
Network Working Group P. Rawat
Internet-Draft J-M. Bonnin
Expires: October 6, 2009 TELECOM Bretagne
 A. Minaburo
 JCP-Consult
 E. Paik
 KT
 April 5, 2009

Tunneling Header Compression (TuCP) for Tunneling over IP
draft-rawat-hc-tunneling-00

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 27, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Rawat, et al. Expires September 27, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Tunneling Header Compression (TuCP) March 2009

Abstract

 The IP tunneling mechanisms have important applications in network
 solutions and are widely used in numerous contexts such as security
 (VPN), IPv4 to IPv6 transition, and mobility support (MobileIP and
 NEMO). However, these tunneling mechanisms induce a large overhead
 resulting from adding several protocol headers in each packet. This
 overhead deteriorates performance on wireless links which are scarce
 in resources.

 Header compression methods are often used on connection oriented
 communication (e.g., UMTS networks) to reduce the overhead on the
 wireless part. These header compression methods can be used on
 tunnel headers to reduce the protocol header overheads, independent
 of the payload type. Although, several header compression methods
 exist, the header compression profiles defined by them are not
 adapted to the characteristics of IP tunneling. This document
 specifies a tunneling header compression protocol for IP tunneling
 mechanisms.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [BCP].

https://datatracker.ietf.org/doc/html/rfc2119

Rawat, et al. Expires September 27, 2009 [Page 2]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

Table of Contents

1. Introduction . 4
2. Motivations . 5
3. Overview of Header Compression with TuCP 6
4. Classification of Tunneling Header Fields 7
5. TuCP protocol . 10
5.1. TuCP Profiles . 11
5.2. TuCP Packets and Packet Types 12

6. TuCP Negotiation . 14
7. TuCP Compression and Decompression 16
8. CRC Error Detection . 17
9. Managing Packet Reordering 17
10. IANA Considerations . 18
11. Security Considerations 18
12. References . 18
12.1. Normative References 18
12.2. Informative References 19

 Authors' Addresses . 20

Rawat, et al. Expires September 27, 2009 [Page 3]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

1. Introduction

 Today's Internet uses wide variety of IP tunnels over wired links,
 which are rich in bandwidth as well as over wireless links which are
 low in bandwidth. Moreover, resources vary in mobile networks due to
 radio conditions. IP tunneling is widely used in several contexts.
 IP tunneling has been used for many years by ISPs to offer VPNs with
 private addresses. IP-in-IP tunneling, the simplest IP tunneling
 method, is used in IP mobility protocol to provide IP mobile node
 with mobility support and security in conjunction with IPSec. Some
 tunneling methods are used in order to build an overlay network for
 transition purposes, i.e., to pass through an IPv4 cloud to reach the
 IPv6 Internet. One such example is using [L2TP] for providing IPv6
 over IPv4 only access [I-D.softwire-hs]. As we connect to an ISP and
 since we often have to traverse a NAT, these methods tend to use a
 transport protocol such as [TCP] or [UDP], for example with L2TP.
 The latter allows to extend a [PPP] connection through the Internet
 to the Network Access Server of the ISP.

 These tunneling mechanisms induce a large overhead resulting from
 adding several protocol headers in each packet, for instance at least
 IP/UDP/L2TP/PPP headers in the above example. Moreover, this header
 overhead can be high on wireless links which have scarce resources.
 IP tunneling involves encapsulating a packet within another packet,
 both of which support the same or different protocols. This requires
 adding a new stack of headers to the tunneled packet, hence
 increasing the size of the headers. Since tunnels may be set up to
 pass through links with low bandwidth and scarce resources such as
 wireless links. In that case the increase in header size will
 consume more bandwidth and waste the resources especially when
 headers may contain some redundancy in their fields.

 In order to reduce the tunneling header overhead and save the link
 resources, header compression mechanisms may be used independently of
 the payload type. Header compression mechanisms can reduce the size
 of a header by removing redundancies from the header fields.
 However, much of the existing work in header compression [IPHC],
 [ROHC], [ECRTP], [CTCP] centers around the compression of inner
 headers (for example, IP, UDP and [RTP]) of the IP packet passing
 through the tunnel and does not deal with the compression of the
 outer headers used by tunneling mechanisms (for example, L2TP and
 [GRE]).

 This document presents a tunneling header compression protocol, TuCP
 (Tunneling Compression Protocol), that can be used over IP tunneling
 mechanisms. It can compress headers of various tunneling protocols
 such as UDP, L2TP, GRE etc. In addition, TuCP provides a solution
 for the packet reordering or out-of-sequence problem (in tunneling)

Rawat, et al. Expires September 27, 2009 [Page 4]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 and thus it extends the usage of existing header compression
 mechanisms such as ROHC from point to point links to the IP tunnels
 passing over the Internet.

