
Network Working Group R. Raymond
Internet-Draft E. Lagerway
Intended status: Informational Hookflash
Expires: January 07, 2014 I. Baz Castillo
 Versatica
 R. Shpount
 TurboBridge
 July 06, 2013

WebRTC JavaScript Object API Rationale
draft-raymond-rtcweb-webrtc-js-obj-api-rationale-01

Abstract

 This document describes the reasons why a JavaScript Object Model
 approach is a far better solution than using SDP [RFC4566] as a
 surface API for interfacing with WebRTC. The document outlines the
 issues and pitfalls as well as use cases that are difficult (or
 impossible) with SDP with offer / answer [RFC3264], and explains the
 benefits and goals of an alternative JavaScript object model
 approach.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 07, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Raymond, et al. Expires January 07, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4

 2. Issues with a Universal Session Description Format (and Offer
 / Answer) . 4

2.1. Goal of Minimized Requirements 6
2.2. Offer / Answer State Machine 7
2.2.1. Offer / Answer Violations 8

2.3. Browser to Browser Format Compatibility Issue 8
2.4. Browser to JavaScript Compatibility Issues 9
2.5. SDP as a surface API for JavaScript developers 9
2.6. Is SDP allowed to be mangled? 10
2.7. SDP errata and bugs compatibility issues 11
2.7.1. SDP Bugs Become Enshrined 11

2.8. SIP/SDP compatibility worsened 12
2.9. Increased surface API 12

 2.10. Impossible API to implement to achieve browser
 compatibility . 13

2.10.1. Example Oddities That Need Definition 13
2.11. Plan A, Plan B vs NoPlan 14
2.12. SIP Forking Issue . 15

3. Alternatives to Fixing these Issues Now 15
3.1. Waiting for WebRTC 2.0 15
3.1.1. Cost now to fix versus fixing later 16

 3.1.2. If starting over, would even SIP people want SDP as a
 surface API? . 16

3.1.3. Incremental Approach may make Compatibility Worse . . 16
3.2. Session Description Format Construction API 17

4. Example Difficult Usage Cases with Current Model 19
4.1. On / off hold example usage case 19
4.2. One-Sided Constraints Negotiation use Case Scenario . . . 20
4.3. Meet-me Negotiation Use Case Scenario 22

 4.4. Browser to Browser Compatibility Extension Compatibility
 Issue Scenario . 22
 4.5. Building Interoperability between WebRTC and a SIP
 Service Scenario . 23

4.6. Bit-rate Change Scenario 24
4.7. Video Codec Option Change Scenario 25
4.8. Video Upgrade Scenario 25

5. Proposal: WebRTC JavaScript Object Model 26

Raymond, et al. Expires January 07, 2014 [Page 2]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

5.1. Overview . 26
5.2. Benefits . 26
5.2.1. Greater compatibility 26
5.2.2. Easier to extend 26
5.2.3. Faster Reaction Time To Issues 27
5.2.4. Decreased surface API 27
5.2.5. Greater compatibility for SIP 27
5.2.6. Alternative formats 28

5.3. Design Goals and Considerations 28
5.3.1. Objects Model Kept Simple 28
5.3.2. Simple to Gather Negotiation Information 28
5.3.3. Offer / Answer 28
5.3.4. Extensions . 28
5.3.5. Well Defined Behaviors 29
5.3.6. Data Channel . 29
5.3.7. Satisfy the expectations of the RTCWEB charter . . . 29

 5.3.8. SIP/SDP and current WebRTC API shim compatibility
 statement . 29
 5.3.9. Greater Separation of RTCWEB Working Group and Other
 Working Groups 30

6. Security Considerations 30
7. References . 30
7.1. Normative References 30
7.2. Informative References 31

 Authors' Addresses . 32

1. Introduction

 While the IETF RTCWEB WG is not specifically tasked with providing an
 API by the W3C, the group has effectively defined a surface API with
 the mandate to use SDP [RFC4566] with offer / answer [RFC3264].

 SDP is a condensed text based format that typically describes all of
 the real-time media streams, networking properties, codecs, media
 state and media attributes. SDP is completely extensible and can be
 used to describe absolutely anything so long as it is formatted
 correctly within its minimally defined limitations.

 The points for mandating SDP with an offer / answer API typically
 boils down to:

 1. It's really easy to establish communication, especially with SIP
 [RFC3261].

 2. The decision was already made.

 3. SDP yields greater compatibility (especially with SIP networks).

https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3261

Raymond, et al. Expires January 07, 2014 [Page 3]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 4. We must have some kind of universal exchange format.

 5. There is no alternative to this approach except destroying
 everything created and starting from scratch.

 This document will explain why these reasons are insufficient to
 continue with an SDP with offer / answer mandate approach given
 strong logical arguments and reasons with real world scenarios where
 this approach fails and due in no small part to its lasting
 consequences (including negative consequences for SIP).

 The document highlights the benefits and goals for a different
 "JavaScript Object Model" approach, which satisfies the RTCWEB WG
 charter's requirements, yields greater compatibility and offers a
 road-map where future potential extensions can be readily added
 without breaking existing implementations.

 A "JavaScript shim" is described including details on how it can
 offer a wrapped API around a core WebRTC JavaScript Object Model.
 This Shim will provide the same level of "ease of use" as experienced
 with the current SDP WebRTC API. However, this JavaScript shim is
 not mandatory to use for those who do not require an "SDP with offer
 / answer" model.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Issues with a Universal Session Description Format (and Offer /
 Answer)

 The issue with SDP is not the expressiveness of the format but its
 usage as an arbitrary universal format and an API surface instead of
 providing JavaScript developers an object model they can readily
 understand. JavaScript could be used to control the plumbing of
 media objects using familiar JavaScript expressive concepts enshrined
 with methods, properties and events. Today, in many real-world use
 cases, controlling WebRTC requires modifying SDP directly.

 Requiring JavaScript developers to serialize their API control
 requests into a text format (via modifications of SDP existing blobs)
 is only one aspect of the many issues the SDP approach creates for
 developers. Needlessly, an offer / answer state machine is imposed
 on JavaScript developers as well.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Raymond, et al. Expires January 07, 2014 [Page 4]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 While the currently mandated SDP based API allows developers to
 quickly implement basic calling demos and interoperability with some
 SIP networks, it has many issues that will be explored and explained
 in this document and include (but not limited to):

 1. Defining a standard universal all-encompassing session
 description format for use with WebRTC that describes all
 connections, media, constraints, streams and tracks for all
 scenarios is especially challenging.

 2. Rather than focusing and defining the properties needed for
 communication, the focus is put on the best way to express the
 format where every nuance and behavior will need to be detailed
 for any browser vendor to capably implement the SDP based WebRTC
 specification.

 3. The bar for browsers (or other applications with WebRTC engines)
 to produce a WebRTC engine is raised substantially by forcing
 the browser to implement an entire SDP offer / answer engine
 too, with little to no added benefit.

 4. A universal format built into the browser's API is entirely
 unneeded and goes well beyond the RTCWEB chartered mandate for
 the RTCWEB Working Group.

