", John Wiley & Sons, New
 York, NY, ISBN 0-471-62947-2, 1988.

 [7] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
 "RTP: A transport Protocol for Real-Time Applications", RFC

1889, January 1996.

 [8] Schulzrinne, H., "RTP Profile for Audio and Video Conferences
 with Minimal Control", RFC 1890, January 1996.

 [9] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [10] Baugher, M., Blom, R., Carrara, E., McGrew, D., Naslund, M.,
 Noorman, K. and D. Oran, "The Secure Real-TIme Transport
 Protocol", draft-ietf-avt-srtp-05.txt (work in progress), June
 2002.

 [11] Deller, R., Proakis, J. and J. Hansen, "Discrete-Time
 Processing of Speech Signals", Macmillan, New York, NY, ISBN
 0-02-328301-7, 1993.

 [12] Syrdal, A., Bennett, R. and S. Greenspan, "Applied Speech
 Technology", CRC Press, Boca Ratton, FL, ISBN 0-8493-9456-2,
 1995.

 [13] Hans, M. and R. Schafer, "Lossless Compression of Digital
 Audio", IEEE Signal Processing Magazine, IEEE Signal Processing
 Society, July 2001.

https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/draft-ietf-ramalho-rgl-rtpformat-01.txt
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1890
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/draft-ietf-avt-srtp-05.txt

Ramalho Expires August 29, 2003 [Page 28]

Internet-Draft The RGL Codec February 2003

 [14] <http://www.vovida.org>

 [15] <http://www.vovida.org>

 [16] <RGL_Format>

 [17] <http://www.vovida.org>

 [18] <http://www.vovida.org>

 [19] <http://www.vovida.org>

 [20] <http://www.vovida.org>

 [21] <RGL_Format>

 [22] <http://www.vovida.org>

Author's Address

 Michael A. Ramalho
 Cisco Systems, Inc.
 1802 Rue de la Porte
 Wall Township, NJ 07719-3784
 USA

 Phone: +1.941.708.4650
 EMail: mramalho@cisco.com

http://www.vovida.org
http://www.vovida.org
http://www.vovida.org
http://www.vovida.org
http://www.vovida.org
http://www.vovida.org
http://www.vovida.org

Ramalho Expires August 29, 2003 [Page 29]

Internet-Draft The RGL Codec February 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Ramalho Expires August 29, 2003 [Page 30]

Internet-Draft The RGL Codec February 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ramalho Expires August 29, 2003 [Page 31]