2. Motivations

 IP tunneling consists of inner and outer encapsulations as shown in
 Figure 1. The tunneled protocol gives the inner encapsulation and
 the tunneling protocol is the outer encapsulation. In mobile
 networks ([MobileIP] and [NEMO]), the overhead due to inner IP
 encapsulation can be reduced using an existing header compression
 mechanism. However, the tunnel itself has overhead due to its IP
 header (IPout) and the tunneling header. The legacy header
 compression mechanisms do not define a profile to compress tunneling
 headers. Furthermore, in order to use them for outer encapsulation,
 it will be required to modify them to take into account tunneling.

 Outer Encapsulation Inner Encapsulation
 +-----+-------------------+----------------------+-------+
Tunneled| |Tunneling Header |Tunneled Header | |Without
Packet |IPout|Any Tunnel Protocol|IPin + Any upper layer|Payload|Compression
(Input) | |(UDP, L2TP, GRE) |protocol (UDP, RTP) | |
 (a) +-----+-------------------+----------------------+-------+

 <------ TuCP Payload-------->
 +-----+-------+----------------------+-------+
 TuCP Compressed| | TuCP |Tunneled Header | |With TuCP
 Packet (Output)|IPout| Header|IPin + Any upper layer|Payload|Compression
 (b) | | |protocol (UDP, RTP) | |
 +-----+-------+----------------------+-------+

 +-----+-------+--------+-------+
 TuCP + Inner-HC | |TuCP |Inner-HC| |With TuCP +
 Compressed Packet |IPout|Header |Header |Payload|Inner-HC
 (c) | | | | |Compression
 +-----+-------+--------+-------+

 Inner-HC = ROHC, CTCP, ECRTP, IPHC, VJCOMP (see section 7)

 Figure 1: Inner and Outer Encapsulations in IP Tunneling

 Often, the protocol stack is much complex, for example, in the case
 of IP tunneling it can use L2TP protocol and thus it will include
 UDP/L2TP/PPP headers (stack). Hence, the global stack will be IPout/

Rawat, et al. Expires September 27, 2009 [Page 5]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 UDP/L2TP/PPP/IPin/UDP/RTP, where IPout is the outer IP header and
 IPin implies the inner IP header. The only header which is necessary
 to reach the tunnel endpoint is the IPout header, therefore we can
 compress all other headers present in the packet.

 The existing header compression mechanisms only compress the inner IP
 encapsulation such as IPin/UDP/RTP. Therefore, there is a lack of a
 method to compress the outer encapsulation, which is UDP/L2TP/PPP
 encapsulation in the above example. It should be noted that the
 outermost IP header of the tunnel SHOULD NOT be compressed as it is
 required by the intermediate routers to route the packet to the
 tunnel endpoint.

 Moreover, present header compression mechanisms do not deal with the
 case of nested tunnels even if supplementary headers used for inner
 tunnels are useless for the outermost tunnel packet routing purpose.
 Furthermore, most of these compression algorithms have been defined
 to work in a point to point link where reordering of packets does not
 take place. Tunneling over IP does not guarantee the ordered arrival
 of packets to the tunnel endpoint; hence these mechanisms are not
 very effective in the case of tunneling.

 To address these issues, this document introduces a header
 compression mechanism for IP tunneling; TuCP (Tunneling Compression
 Protocol). TuCP is defined to compress the outer encapsulation when
 tunneling is used (see Figure 1 (b)). It compresses the tunneling
 header overhead into 3-5 bytes. TuCP is extensible to general
 tunneling headers compression. In addition, TuCP provides a solution
 for the packet reordering problem so that legacy compression
 mechanisms, such as ROHC can also be used to compress the inner
 encapsulation as shown in Figure 1 (c). TuCP is much simpler than
 ROHC since tunneling headers are mostly static and do not change from
 one packet to another.

3. Overview of Header Compression with TuCP

 Header compression can be applied on tunneling headers because there
 is significant redundancy between header fields between consecutive
 packets belonging to the same packet flow. TuCP removes the
 redundant header information by classifying the tunneling header
 fields into static and dynamic fields depending on their changing
 characteristics. TuCP installs a compressor and decompressor entity
 at each tunnel endpoint. The TuCP compressor first sends both the
 static and dynamic fields to establish the complete tunneling header
 information (static and dynamic information) at the TuCP
 decompressor. After that, the compressor sends only the dynamic
 fields to the decompressor and the static fields are not sent.