 5. A flexible and expendable universal exchange format leads to
 greater interpretations and mistakes in various implementations,
 which in turn leads to increased incompatibilities.

 6. Given the format is entirely flexible and open to
 interpretation, resulting implementations will more likely be
 prone to errors relative to the other truly needed aspects of
 RTC (which have better defined boundaries, behaviours, and
 scope).

 7. Mistakes in the format won't be fixed until a new browser binary
 update is released and deployed amongst users.

 8. Mistakes in implementation of the session description format can
 become enshrined and difficult to deprecate (for the sake of
 compatibility).

 9. Compatibility issues caused by the format will not be limited to
 browsers-only as many hybrid browser-engine based applications
 now exist too.

Raymond, et al. Expires January 07, 2014 [Page 5]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 10. Using alternative signaling formats will require complete
 understanding of the universal format to be able to translate it
 into other alternative signaling formats.

 11. JavaScript (or proxies) will need to parse and rewrite the
 output session description format with 100% precision and
 without loss. They will also require pre-knowledge of what each
 browser produces and expects, despite the likelihood of a
 multitude of outputted flavors, on various platforms, and from
 version to version and despite the inability to easily predict
 or detect the variants.

 12. JavaScript developers trying to control WebRTC features will
 need to manipulate any defined universal format rather than
 interacting with JavaScript objects.

 13. Offer / answer is mandated and the state machine is required but
 the exact rules and violations of the rules ill defined when
 used within WebRTC.

 14. The rules of how a universal format can be modified before being
 delivered to remote parties need to be meticulously defined or
 compatibility issues will arise (including the allowed rules of
 post browser format regeneration as to what can be modified and
 fed back into the browser).

 15. Due to the issues defined above, SIP compatibility will worsen,
 not strengthen.

 An alternative to all of the issues caused by a universal format and
 state machine are described later in the document. This alternative
 allows JavaScript to control the behavior of the media engine's
 plumbing while providing extensible and modifiable shims written
 entirely in JavaScript that produce consistent signaling and exchange
 formats for the specific network where those formats operate.

2.1. Goal of Minimized Requirements

 While the primary goal of WebRTC is to enable browser to browser
 communication, the definition of a "browser" is ever expanding.
 Beyond just traditional hand-held applications, hybrid applications
 that are part HTML-5 and part native code exist. Servers will become
 as much as part of the WebRTC infrastructure as browsers. Minimizing
 the requirements to the basic wire compatibility necessary to achieve
 RTC is essential for maximum compatibility, flexibility and varying
 usage scenarios.

Raymond, et al. Expires January 07, 2014 [Page 6]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 The mandate for the RTCWEB charter is to simply define requirements,
 provide basic "on-the-wire" compatibility, and define security
 requirements (such as enforcing ICE connection agreements). The
 RTCWEB charter goals have been exceeded by going well beyond that
 scope by mandating an API that works fine for simple SIP
 interoperability demos but does not provide easy compatibility to the
 basic constructs needed as outlined from the charter for use with
 other on-the-wire signaling protocols (other than SIP). If SIP is
 the only end goal of the WG, then that goal must be specifically
 stated rather than effectively mandated by making alternative
 signaling approaches unreasonably difficult to achieve.

2.2. Offer / Answer State Machine

 The current SDP approach requires an offer / answer state machine.
 Mandating an offer / answer state machine implies that:

 1. SDP be generated by browser A and sent to browser B

 2. Browser B must respond with the offer with an answer

 3. If either party issues a new offer but the offer is rejected, the
 state must revert to the previous agreed SDP (or fail to none)

 4. If one side receives an offer while the other side has an
 outstanding offer, a conflict occurs and both sides must reject
 and revert and perform SDP conflict resolution to issue an offer
 again

 5. The only changes to the media that are allowed happens if both
 sides agree

 6. Any change required to the SDP requires a network round trip
 where both sides mutually agree (at least as traditionally
 defined in offer / answer but the rules are in flux)

 This offer / answer model is defined as required with the current
 implementation. Not only do the browser vendors have to enforce the
 rules, all JavaScript authors must also adhere to these rules of
 signaling. While WebRTC does not dictate the signaling mechanism
 between browsers, effectively it is imposing this signaling state
 machine on all implementations (which is not a mandate of the RTCWEB
 Working Group).

 There are other models for signaling other than offer / answer. For
 example, one-sided constraints based negotiation is an alternative
 model. This type of negotiation requires each side to determine what
 it wants to receive independent of the other. This signaling is akin

Raymond, et al. Expires January 07, 2014 [Page 7]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 to saying "if you plan to send anything, make sure it conforms to the
 following". Changes to the media may occur without agreement from
 the remote party where each side decides what is acceptable to
 receive without agreement from the other. The remote side can decide
 if it wants to send within those constraints or not. There is no
 round trip offer / answer required in this model to affect change.

 Offer / answer introduces the unnecessary asynchronism to the API and
 JavaScript implementations. For example, changing the list of codecs
 expecting to receive or the current sending codec can be done
 immediately without the need for asynchronous calls.

 Offer / answer is not required to achieve RTC wire compatibility but
 it is currently mandated when alternatives could exist.

2.2.1. Offer / Answer Violations

 The offer / answer SDP state machine is already violated in WebRTC.
 Trickle ICE precludes offer / answer round trips and other proposed
 standards like NoPlan [I-D.ivov-rtcweb-noplan] suggest relaxing the
 offer / answer model even more. The rules of what offer / answer at
 this point is undefined and in clear violation of the strict previous
 rules without clear direction on what exactly constitutes offer /
 answer anymore and where it should and should not be used.

 A new state for offer / answer called PRANSWER is now defined, which
 did not exist as part of the standard offer / answer state machine.
 Offer rollback is not adequately defined either should an offer /
 answer conflict occur.

 Currently, switching codecs requires an SDP offer / answer should
 perform a round trip even though it is not technically needed for an
 RTC engine to change codecs. Should this be another exception to the
 offer / answer state machine?

2.3. Browser to Browser Format Compatibility Issue

 SDP is a flexible format, and it allows many alternative methods to
 express the same intentions. The smallest change may alter the SDP's
 meaning.

Raymond, et al. Expires January 07, 2014 [Page 8]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 This creates a parsing and SDP generation compatibility issues. If
 SDP is packaged by JavaScript and delivered to the remote browser
 then each browser must support every single possible variant of SDP
 for every browser version and platform in existence. They must do
 this without failure. To maximize compatibility, a browser should
 generate the SDP format in the variant expected by the remote party
 (despite not having sufficient knowledge about the remote party to
 provide the correct SDP).

2.4. Browser to JavaScript Compatibility Issues

 Since WebRTC is not supposed to mandate the format on the wire for
 signaling, one supported use case for WebRTC must be allowing the
 browser generated SDP to be converted into alternative on-the-wire
 formats. This SDP conversion may be performed by JavaScript in the
 browser, or later by an intermediate gateway. In either case, the
 converter must be entirely aware of all variants to the SDP possible
 from every browser platform and version, despite browser version
 detection being heavily frowned upon by industry best practices.
 Likewise, the JavaScript or gateway must know how to generate the
 correct SDP for all browsers and versions before passing the
 serialize SDP blob into the browser. Generating compatible SDP may
 be impossible unless the exact formats and restrictions are
 unquestionably clear by all implementers of the specification (which
 is anything but clearly described in the current WebRTC SDP based API
 that developers are mandated to use).