Rawat, et al. Expires September 27, 2009 [Page 6]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 This reduces the overhead due to redundant header information. For
 example, an IP/UDP/L2TP/PPP packet consists of a 20 bytes IPv4
 header, an 8 bytes UDP header, a 6 bytes L2TP header (maximum L2TP
 header is 16 bytes), and a 4 bytes PPP header. Thus, the total
 header transmitted over wireless link has a minimum length of 38
 bytes, which will further increase to 58 bytes in presence of IPv6
 (40 bytes). But most of the fields are static and do not change
 between two successive packets belonging to the same tunnel flow (see

section 4). Thus, it is not REQUIRED to send static information to
 avoid needless burden, especially on wireless links.

4. Classification of Tunneling Header Fields

 This section gives a general classification of UDP, L2TP, PPP and GRE
 tunneling header fields as shown in Figures 2, 3, 4 and 5,
 respectively.

 TuCP classifies the header fields into the following three classes:

 INFERRED (NOT SENT): These fields contain values that can be inferred
 from other values, and thus they are easily compressed by the
 compression scheme. The values in these fields are not sent as they
 can be inferred.

 STATIC: These fields contain values that remain constant throughout
 the lifetime of the flow. Static information is communicated only
 once. In this document, the terminology "flow" refers to a set of
 packets having the same values in their STATIC fields.

 DYNAMIC: These fields vary randomly or in a predictable pattern
 within a limited range.

 +-----------------+--------------+------------+
 | Header Field |Classification| Size (bits)|
 +-----------------+--------------+------------+
 | Source Port | STATIC | 16 |
 | Destination Port| STATIC | 16 |
 | Datagram Length | INFERRED | 16 |
 | Checksum | DYNAMIC | 16 |
 +-----------------+--------------+------------+

 Figure 2: UDP Header Fields

 The header size of UDP is 8 bytes when UDP checksum is enabled. In
 IPv6, UDP checksum must be enabled.

Rawat, et al. Expires September 27, 2009 [Page 7]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 +-----------------+--------------+-----------+
 | Header Field |Classification|Size (bits)|
 +-----------------+--------------+-----------+
 | T flag | STATIC | 1 |
 | L flag | STATIC | 1 |
 | S flag | STATIC | 1 |
 | O flag | STATIC | 1 |
 | P flag | STATIC | 1 |
 | Reserved | STATIC | 7 |
 | Version | STATIC | 4 |
 | Length (opt) | INFERRED | 16 |
 |Tunnel ID (opt) | STATIC | 16 |
 |Session ID (opt) | STATIC | 16 |
 | Ns (opt) | DYNAMIC | 16 |
 | Nr (opt) | STATIC | 16 |
 |Offset Size (opt)| DYNAMIC | 16 |
 |Offset Pad (opt) | INFERRED | 16 |
 +-----------------+--------------+-----------+

 Figure 3: L2TP Header Fields

 The L2TP header is of 6-16 bytes. Minimum header size of L2TP is 6
 bytes.

 +------------+--------------+-----------+
 |Header Field|Classification|Size (bits)|
 +------------+--------------+-----------+
 | Address | STATIC | 8 |
 | Control | STATIC | 8 |
 | Protocol | STATIC | 16 |
 +------------+--------------+-----------+

 Figure 4: PPP Header Fields

 NOTE: There are additional headers in PPP like Flag, Information,
 Padding, FCS which are not considered here. This draft considers the
 minimum PPP header (4 bytes) used in the IP/UDP/L2TP/PPP
 encapsulation.

Rawat, et al. Expires September 27, 2009 [Page 8]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 +----------------+--------------+-----------+
 | Header Field |Classification|Size (bits)|
 +----------------+--------------+-----------+
 | C flag | STATIC | 1 |
 | Blank | STATIC | 1 |
 | K flag | STATIC | 1 |
 | S flag | STATIC | 1 |
 | Reserved0 | STATIC | 9 |
 | Version | STATIC | 3 |
 | Protocol Type | STATIC | 16 |
 | Checksum (opt) | DYNAMIC | 16 |
 | Reserved1 (opt)| STATIC | 16 |
 | Key (opt) | STATIC | 32 |
 | Sequence Number| DYNAMIC | 32 |
 | (opt) | | |
 +----------------+--------------+-----------+

 Figure 5: GRE Header Fields

 The GRE header is of 4-16 bytes. Minimum header size of GRE is 4
 bytes.

 The above figures show that most of the header fields in the
 tunneling headers can be compressed as they do not vary. However a
 small number of fields, (e.g., Checksum, Sequence Number) vary and
 some of them, for example, Sequence Number vary in a predictable
 manner. Hence, by sending only static fields' information initially
 and utilizing dependencies and predictability for dynamic fields,
 header size can be significantly reduced for most packets.

 As the static fields are constant values, (for example, source and
 destination addresses, ports), for a (tunnel) flow it would be enough
 to send these fields initially to the destination. Once these static
 fields are received at the destination, there would be no need to
 send them again in every packet. As long as their values are stored
 at the endpoints of the tunnel, they can be used again for each
 packet belonging to the same tunnel.

 On the contrary, dynamic fields (for example, sequence numbers,
 checksum) of the same (tunnel) flow will show variations in their
 values from one packet to another. These changes may follow a
 pattern. Header fields whose values are always incrementing, such as
 counters, can be predicted at the destination by keeping a reference
 value. Whereas, dynamic fields with values that show random changes
 and do not follow any set pattern, will have to be sent as they are
 for each packet.

 There are many optional fields (opt) in some of the tunneling

Rawat, et al. Expires September 27, 2009 [Page 9]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 headers, for example, L2TP and GRE (Figure 3 and 5). Whenever the
 optional fields are present in the tunneling header, they SHOULD be
 treated depending on the type of header classification. The Sequence
 Number when present in L2TP and GRE headers may be encoded for
 achieving further compression. It should be noted that in case of
 L2TP, if the L2TP offset padding is non-zero, the compressor MUST
 send it otherwise UDP checksum will fail.

 In the GRE header, the bits left blank (see figure 5) and the
 reserved bits are set to zero when sending and ignored when received.
 Similarly, in the L2TP header, the reserved bits are set to zero when
 sending and ignored when received.

5. TuCP protocol

 In the protocol implementation, TuCP is implemented as a layer below
 the IP layer. The TuCP protocol works in the following way. At the
 sender side, when the TuCP compressor gets the encapsulated IP packet
 (IPin), it compresses the headers added by the tunneling protocol
 (e.g., L2TP) except IPout (see Figure 1) which is required for
 routing purposes. At the receiver side, when the TuCP decompressor
 gets the compressed (TuCP) packet, it decompresses the packet and
 gives the decompressed packet to the IP layer. In the actual
 protocol stack, TuCP operates over IP layer, as it does not compress
 IP. It only changes the "Protocol" field in the IPv4 header ("Next
 Header" field in the IPv6 header) to indicate the presence of TuCP as
 the next header in the stack.

 The following figure shows a NEMO network scenario, where TuCP
 compression and decompression are applied at the tunnel endpoints, MR
 (Mobile Router) and HA (Home Agent).

 +----------+ +-----------+
 | MR | L2TP Tunnel | HA |
 MN-----| | _ _ _ _ _ _ _ _ _ _ | |
 | TuCP |()_ _ _ _ _ _ _ _ _()| TuCP |
 [IPv6]|LAC Client| |LNS(Server)|[IPv6]
 [network]+----------+ [IPv4 or IPv6] +-----------+[network]
 [network]

 NEMO network

 L2TP Encapsulation: PPP o L2TP o UDP o IP

 Figure 6: NEMO Network Scenario with TuCP

 At the compressor side, TuCP compression is applied to the packet

Rawat, et al. Expires September 27, 2009 [Page 10]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 after the tunneling header has been added and before the packet is
 sent into the tunnel, i.e., before the routing decision is taken. At
 the decompressor side of the tunnel, TuCP decompression is applied
 once the TuCP packet is received and before it is passed to the
 decapsulation entity of the tunnel.

5.1. TuCP Profiles

 A header compression profile specifies how to compress the headers of
 a certain type of packet. TuCP defines various profiles called TuCP
 profiles for compression of different tunneling headers.

 TuCP defines five profiles; profile 0, 1, 2, 3 and 4 as shown below
 in Figure 7. Further compression profiles MAY be defined in TuCP as
 it is extensible to general tunneling headers compression. We can
 use the TuCP profiles together with any header compression mechanism
 to reduce the protocol header size.

 +-----------+--------------------+
 | Profiles | Tunnel Headers |
 +-----------+--------------------+
 | Profile 0 | No tunneling header|
 | Profile 1 | UDP |
 | Profile 2 | UDP/L2TP/PPP |
 | Profile 3 | L2TP/PPP |
 | Profile 4 | GRE |
 +-----------+--------------------+

 Figure 7: TuCP Profiles

 Profile 0: This profile is defined for sending uncompressed mobile IP
 (IP/IP) packets. This is the most basic profile which is used when
 there are no tunneling headers, this profile adds a TuCP header to
 the original (input) packet at the compressor side. This TuCP header
 will be used for CRC and TSN fields (section 5.2) to be able to
 detect packet damage, loss or reordering at the decompressor side.
 This makes it possible to take appropriate action at the decompressor
 if packets arrive out of order. This profile can treat any kind of
 tunnel packets. A specific use of this profile will be in a scenario
 when TuCP is used in conjunction with another header compression
 scheme e.g., ROHC. In this scenario, the tunneling header (outer IP
 header) is not compressed by TuCP as it is used for routing purposes,
 but the tunneled header (inner IP header) is optionally compressed by
 ROHC or any other header compression scheme.