2.5. SDP as a surface API for JavaScript developers

 The current SDP based API is limited to placing a call and answering
 a call and adding media. To perform common edge cases or to utilize
 RTC features beyond the basic API typically requires SDP mangling.

 Many of the operations from JavaScript to control or fetch properties
 from RTC will be through serialization to / from the SDP instead of a
 developer using familiar JavaScript language constructs (e.g. object
 methods, structures, properties and events). The JavaScript
 developer must learn an entirely new protocol called "SDP" and be
 able to parse and generate not only basic SDP but any SDP extensions
 without introducing a single compatibility issue.

 Examples; A JavaScript developer wants to hold / un-hold media
 streams. The developer must use a widely adopted but hidden feature
 to parse the SDP from the browser, change it to add the appropriate
 "hold" state, send that hold state to the remote side, wait for the
 "answer" to accept the hold, parse the result on the return to see if
 the hold was accepted and feed the result to the browser.

Raymond, et al. Expires January 07, 2014 [Page 9]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 Worse, a flood of extensions to SDP for WebRTC are being written to
 "enhance" and "extend" the functionality of the browser with new
 features. Many basic things are ill defined in the current SDP based
 API, for example, changing non-negotiated codec parameters, such as
 codec bandwidth.

 There is no facility for JavaScript to detect what SDP the browser is
 currently using or capable of delivering. The developer has no idea
 of the extensions available, or what SDP will be produced, or what
 SDP is compatible. The developer's JavaScript code must be able to
 handle everything generated by the browser for any use case beyond
 basic call, answer and hang-up. This is a heavy burden to place on a
 JavaScript developer who is not familiar with the details of RTC
 concepts as expressed in SDP, and is a challenge even for those who
 are familiar.

 Effective APIs are meant to be contracts between a producer and
 consumer, whereas this SDP methodology offers little in the form of
 any such contract.

 If SDP is to become standardized for use with WebRTC then JavaScript
 developers must learn SDP to use RTC's available features and build
 new features. Alternatively, accessors will need to be provided to
 manipulate the SDP on behalf of the JavaScript (and if so, then why
 not move to an object model straight away and do away with SDP?).

2.6. Is SDP allowed to be mangled?

 The choice must be made if SDP may be modified or not. If
 modifications are the only way to achieve RTC features available then
 what is allowed to be modified must be clearly defined in exact
 detail and the expected behavior of each feature (and modification of
 each feature), as expressed in SDP, must be defined. Anything short
 of exact specifications will cause incompatibility. Again, the
 implication is that Web / JavaScript developers must learn SDP to
 utilize the available RTC features and they must learn the rules of
 modification equally well, which virtually do not exist at all today.

 If the choice is to not allow complete SDP modification at all, then
 the protocol becomes extremely tied to SDP based protocols like SIP.
 Yet, there is no mandate for SIP to be the standardized protocol in
 WebRTC. In fact, the mandate to require SIP was explicitly denied,
 which presents the argument that SDP manipulation must be allowed.

 The SDP mangling issue isn't just an issue when the format is sent
 on-the-wire. If Browser A sends Browser B an SDP, the current
 philosophy is that the SDP is allowed to be modified. However, there
 is the possibility of modifying the SDP generated by Browser A and

Raymond, et al. Expires January 07, 2014 [Page 10]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 giving that modified SDP back to Browser A to change it's behavior
 (i.e. a serialized text based API call) before the offer is given to
 Browser B (and likewise with Browser B when it responds with its SDP
 answer).

 How much of the SDP is allowed to be modified before giving the SDP
 back to the local browser? SDP is a free-form format so anything can
 theoretically get changed, but should it be allowed? If not, what
 can and cannot be modified? CODECS? SSRC? SDES? Fingerprints?
 Transports? M-lines? And so on...

 This issue becomes further compounded when extensions are factored in
 as well.

2.7. SDP errata and bugs compatibility issues

 With the SDP baked into the browser binary, the only way SDP
 compatibility issues can be fixed is by releasing a new browser
 update, and the JavaScript developers must support or work around
 flaws until the browser vendors deliver the fix and the user base
 upgrades their browsers.

 While it could be argued that any bug must be worked around, SDP is a
 unique problem. SDP is a free-form format. Being compatible isn't
 as easy as implementing a limited wire protocol for media transport
 or a API contract with well defined features and attributes. The
 likelihood of free-form SDP containing errors is far greater than a
 typical well defined API due to SDPs many flavors, interpretations
 and lack of strong definition.

2.7.1. SDP Bugs Become Enshrined

 To illustrate a scenario:

 1. Browser Vendor A has a bug

 2. Browser Vendor B can't work with A because of the bug so it
 implements a "work around"

 3. Browser Vendor A fixes the bug but implements a work around to be
 compatible with Browser Vendor B's "work around"

 This situation demonstrates is how browser bugs can become enshrined
 as there's no way to update the SDP produced by the browser binary
 once it's released until the next update release cycle occurs. This
 would not be true if JavaScript was used via a shim to produce SDP as
 JavaScript can be dynamically updated as needed at any time and a
 service provider can choose to update their JavaScript implementation

Raymond, et al. Expires January 07, 2014 [Page 11]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 to exacting expectations for their network regardless of the browser
 version.

 The lower level RTC wire protocols that need to be mandated by the
 RTCWEB Working Group have limited scopes and well defined behaviors.
 Any mistakes are obvious, likely to present very rapidly, and easy to
 spot which party is doing something wrong and much easier to fix
 earlier as a result. This is not true with a free form highly
 descriptive language for sessions. The combinations are limitless
 and every scenario is difficult to test, especially in concert with
 every other browser vendor with every version released. The session
 description will be the likely place of failure across the browsers
 when the session description is generated inside the browser's
 binary.

2.8. SIP/SDP compatibility worsened

 One of the main arguments for using SDP with offer / answer was
 supposed to be ease of compatibility with existing signaling
 networks, like SIP. Instead, variations in the browser's SDP will
 likely worsen SIP compatibility instead of enhance it.

 A SIP provider must now be compatible with every browser's SDP on
 every platform and version and the browser's SDP must be compatible
 with every SDP from a SIP network. Alternatively, JavaScript or SBCs
 (Session Border Controller) must be used to re-write any incompatible
 SDP to be compatible. However, this moves the problem from the
 browser to JavaScript, or requires SBCs to "fix" the problem.

 Had SDP been entirely generated by JavaScript rather than come from
 the browser engine, the JavaScript could create only SDPs compatible
 with a particular SIP provider under control of their own JavaScript
 and the SIP provider could chose which JavaScript SDP parsing /
 generation code to run, for maximum compatibility.

2.9. Increased surface API

 By mandating SDP, the requirement for compatibility with WebRTC is
 increased substantially with little benefit. Instead of just
 supporting basic media RTP [RFC3550], STUN/ICE/TURN [RFC5389]/
 [RFC5245]/[RFC5766], DTLS [RFC6347] and CODECS an additional bar must
 be passed, i.e. a browser or other WebRTC compliant API must support
 SDP with a full offer / answer state machine (or a state machine with
 additional rules to make it flexible for various scenarios).

 With an alternative approach, the entire requirement for SDP could be
 removed without any loss of compatibility or increase in complexity
 while achieving greater compatibility via the JavaScript shim.

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc6347

Raymond, et al. Expires January 07, 2014 [Page 12]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

2.10. Impossible API to implement to achieve browser compatibility

 The current mandated SDP based API cannot be implemented as a
 standard by independent browser vendors in its current form. A list
 of subsequent behaviors regarding the usage, parsing, handling,
 extensions, behaviors, constraints and other such reference documents
 must be meticulously defined for SDP with the modified offer / answer
 state machine or no browser can ever claim to be "compliant". The
 current definition process is far from complete.

 The current WebRTC SDP based API is far from achieving that goal due
 to the inclusion of free-form SDP with offer / answer and it is
 grounds for removing it as it goes beyond the RTCWEB's charter and
 limited scope.

 Any incremental approach that does not remove the offer / answer
 model requirement yields a road block to achieving alternative WebRTC
 signaling protocols other than SIP.

 An alternative WebRTC JavaScript object model approach that does not
 require an all-encompassing session description and related state
 machine is being proposed as an alternative solution so the RTCWEB
 charter can complete its defined goals in a timely fashion.

2.10.1. Example Oddities That Need Definition

 There are many oddities in the SDP RFC [RFC4566] and the various
 related extensions.

 For example; will RTP CODEC maps be required or not? They are not
 required for basic CODECs according to the SDP RFC. However, with
 all the flavors of CODECs being offered, defining a mapping between
 payloads is critical to compatibility and not just a good idea.

 Another example; should "t=0 0" be respected? Is that allowed to be
 changed? Do the browser vendors need to enforce the attribute, or
 should the JavaScript layer enforce it? Should the streams wait to
 start until the NTP time stamp and close when the NTP time completes?

 These are just small samples of questions that must all be completely
 addressed in detail. This could also cause a cascade of updated
 reference drafts and confusion as to which version is to be adhered
 by browsers as well as what each browser specifically supports.
 Nominally referencing the SDP RFC will not be sufficient, and deltas
 from the established standards when violated will need to be defined
 when the rules change.

https://datatracker.ietf.org/doc/html/rfc4566

Raymond, et al. Expires January 07, 2014 [Page 13]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

2.11. Plan A, Plan B vs NoPlan

 At the time of authoring this document, three plans on how to handle
 large number of media streams in SDP have emerged currently under
 consideration from the IETF, referred to as PlanA
 [I-D.roach-rtcweb-plan-a], PlanB [I-D.uberti-rtcweb-plan] and NoPlan
 [I-D.ivov-rtcweb-noplan].

 PlanA and PlanB acknowledge that using SDP as it is historically
 defined in SIP is inefficient and problematic for large number of
 media streams, especially factoring in that each media line must have
 its own unique ports.

 NoPlan allows for media to be described in a more JavaScript friendly
 way and goes a long way towards improving the situation from SDP by
 taking out the mapping of the streams from the SDP but does not
 remove the reliance upon SDP. This creates a dual format system
 where some information is initially carried over SDP and other
 information is signaled through an alternative approach (including
 the possibility of SDP offer/answer). NoPlan could have been the
 sufficient approach if it took one step further and removed SDP
 entirely.

 PlanA, PlanB and NoPlan are a perfect example of why not to use SDP
 as the basis for WebRTC. SDP has some arbitrary limitations as a
 description protocol for multiple streams whereas no such limitations
 exist at the lower layer transports themselves. RTP allows for
 multiplexing multiple SSRCs. In other words, the problem is SDP, not
 the real time transportation technologies.

 These drafts illustrate the limitations of SDP and attempt to solve
 it by introducing even more complex descriptions around SDP and / or
 by "relaxation" of the offer answer model combined with altering the
 description language of SDP.

 None of these drafts address most of the concerns outlined in this
 draft. If anything, they further illustrate how divergent the SDP
 will become as more and more effort is put into working around
 problems inherent to the nature of utilizing SDP (or any universal
 format).

 The issue that SDP implementers face should be isolated to those who
 require SDP for their signaling protocols (namely SIP) where they can
 choose the best practices for their networks for interoperability.
 These complex approaches do not have to be forced on other signaling
 protocols that do not have or require such limitations.

Raymond, et al. Expires January 07, 2014 [Page 14]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 Certainly JavaScript programmers and the W3C should not be impacted
 by such limitations by introducing SDP (or any universal format) into
 the mix when it adds zero value and fails in its primary objectives,
 namely: interoperability with existing SIP vendors & networks.

 This further illustrates why SDP baked into the browser binary is not
 beneficial for SIP vendors either. They will be forced to upgrade
 their SIP infrastructure to support SDP packets from browsers with
 these kinds of extensions or be forced to utilize a JavaScript SDP
 re-write of SDP approach to "fix" these incompatibilities.

 With an object approach, newer signaling protocols could describe
 multiple media streams with ease and SIP providers could ensure they
 only generate compatible SDP with their networks and agree on their
 best practices and launch new features that incorporate approaches
 like as PlanA, PlanB or NoPlan in a manner they deem fit rather then
 when the browser vendors decide to upgrade the SDP arbitrarily.

2.12. SIP Forking Issue

 The current SDP based API model does not allow for SIP parallel
 forking even though the RTC engine can allow for demuxing a media
 stream. The current model does not allow for one offer to be
 transmitted but accepts multiple answers, which is legal in SIP. A
 complex UPDATE process is described on how to work around the problem
 instead of fixing the original problem, i.e. the state machine being
 required.

 A WebRTC JavaScript object model is designed to easily allow forking
 but does not care if an upper shim supports SDP / SIP style forking
 in the negotiation or not, so long as the basic rules of the RTC
 media engine is respected.

3. Alternatives to Fixing these Issues Now

3.1. Waiting for WebRTC 2.0

 If we don't get WebRTC 1.0 correct, fixing the API in WebRTC 2.0 may
 become even more difficult.

 At this stage, prototypes are underway but to our knowledge there are
 no major commercial services deployed by more that one major vendor
 using the current WebRTC API. Yet, the argument to even consider an
 alternative is that 'it's too late'. Imagine trying to argue fixing
 it after major networks are reliant upon specific browser
 implementation. Having a good but simple architecture from the start
 could alleviate a lot of pressure to fix a broken 1.0 in a 2.0
 release before APIs become entrenched.

Raymond, et al. Expires January 07, 2014 [Page 15]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

3.1.1. Cost now to fix versus fixing later

 The cost of fixing the API issues today may pale in comparison to the
 cost of compatibility problems spread across entire sets of
 industries where constant fixes and work around may be required.

3.1.2. If starting over, would even SIP people want SDP as a surface
 API?

 Even SIP providers and vendors have started to realize that baking
 SDP into the browser is not necessarily in their best interests, but
 they do have an interest in a simple API to use since they aren't
 specialized JavaScript developers but SIP integrators.