 Profile 1: For UDP compression when the tunnel is UDP based. This
 profile can be used for basic UDP based tunnels, for example, to
 compress UDP header when the protocol header stack is IP/UDP.

Rawat, et al. Expires September 27, 2009 [Page 11]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 Profile 2: For L2TP based tunnels. This profile can be used to
 compress the protocol header stack, UDP/L2TP/PPP. Profile 2
 compresses only L2TP data messages. It does not compress L2TP
 control messages.

 Profile 3: This profile is a variant of profile 2. This profile is
 defined for L2TP/PPP compression, i.e., compression of the UDP header
 is not attempted when UDP protocol is being used to traverse a NAT.
 The advantage of this profile is that it can be used to traverse
 firewalls and NATs.

 Profile 4: For GRE based tunnels. For example, for GRE over IP
 tunnel with protocol header stack IP/GRE, this profile can be used to
 compress GRE header.

5.2. TuCP Packets and Packet Types

 As mentioned in section 4, in order to compress the header, TuCP
 classifies the header fields based on how their values change during
 a flow. These fields are classified and assigned to the static and
 dynamic chain of the compressed header packets. TuCP defines two
 different header types; Initializing-Static Dynamic (IN-SD) and
 Compressing-Dynamic (COMP-D). Figures 8 and 9 show the structure of
 general header format of TuCP packets. TuCP uses these two packet
 types to establish the information in the decompressor. First, the
 static and dynamic information are sent to the decompressor, and
 after that only the dynamic information or its compressed value is
 sent to the decompressor. The static information is sent only in
 IN-SD packets. The dynamic information is sent in both packet types.

 NOTE: In COMP-D packets, dynamic fields MAY be encoded to obtain
 further improvement in terms of compression efficiency.

 For each TuCP profile, the static and dynamic fields will be composed
 of different header fields according to the stack of headers forming
 the tunneling headers. The TuCP payload (data) consists of the
 tunneled IP packet plus its payload that was initially tunneled by
 the remote host to be carried into the tunnel. TuCP does not
 compress the payload and it is transmitted as it is to the other
 endpoint.

Rawat, et al. Expires September 27, 2009 [Page 12]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 0 1 7
 +----+--------------------+
 | D | CRC-7 |
 +----+--------------------+
 | TSN |
 +-------------------------+
 | TSN |
 +-------------------------+
 | |
 / Static information / Variable Length
 | |
 +-------------------------+
 | |
 / Dynamic information / Variable Length
 | |
 +-------------------------+
 | |
 / Data / Variable Length
 | |
 +-------------------------+

 Figure 8: TuCP General Header Format Packets: IN-SD Packet

 0 1 7
 +----+--------------------+
 | D | CRC-7 |
 +----+--------------------+
 | TSN |
 +-------------------------+
 | TSN |
 +-------------------------+
 | |
 / Dynamic information / Variable Length
 | |
 +-------------------------+
 | |
 / Data / Variable Length
 | |
 +-------------------------+

 Figure 9: TuCP General Header Format Packets: COMP-D Packet

 A description of the fields present in the TuCP header is given
 below, in the order of their appearance in the header as shown in
 figures 8 and 9.

 D (Description Type Bit): It is a 1-bit field. The value of D-bit is

Rawat, et al. Expires September 27, 2009 [Page 13]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 interpreted as shown in Figure 10. The D bit indicates the type of
 TuCP header format; IN-SD or COMP-D.

 +---------+-------------+
 | D-bit | Packet Type |
 +---------+-------------+
 | 0 | IN-SD |
 | 1 | COMP-SD |
 +---------+-------------+

 Figure 10: Description (D) type bits

 CRC-7: This is a 7-bit field. The CRC (Cyclic Redundancy Check)
 covers the entire original header (tunneling header). A 7-bit CRC is
 computed over the TuCP header, the static fields, and the dynamic
 fields, before compression. Similarly, CRC is computed at the
 decompressor side, after decompression. If the CRC check is
 successful, the decompressor can update its header fields'
 information previously stored, using the information in the TuCP
 packet received. The CRC computation in TuCP is dependent on TuCP
 packet type. For IN-SD packet, CRC is computed over the entire
 original header (TuCP header, static fields, and dynamic fields).
 For COMP-D packet, CRC is computed over TuCP header plus original
 tunneling header. The CRC coverage MUST include TuCP header because
 TSN can be wrong in the TuCP header at the decompressor side. It
 should be noted that since CRC bits are part of TuCP header itself,
 therefore in order to compute CRC, first we MUST set all bits of CRC
 field to zero, and then we should compute CRC over the header.