 If an alternative approach provides SIP providers a simple JavaScript
 API shim they desire and achieves greater interoperability because of
 predictable, controllable and tailored SDP for their network, would
 they not prefer such a model over the current "baked in the browser"
 approach?

 If the current WebRTC specification was ever rebooted, the current
 mandated SDP based API would undoubtedly be scrapped in favor of a
 better approach without its inherent design and use case flaws with
 negative long term compatibility consequences.

3.1.3. Incremental Approach may make Compatibility Worse

 One argument put forward, to keep the current SDP model, proposes the
 current WebRTC SDP-based API must be completed soon and an
 incremental improvement approach can be used to gradually move away
 from these obvious problems.

 The trouble with an incremental approach is that it may increase
 incompatibility further. Not all browser vendors will match the
 incremental improvements in unison nor will all customers upgrade
 simultaneously. This puts the onus on JavaScript developers to
 support multiple versions of the WebRTC API and increase the number
 of APIs they must learn and maintain. The JavaScript developers must
 still perform all the workarounds required for the current API even
 if they support the increments. This limits their willingness to use
 any additional APIs until all browsers universally support the
 incremental improvements. This will likely slow innovation and
 adoption of future improvements.

 This will likely create a situation where browser vendors cannot
 easily achieve compliance because they too must support the existing
 API and incremental improvements along the way, or break those
 reliant upon the current methods.

Raymond, et al. Expires January 07, 2014 [Page 16]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 Having a good solid simple foundation is key to ensuring basic
 compatibility while allowing for innovation to occur for those
 developers who are willing to give new APIs a trial without needing
 to support multiple sets of equivalent but incompatible APIs
 simultaneously.

3.2. Session Description Format Construction API

 An alternative JavaScript model has in the past been floated around,
 other than the model advocated in this draft. That model creates a
 JavaScript session description format construction API in the
 browser. Such an API would use JavaScript objects to construct the
 session description format rather than allowing direct control of how
 media should be plumbed together from JavaScript.

 While using SDP as the chosen format for WebRTC highlights the issues
 described in this draft particularly well, using an alternative
 format like JSON instead of SDP does not remove many of the issues
 presented in this draft. The issues expressed are not solely caused
 by the lack of expressiveness of the SDP format but the nature of
 creating a universal all-encompassing format to describe all
 transport, media, constraints, and negotiations with an attached
 inflexible state machine is the nature of the issue. This format
 must do everything and encompass all concepts and becomes the
 effective mandate for signaling even if not explicitly required to
 perform signaling.

 A few years ago there was an attempt to create a new "SDP 2.0" format
 with a draft named Session Description and Capability Negotiation
 [I-D.ietf-mmusic-sdpng]. This effort to create the "ultimate" SDP
 format in XML was ultimately abandoned, in no small part because of
 the difficulties in coming up with a single solution that works for
 all scenarios.

 Given the difficulty in creating a universal all-encompassing format
 that works for all scenarios, the idea that creating a JavaScript
 based API that constructs a similar flexible, but well defined
 universal session description format using JavaScript objects is
 highly suspect to fail equally. The reality is that such an effort
 is complex.

 Even if successful, this format is not necessarily the format that
 will be sent on-the-wire, especially for existing alternative
 signaling protocols. As such, the format will still need to be
 transformed into alternative formats by JavaScript (or by a gateway).
 If the format must be parsed or interpreted by an intermediate then
 the format becomes an interaction point to the browser no matter how
 clever the JavaScript session description construction API

Raymond, et al. Expires January 07, 2014 [Page 17]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 implementation. Whatever format is selected, each browser or
 alternative protocol format will have to decide how to convert and
 interpret the output and generate new compatible inputs and deal with
 the variations that will undoubtedly arrive from browser to browser
 and from version to version.

 Even if JavaScript APIs are made available to simplify the
 construction or interpretation of a defined format, this format would
 still become a do-everything serialization access point for the
 browser and the defined exchange point for the local and remote
 browser. Therefore the format itself must be described in meticulous
 detail.

 The standardization requirements for such an approach would increase
 substantially over the WebRTC JavaScript object model advocated by
 this draft since not only would such a JavaScript format construction
 API have to be standardized (as any JavaScript Model would) but the
 formatting rules and state machine it relies upon needs to become
 standardized in detail as well.

 Every combination of this all-encompassing format would need to be
 outlined, rather than minimal definition of fixed properties needed
 on a scoped objects as used in the WebRTC JavaScript Object Model.
 Any slight variations would likely cause JavaScript developers or
 other browsers to break their implementations. Obtaining 100%
 stability in such an output equally across all browsers, on all
 platforms with all versions is highly doubtful.

 While a JavaScript format construction API is merely hypothetical at
 the time of writing this draft, any proposal will need to be vetted
 to see if it addresses all the concerns and issues brought up in this
 draft.

 This hypothetical JavaScript session description construction API
 still puts the emphasis in driving the developer towards building up
 a media signaling exchange format rather than in the logic of how the
 media should be controlled and pipelined.

 The WebRTC JavaScript object model is being proposed as the
 alternative. In a follow-up to this draft the model will describe
 how the JavaScript developer gains control over the stream's
 pipelining for the browser's media/RTC engine and thus free the
 JavaScript developer to express signaling and state machines using
 whatever mechanism desired. A simplified shim implemented entirely
 in JavaScript will allow easier interpretation to any format desired
 by the JavaScript developer in a way that can be updated
 independently of a browser's binary release. Should any changes be
 needed in signaling, a JavaScript shim generating this custom format

Raymond, et al. Expires January 07, 2014 [Page 18]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 is strictly under the control of the service provider and not the
 browser.

4. Example Difficult Usage Cases with Current Model

4.1. On / off hold example usage case

 This is a typical scenario widely adopted SIP technique of an SDP
 attribute to place a stream on / off hold. This is the accepted
 methodology and performing alternative approaches would deviate from
 the expected practices for use with SIP and its manipulation of SDP.
 Although not officially documented as supported, it is effectively
 supported in WebRTC implementations. This is a typical use case need
 by media application:

 1. Browser A establishes a connection with Browser B

 2. Browser A and browser B are streaming media

 3. JavaScript developer wants Browser A to put "on hold"

 These are the steps that must be performed by a JavaScript developer:

 1. createOffer to obtain the SDP from Browser A

 2. Parse the SDP

 3. Add "a=sendonly" or "a=inactive" to all media

 4. Regenerate the SDP, feed back to browser

 5. Send the SDP to Browser B

 6. Receive the answer from Browser B (which should respond with
 a=recvonly if it still wishes media)

 7. Parse the received SDP and modify with "a=recvonly" if it did not
 respond correctly (to ensure the local side hold back its media)

 8. Pass the modified SDP answer back into Browser A

 This also implies that:

 1. All future SDP events received from Browser B must be mangled to
 ensure the "sendonly/recvonly/inactive" attribute is maintained
 while on hold

Raymond, et al. Expires January 07, 2014 [Page 19]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 2. All future createOffer/createAnswer calls from Browser A must be
 modified to ensure the "sendonly" property is maintained

 3. We need to handle alternative formats to describe hold, e.g.
 "c=0.0.0.0" from Browser B which may not utilize the latest SDP
 specifications depending on the remote device / platform

 Ironically, hold is a very SIP and telephony specific concept. The
 better approach would be to allow the streams to be pause/unpaused at
 will as that does not require interaction with the SDP, and allow the
 higher layers to signal the desire to pause the session to the remote
 peer in whatever manner desired.

 This is a very basic use case that is extremely complex for a
 JavaScript developer, but it is the only way to perform this
 particular action which is effectively supported by the browsers,
 except only via the "SDP surface API". Even if this particular use
 case ends up being an exposed JavaScript method to manipulate the SDP
 by the browser, there are countless other scenarios where tweaking a
 field to modify the behavior in the format will only be only
 available via SDP manipulation.

4.2. One-Sided Constraints Negotiation use Case Scenario

 As WebRTC is a web API and not a SIP API, the API must be capable of
 allowing for alternative signaling methods without enforcing it's own
 signaling aspects (other than basic principles like ensure ICE
 agreement has been achieved for security reasons).

 Consider the following scenario:

 1. Browser A and Browser B establish a connection

 2. Browser A and Browser B use one-sided constraints negotiation
 where each party independently decides what "it expects to
 receive"

 3. Browser A decides that it wishes to alter the properties of the
 video it expects to receive

Raymond, et al. Expires January 07, 2014 [Page 20]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 With this model, browser A must be capable of independently modifying
 its expectations without waiting for an answer from the remote side
 (as that's illegal by the nature of the offer / answer signaling),
 unless the rules are relaxed and special exceptions are made. For
 the model to work, browser A's receive constraints must be applied to
 the send constraints of the remote peer. This model does not require
 an SDP offer / answer exchange since the sending peer can monitor the
 expectations of the receiving peer and set its send constraints as
 appropriate.

 To achieve this a for one-sided negotiation:

 1. Browser A's JavaScript must respond to every SDP offer with an
 answer locally generated from JavaScript without a round trip,
 extracting out last known expectations from the remote SDP last
 received as part of the answer

 2. The JavaScript must update the constraint signaling for the
 remote party

 3. Browser B's JavaScript sees the constraints have changed from
 Browser A thus it initiates a fake offer from the remote party
 (generating the intentions of the constraint and generating an
 SDP format)

 4. Browser B's JavaScript must examine the answer if any constraints
 have changed, and if so, it may trigger another reverse situation
 where step 1 is repeated, except with Browser A and B's role
 reversed.

 Is this really doable? Maybe, with a great deal of difficulty and
 SDP mangling but it is unquestionably a hack and a violation of offer
 / answer (and relaxed rules create exceptions and exceptions require
 additional logic to handle). The offer / answer rules are violated
 because no round trip was performed at the time when the constraints
 were changed.

 This is also fragile because if Browser B failed to accept the fake
 offer there is no way to enforce the constraint nor can the
 JavaScript rollback the expected constraint. Likewise if the state
 machine in Browser A expected an offer to be generated before a new
 offer would be accepted, the conflict resolution process would be
 extremely difficult and messy.

 This offer / answer state machine is not even required to fulfill the
 mandate of the RTCWEB Working Group charter but it is currently
 mandated because it supposedly makes producing "SIP interoperability"
 easier (which is highly suspect at best).

Raymond, et al. Expires January 07, 2014 [Page 21]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 A JavaScript shim approach on a WebRTC JavaScript object model and
 without offer / answer could achieve the same (or better) "SIP
 interoperability" without breaking other stateless negotiation
 models, such as one-sided negotiation.

4.3. Meet-me Negotiation Use Case Scenario

 1. WebRTC client A generates an offer and sends to a server

 2. WebRTC client B generates an offer and sends to a server

 3. WebRTC client C generates an offer and sends to a server

 4. The server returns all the exchanges to each of these clients
 simultaneously

 5. WebRTC client A, B and C interconnect

 Technically, there is no need for independent SDP offer / answer
 negotiation amongst all these peers to achieve a mesh scenario for
 this use case. Each client has enough information about the other
 clients to establish a peer connection. The current WebRTC SDP API
 imposes independent round trip negotiations that are not technically
 necessary. If WebRTC client D was added later, the original
 connection can be forked and re-use the same DTLS fingerprints to
 negotiate new encryptions keys for media or data. Fingerprint or
 identity signature reuse should not introduce any additional security
 concerns since identities will be verified and keys negotiated for
 each peer-to-peer connection.

 A JavaScript object model approach would allow for this kind of
 scenario without independent round trip negotiations for each WebRTC
 client in the mesh.

4.4. Browser to Browser Compatibility Extension Compatibility Issue
 Scenario

 Consider the following scenario:

 1. Browser A has implemented an extension to SDP (which is allowed)

 2. Browser B has no knowledge of such an extension

 3. The JavaScript engine running on Browser A has no knowledge of
 the extension

 4. The JavaScript engine packages up the SDP from Browser A and
 sends it to Browser B

Raymond, et al. Expires January 07, 2014 [Page 22]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 Under this scenario, what should browser B do? To reject the offer
 means communication cannot occur. To accept the offer has ambiguous
 meaning because the answer might have misunderstood the extension's
 intention and does not allow for the appropriate behavior.

 The exact rules of what is allowed in SDP and what is not and how
 extensions are treated must be defined clearly and non ambiguously.
 Even though current SDP offer / answer API can deal with some
 extensions, like new codecs being introduced, it is ambiguous on how
 to deal with more major extensions such as new SDP profiles,
 transports, or encryption methods.

 Assuming that a lack of response to an extension is non-agreement to
 use the extension is not acceptable. For example, if the extension
 was security related dictating some security precondition to opening
 a stream, the offer must be rejected as the precondition cannot be
 met. Ignoring the extension would mean the offer was accepted where
 it cannot be accepted. Another example would be introduction of new
 SDP profile, like AVPF2. Offer/answer negotiation simply fails when
 it encounters an unknown profile even if it is backwards compatible,
 like for instance, most of the calls to current SIP devices will fail
 if AVPF is used instead of AVP. A better approach is to define the
 rules for how extensions can be made, whereas SDP has no such rules.

 Currently, in SIP networks, such extensions are agreed upon in
 advanced and extensively tested before they are introduced. SBCs
 (Session Border Controllers) are often used to make devices with
 different feature sets work with each other. By allowing JavaScript
 control over the format generated on the wire, feature roll out is
 under strict control of the provider, and not whenever a browser
 vendor decides to produce an update.