 TSN (Transfer Sequence Number): It is a 16-bit field. This field is
 introduced in the TuCP header to tackle the problem of disordering of
 packets. TSN gives the decompressor the transmission order in which
 packets have been sent (by the compressor) and hence allows
 identifying out of order packets. The value of TSN is incremented
 with every packet sent. This field is used by the decompressor to
 detect the loss of packets or reordering (in a packet flow).

 In addition, static and dynamic chains are added to the above fields
 according to the (tunneling) protocol to form the rest of the TuCP
 packet. The size of static and dynamic chains is variable. The data
 field is also variable.

6. TuCP Negotiation

 The first phase in the TuCP protocol is negotiation of parameters

Rawat, et al. Expires September 27, 2009 [Page 14]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 between the tunnel endpoints. During negotiation, the TuCP
 compressor and decompressor learn about the different characteristics
 of the connection (tunnel or link) and the parameters that will be
 used for compression. This negotiation is done during tunnel set up
 between the two endpoints. Presently, TuCP protocol operates in
 unidirectional mode (U mode), which implies that there is no feedback
 from the decompressor to the compressor end.

 The TuCP parameters are classified as static-parameters (long term-
 parameters) and dynamic-parameters. Static parameters are those
 which do not change for a long period of time. Therefore, these
 parameters are negotiated during tunnel set up and are used during
 life time of one tunnel. On the other hand, dynamic parameters are
 those which change quite often, for a flow or packet. Thus, dynamic
 parameters (for example, TSN) are sent in TuCP header fields.

 The negotiation of some of the parameters like MRU (Maximum Receive
 Unit), MTU (Maximum Transmission Unit), and MRRU (Maximum Received
 Reconstructed Unit) between the tunnel endpoints SHOULD be done at
 the tunnel level itself.

 TuCP negotiation is profile dependent. Each TuCP profile will handle
 negotiation process itself. For example, in case of profile 2,
 negotiation will be done through (exchange of) L2TP control messages
 between tunnel endpoints. It should be noted that TuCP does not
 compress L2TP control messages. It compresses only L2TP data
 messages. The following parameters MUST be configured or established
 during TuCP negotiation which is one of the steps of tunnel set up
 process:

 TuCP-Profile: This parameter indicates a profile supported by both
 the compressor and decompressor. Each profile has a different set of
 static and dynamic fields. For each TuCP profile, the static and
 dynamic fields will be composed of different header fields according
 to the stack of headers forming the tunneling headers. The
 decompressor needs to know the profile used in compression in order
 to know the header format of the received (TuCP) packet. The
 compressor MUST NOT compress using a profile that is not defined in
 TuCP profiles. Presently, five profiles are defined in TuCP as shown
 in Figure 7. The profile does not change for a tunnel between two
 nodes during tunnel life time. The tunnel flow will remain the same
 for a tunnel type, for example, for an IP over UDP tunnel, we will
 always use TuCP profile 1 to compress the UDP headers. Thus, this
 parameter SHOULD be negotiated during tunnel set up for a tunnel
 type.

 Inner-HC (Inner-HeaderCompression): TuCP can be used in conjunction
 with an existing header compression protocol where the latter is used

Rawat, et al. Expires September 27, 2009 [Page 15]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 (optionally) to compress the inner IP headers (inner encapsulation or
 tunneled header) of IP packet carried into the tunnel. The
 parameter, Inner-HC is configured during the TuCP negotiation and it
 identifies the compression type (for example, ROHC, VJCOMP, IPHC,
 CTCP, ECRTP) for the inner header compression. The use of inner
 header compression is OPTIONAL. The use of Inner-HC and its type
 should be negotiated during TuCP negotiation. When the inner header
 compression is used, its compression parameters SHOULD be negotiated
 during the TuCP negotiation itself. For example, if compression type
 for inner headers is ROHC, then ROHC parameters are negotiated during
 TuCP negotiation.