4.5. Building Interoperability between WebRTC and a SIP Service
 Scenario

 Consider the following scenario:

 1. Developer takes SDP produced by browser and send to SIP gateway
 (which is supposed to be SIP "compatible")

 2. Users happily use this service

 3. Browser Vendor A updates the browser SDP generator and a slight
 variation in SDP changes

 4. Users are now broken

 5. SIP gateway must be updated to handle new SDP (and old SDP)

Raymond, et al. Expires January 07, 2014 [Page 23]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 6. Browser Vendor B updates their browser SDP generator (with a
 different SDP variation)

 7. Users are now broken again

 8. SIP gateway must be updated to handle another variation of SDP
 (and maintain the old variations)

 9. Repeat to step 3, but add Browser Vendor C, D and multiple
 platforms

 This is not an unrealistic scenario by any stretch of the
 imagination. This currently happens in the SIP world, but at least
 in that world new devices are tested to ensure compatibility before
 roll outs occur on the network so issues can be addressed before the
 user's experience is broken. Since the SIP provider and gateway
 vendor do not have control over the update cycle of the browsers,
 their users are much more prone to breakage by taking the SDP from
 the browser and sending to their network.

 Whereas this is what happens with a JavaScript Object API model with
 SDP shim written in JavaScript-only:

 1. Developer uses shim to generate SDP by browser and sends to SIP
 gateway (with SDP that is compatible)

 2. Users happily use this service

 3. Browser Vendor A updates the browser with a new RTC feature.

 4. Repeat to step 2

 The reason why the browser update does not affect the gateway is
 because the SDP is generated entirely in JavaScript and thus updates
 to the browser do not change the SDP generation logic. The SDP is
 entirely in control of SIP network provider. Any bugs with SDP
 compatibility can be addressed by the SIP provider without changes in
 the browser's binary. Bugs, updates and improvements are completely
 within the boundary and control of the SIP network provider.

4.6. Bit-rate Change Scenario

 Consider the follow scenario:

 1. User is connected to a conference server

 2. While user is listening, the user transmits a low bit-rate

Raymond, et al. Expires January 07, 2014 [Page 24]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 3. The users starts to communicate and the bit-rate is adjusted to
 maximum quality

 Using the current WebRTC API, this would require an offer / answer
 round trip to perform the change and thus the quality would be
 updated until the answer was acknowledged, although proposals have
 been made to alter the rules for offer / answer in this case and
 allow for an exception. This round trip is unnecessary technically
 since the bit-rate can be dynamically adjusted without remote
 acknowledgment. Yet, the current offer / answer model imposes a
 round trip (unless yet another exception to the SDP rules are
 adopted).

4.7. Video Codec Option Change Scenario

 Consider the follow scenario:

 1. JavaScript wishes to change a video codec option

 Using the current WebRTC API, this would require parsing the entire
 SDP, isolating the video codecs for a particular video media line,
 figuring the mapping and then reconstructing the original SDP with
 the newly incorporated changes. Accessors have been suggested for
 these common use cases but do not exist yet. If such accessors are
 created then a more involved API cannot be avoided out of necessity.
 One of the main justifications given by SDP proponents for only
 having an API that creates and accepts SDP is due to its supposed
 simplicity, as opposed to providing a more involved API.

4.8. Video Upgrade Scenario

 1. Alice and Bob are having an audio conversation

 2. Alice presses the video button on her application and offers Bob
 video

 3. Bob does not wish to see Alice's video, so the application
 rejects the media (e.g. using "a=inactive" or "m=video 0")

 4. Alice's web application successfully parses and interprets Bob's
 rejection

 5. As Alice's video window of herself is independent of the SDP
 negotiation, Alice's HTML5 application successfully renders
 Alice's video locally

 The current WebRTC implementation offers no event to indicate the
 rejection, thus Alice is given no feedback of the rejection. She

Raymond, et al. Expires January 07, 2014 [Page 25]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 incorrectly assumes she's in a video conversation. In order to solve
 this scenario, custom signaling must be added to indicate of Bob's
 rejection of Alice's video. Yet this is duplication of signaling as
 the video is already rejected in the SDP. This leaves the JavaScript
 developer with a choice: either parse the SDP, understand the SDP and
 derive meaning, or duplicate the SDP efforts by introducing custom
 signaling for a common scenario when upgrading from audio to video
 and providing appropriate user feedback.

5. Proposal: WebRTC JavaScript Object Model

5.1. Overview

 The browser can expose simple object methods, properties and events
 representing the various RTC components at an abstracted level and
 provide a solid API for controlling how the media should be
 pipelined. The properties needed to be exchanged is separated into
 the appropriate object rather than meshed into an all-encompassing
 format.

 A JavaScript-only shim can be layered on top of an object model to
 provide easy SDP offer / answer capability for those who want a
 similar "simple" API to the current WebRTC API for use with SIP. A
 developer can chose to use this shim or not if they do not need SDP.
 Likewise, the object model could be used to produce alternative
 formats to SDP if the same do-everything format is needed but in an
 alternative on-the-wire session description format.

 The object model described in the solution is presented in a related
 draft. This solution will allow for the RTCWEB Working Group to
 complete its chartered mandate without starting from scratch. If
 adopted, all of the drafts proposed to solve issues in expressing SDP
 for WebRTC can be moved to more appropriate working groups. For
 example, SDP for SIP issues can be moved to the appropriate SIP
 working groups and multi-party SDP to the MMUSIC (e.g. drafts like
 PlanA or PlanB).

5.2. Benefits

5.2.1. Greater compatibility

 By having a WebRTC JavaScript object model, the exact inputs,
 outputs, properties and events can be well defined on individual
 objects and each object will be designed to be a specific contract
 between browser vendors and JavaScript developers.

5.2.2. Easier to extend

Raymond, et al. Expires January 07, 2014 [Page 26]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 New objects and methods can be added without breaking existing
 compatibility. Compliance can be verified with unit tests able to
 test each and every behavior across all browsers' versions on every
 platform. JavaScript developers can expect their version of the API
 object contract to remain fixed to expected behaviors and not break
 (unless through well planned deprecation).

 Any extensions added to a JavaScript object model does not change the
 behavior expectation from JavaScript developers when using the
 current version of the API regardless of any extensions, unless
 explicitly deprecated. This is unlike SDP where extensions could be
 silently added into the SDP produced by the browsers at will, even in
 minor browser version changes, where any component that consumes the
 SDP may be unaware what those additional feature behaviors imply or
 require as a result.

5.2.3. Faster Reaction Time To Issues

 Signaling related bugs produced by the JavaScript shims can easily be
 fixed and updated at any time regardless of the browser's release
 cycle. If a SIP provider discovers their SIP is not compatible
 within their JavaScript shim, the SIP provider can update the shim
 code to their own needs dynamically without lobbying the browser
 vendor and waiting for the browser to be patched and updated.

5.2.4. Decreased surface API

 With a JavaScript object model, the features are well defined so the
 surface API is fixed to the agreed contract. Once agreed, a browser
 vendor only has to ensure their compatibility with well defined
 limited scope unit tests, and need not worry about some free-form
 format that may introduce untold compatibility issues should another
 vendor issue an update. This is also true of any non-browsers that
 may wish to implement and be compliant to the WebRTC API for
 JavaScript and provide their own JavaScript and WebRTC engines.

5.2.5. Greater compatibility for SIP

 While SIP is not the main RTCWEB Working Group charter responsibility
 for WebRTC, SIP compatibility is highly desirable. By exclusively
 generating SDP from a JavaScript shim, the SDP produced will be
 identical across all platforms and all devices with every browser
 version and entirely under the control of the SIP provider. This
 increases compatibility for SIP providers. The SDP produced from the
 shim can be custom tailored to a SIP network without affecting any
 other SIP vendor or harming compatibility with other utilizing
 WebRTC.