 The mobile/NEMO network scenario considered in this draft considers
 one tunnel flow during entire tunnel life time. However, in the core
 network scenario, there can be more than one tunnel flows. In the
 later scenario, TuCP establishes a context at both the endpoints of
 the tunnel to achieve a successful compression and decompression of
 packet headers. Each flow has its own compression context on the
 compressor side and decompression context on the decompressor side.
 A Context Identifier (CID) should be used to identify the context
 used to compress and decompress the packet. In this case, a CID
 field SHOULD be appended to the TuCP header. The size of CID field;
 small or large CID SHOULD be negotiated during tunnel set up. The
 CID field and its size is out of the scope of this draft as it
 considers the use of TuCP in a mobile network scenario, where CID is
 not used.

7. TuCP Compression and Decompression

 First, there is a negotiation of static-parameters such as TuCP-
 Profile and Inner-HC between the compressor and decompressor (tunnel
 endpoints) during tunnel set up. Then, the compressor sends the
 static and dynamic information to the decompressor. The subsequent
 packets are compressed (and then decompressed) using this complete
 header information stored at the tunnel endpoints.

 At the compressor side, once a tunneling packet is received, the
 tunneling headers are compressed using the TuCP profile negotiated
 during the tunnel set up. This generates a TuCP packet which is sent
 into the tunnel instead of the original (input) packet.

 At the decompressor side, when the decompressor receives a TuCP
 (compressed) packet, it decompresses the compressed packet and
 regenerates the original packet. The decompressor MUST use the same
 profile (as supported by the compressor) for decompression and to
 reconstruct the original packet. The decompressor uses CRC and TSN
 checking to detect errors in the packet and to identify out-of-order

Rawat, et al. Expires September 27, 2009 [Page 16]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 packets, respectively, as discussed below in Sections 8 and 9.

8. CRC Error Detection

 The wireless and radio links have high BERs (Bit Error Rates) and
 PERs (Packet Error Rates) which can generate consecutive errors in
 the compressed headers and can cause loss of header fields'
 information synchronization between the endpoints. TuCP uses CRC
 mechanism to detect such errors on the decompression side and if CRC
 check fails, it discards the packets.

 TuCP uses a 7-bit CRC for error detection at the decompressor side.
 At the compressor side, CRC is computed over TuCP header plus the
 original (tunneling) header fields before compression. Then
 decompressor verifies the CRC after decompressing the header fields
 and checks whether it has received the correct information or if the
 information has been corrupted due to transmission errors in the
 link. Erroneous packets are dropped (i.e., not decompressed) and
 only error free packets are considered by the decompressor to
 complete the decompression process.

 The CRC check covers TuCP header because it contains TSN (sequence
 numbering) which should be included in the computation of CRC to
 protect it by CRC. This is because when there is an error in TSN,
 the decompressor should be able to detect it. Since, the
 decompressor uses TSN to detect packet loss or reordering, it SHOULD
 NOT use the corrupted TSN for this purpose.

9. Managing Packet Reordering

 A significant feature of TuCP is that it is able to manage packet
 reordering problem. Packet reordering [Mogul1992], [Leung07] occurs
 when packets arrive in wrong order, at the destination. Due to
 various reasons, such as multipath routing, and retransmissions,
 packets belonging to the same flow may arrive out of order at the
 destination. Such packet reordering poses performance problems.

 TuCP uses a TSN (Transfer Sequence Number) field in TuCP header to
 check for the order of the received packets at the decompressor side.
 The decompressor keeps a record of the last received TSN. On
 receiving a TuCP packet, the decompressor checks if it is in order.
 If the received packet is in (the correct) order, it will be
 decompressed.

 TSN gives the decompressor, the transmission order in which the
 packets have been sent. In case of disordering in the delivery of

Rawat, et al. Expires September 27, 2009 [Page 17]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 packets, the decompressor has to wait until the in-order packet
 arrives or a timer expires, before continuing the decompression.
 When the timer expires, missing packets are assumed to be lost.
 Then, they are not delivered at all, even if they eventually arrive.
 While waiting for the in-order packet, an early arriving packet is
 stored in a buffer. The timer and buffer are implementation
 parameters.

 This feature of TuCP to be able to deal with packet reordering
 problem is significant since TuCP can be used in conjunction with
 Inner-Header-Compression, optionally. TuCP enables the use of
 existing header compression mechanisms like ROHC (for Inner-HC) which
 work over an ordered delivery transmission between the compressor and
 decompressor (endpoints). For example, ROHC can be used to compress
 the IP packets carried into the tunnel, but ROHC [RFC3095] is
 designed to work over an ordered delivery transmission between the
 endpoints and it does not support packet reordering. A solution for
 this problem has been suggested in [RFC4224] which supports
 disordered delivery of packets. However, this solution reduces
 robustness of ROHC, thereby reducing the performance of ROHC over
 wireless links. TuCP provides a solution to deal with packet
 disordering problem, which does not reduce the performance of ROHC or
 any other inner header compression and at the same time delivers
 packets in order.

10. IANA Considerations

 This document defines a new IP protocol for tunneling header
 compression. It requires a protocol number to be attributed by IANA.

11. Security Considerations

 This document by itself does not add any security risk to the use of
 header compression as they have already been defined in each
 mechanism.

12. References

12.1. Normative References

 [BCP] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels, BCP 14", RFC 2119, March 1997.

 [GRE] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation", RFC 2784,

https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc4224
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2784

Rawat, et al. Expires September 27, 2009 [Page 18]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 March 2000.

 [L2TP] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
 G., and B. Palter, "Layer Two Tunneling Protcol",

RFC 2661, August 1999.

 [PPP] Simpson, W., "The Point-to-Point Protcol", RFC 1661,
 July 1994.

 [UDP] Postel, J., "User Datagram Protocol", RFC 768,
 August 1980.

12.2. Informative References

 [CTCP] Casner, S., Jacobson, V., and B. Thompson, "Compressing
 IP/UDP/RTP Headers for Low-Speed Serial Links", RFC 2508,
 February 1999.

 [ECRTP] Koren, T., Casner, S., Geevarghese, J., Thompson, B., and
 P. Ruddy, "Enhanced RTP (CRTP) for Links with High Delay,
 Packet Loss and Reordering", RFC 3545, July 2003.

 [I-D.softwire-hs]
 Storer, B., Pignataro, C., Santos, M., Stevant, B., and J.
 Tremblay, "Softwire Hub & Spoke Deployment Framework with
 L2TPv2", draft-ietf-softwire-hs-framework-l2tpv2-12.txt
 (work in progress), March 2009.

 [IPHC] Degermark, M., Nordgren, B., and S. Pink, "IP Header
 Compression", RFC 2507, February 1999.

 [Leung07] Leung, K. and D. Yang, "An Overview of Packet Reordering
 in Transmission Control Protocol (TCP): Problems,
 Solutions, and Challenges", 2007.

 [MobileIP]
 Perkins, C., "IP Mobility Support", RFC 2002,
 October 1996.

 [Mogul1992]
 Mogul, J., "Observing TCP dynamics in real networks",
 1992.

 [NEMO] Devarapalli, V., Wakikawa, R., Petrescu, A., and P.
 Thubert, "Network Mobility (NEMO) Baisc Support Protocol",

RFC 3963, January 2005.

 [RFC4224] Pelletier, G., Jonsson, L-E., and K. Sandlund, "Robust

https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc2508
https://datatracker.ietf.org/doc/html/rfc3545
https://datatracker.ietf.org/doc/html/draft-ietf-softwire-hs-framework-l2tpv2-12.txt
https://datatracker.ietf.org/doc/html/rfc2507
https://datatracker.ietf.org/doc/html/rfc2002
https://datatracker.ietf.org/doc/html/rfc3963

Rawat, et al. Expires September 27, 2009 [Page 19]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 Header Compression (ROHC): ROHC over Channels That Can
 Reorder Packets", RFC 4224, Jan 2006.

 [ROHC] Bromann, C., Burmeister, C., Degermark, M., Fukushima, H.,
 Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
 K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
 Wiebke, T., and H. Zheng, "Robust Header Compression
 (ROHC): Framework and four profiles: RTP,UDP,ESP, and
 uncompressed", RFC 3095, July 2001.

 [RTP] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", RFC 3550, July 2003.

 [TCP] Postel, J., "Transmission Control Protocol", RFC 793,
 September 1981.

Authors' Addresses

 Priyanka Rawat
 TELECOM Bretagne
 2 rue de la Chataigneraie
 CS 17607
 35576 Cesson-Sevigne Cedex
 France

 Fax: +33 2 99 12 70 30
 Email: Priyanka.Rawat@telecom-bretagne.eu

 J-M Bonnin
 TELECOM Bretagne
 2 rue de la Chataigneraie
 CS 17607
 35576 Cesson-Sevigne Cedex
 France

 Fax: +33 2 99 12 70 30
 Email: jm.bonnin@telecom-bretagne.eu

https://datatracker.ietf.org/doc/html/rfc4224
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc793

Rawat, et al. Expires September 27, 2009 [Page 20]

Internet-Draft Tunneling Header Compression (TuCP) March 2009

 Ana Minaburo
 JCP-Consult
 Cesson-Sevigne Cedex
 France

 Email: ana.minaburo@jcp-consult.com

 Eun Kyoung Paik
 KT
 Central R&D Lab. KT
 Korea

 Email: euna@kt.co.kr

Rawat, et al. Expires September 27, 2009 [Page 21]