Raymond, et al. Expires January 07, 2014 [Page 27]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

5.2.6. Alternative formats

 With a JavaScript shim approach on top of an object model, the
 information going over the wire can be transformed from the
 JavaScript object properties to alternative formats, including JSON,
 XML or SIP (or anything custom). As the JavaScript shim to use is
 under control of the service provider and identical regardless of the
 platform, the output from the JavaScript format generation is
 consistent and controllable, thus ensuring maximum compatibility
 within a network.

 The party receiving this format can be sure the format is to an
 exacting specification of their choosing rather than relying on
 whatever format is produced by whatever browser vendor.

5.3. Design Goals and Considerations

5.3.1. Objects Model Kept Simple

 The JavaScript developer should not need to understand the mechanics
 of RTC other than understanding how to plumb the objects together.
 Those who need extended properties or events for finer control can
 obtain them with simple method access to an object, but those
 extended attributes should not be required for simple use cases.

5.3.2. Simple to Gather Negotiation Information

 The objects model should allow a simple method for collecting
 information that will be needed for various alternative negotiation
 models, highly focused to the object. One of the targets for
 negotiation must be SDP and SIP.

5.3.3. Offer / Answer

 The proposed JavaScript object model should not require the offer /
 answer state machine but must not preclude this state machine being
 built in a layer above. The offer / answer state machine must be
 possible to implement as a JavaScript shim without any additional
 built-in browser services needing to be implemented.

5.3.4. Extensions

 Extending the object model for the expected common extension use
 cases without breaking the JavaScript API should be possible. Such
 possible extension use cases should include items like local mixing
 and data synchronization, or extended properties, events or features.

Raymond, et al. Expires January 07, 2014 [Page 28]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 As any design, there may be limitations but the design should hold up
 to various realistic scenarios that are likely to happen in the near
 future.

5.3.5. Well Defined Behaviors

 An API must describe specific API behavior sets to the browser
 vendors so they have the appropriate guidelines for implementation,
 including the mapping to on-the-wire to RTC protocols. The API
 presented in the related draft may be the input to a W3C efforts to
 define specific and exact expected behavior sets for an object based
 JavaScript API for an official WebRTC 1.0 release.

5.3.6. Data Channel

 The proposed WebRTC JavaScript Object model will provide a definition
 for basic JavaScript usage of the data channel.

5.3.7. Satisfy the expectations of the RTCWEB charter

 The object model must adhere to the expectations of the RTCWEB
 charter either directly, via extensions that can be defined by the
 working group on top of the object model or possibly via a JavaScript
 shim written to utilize the functionality of the object model but it
 must not preclude the RTCWEB charter from fulfilling its previously
 stated goals.

5.3.8. SIP/SDP and current WebRTC API shim compatibility statement

 The goal of the object model is to allow for a JavaScript shim that
 provides a simple mechanism for parsing and generating SDP for basic
 compatibility with SIP networks (capable of supporting the WebRTC
 wire protocols).

 The goal of this object based model is not to provide working
 JavaScript shim on top that is a 1-for-1 matching of the current
 WebRTC API as a shim, including all behaviors, features, bugs and
 expectations since the definition of the current approach is not
 defined enough to be able to produce that level of compatibility.
 This would be an impossible goal as a result, and would add little
 value.

 Extensions are beyond the scope of the JavaScript shim, but it is
 possible for others to fork and modify the shim to their own needs
 specific to their own SIP/SDP network infrastructure.

Raymond, et al. Expires January 07, 2014 [Page 29]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 Compatibility with the SDP used in all SIP networks is not a stated
 goal for any JavaScript shim since not even SIP providers can agree
 on a common agreed definitive standard set of RFCs and drafts.

5.3.9. Greater Separation of RTCWEB Working Group and Other Working
 Groups

 A JavasScript object model would remove much of the need for cross
 IETF working group coordination, which has become common place with
 the current movement because of utilizing SDP and its close ties to
 SIP. By limiting the RTCWEB technologies used to only those required
 for Real-Time Communication from the browser (e.g. RTP, ICE/STUN/
 TURN, DTLS), the RTCWEB Working Group is freed from tight couplings
 with other IETF working groups, each having their own charters,
 schedules, agendas and interests and thus ensures more rapid progress
 between RTCWEB Working Group the W3C and developers who are to use
 this technology.

6. Security Considerations

 While RTCWEB has it's own security considerations for protocols, a
 JavaScript object model has no additional requirements other than
 those already established for use within RTCWEB, e.g. ICE
 connectivity permission check or DTLS fingerprint checks.

 JavaScript as a browser language itself has security consideration
 but nothing inherent to using a JavaScript object model versus a
 JavaScript SDP API model, as any proposed implementations must have a
 JavaScript API. The specifics of any API must list their own
 specific security considerations to their defined model and API,
 should any exist.

 Any specific issues for the proposed JavaScript object model will be
 outlined in the separated draft WebRTC JavaScript object model draft
 as needed and warranted.

7. References

7.1. Normative References

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4566

Raymond, et al. Expires January 07, 2014 [Page 30]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

7.2. Informative References

 [I-D.ietf-mmusic-sdpng]
 Kutscher, D., Ott, J., and C. Bormann, "Session
 Description and Capability Negotiation", draft-ietf-

mmusic-sdpng-08 (work in progress), February 2005.

 [I-D.ivov-rtcweb-noplan]
 Ivov, E., Marocco, E., and P. Thatcher, "No Plan:
 Economical Use of the Offer/Answer Model in WebRTC
 Sessions with Multiple Media Sources", draft-ivov-rtcweb-

noplan-01 (work in progress), June 2013.

 [I-D.roach-rtcweb-plan-a]
 Roach, A. and M. Thomson, "Using SDP with Large Numbers of
 Media Flows", draft-roach-rtcweb-plan-a-00 (work in
 progress), May 2013.

 [I-D.uberti-rtcweb-plan]
 Uberti, J., "Plan B: a proposal for signaling multiple
 media sources in WebRTC.", draft-uberti-rtcweb-plan-00
 (work in progress), May 2013.

 [MediaCapture]
 Burnett, D., "Media Capture and Streams", May 2013, <http:
 //www.w3.org/TR/2013/WD-mediacapture-streams-20130516/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdpng-08
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdpng-08
https://datatracker.ietf.org/doc/html/draft-ivov-rtcweb-noplan-01
https://datatracker.ietf.org/doc/html/draft-ivov-rtcweb-noplan-01
https://datatracker.ietf.org/doc/html/draft-roach-rtcweb-plan-a-00
https://datatracker.ietf.org/doc/html/draft-uberti-rtcweb-plan-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5389

Raymond, et al. Expires January 07, 2014 [Page 31]

Internet-Draft WebRTC JavaScript Object API Rationale July 2013

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [WebRTC10]
 Bergkvist, A., "WebRTC 1.0 Real-time Communication Between
 Browsers", August 2012,
 <http://www.w3.org/TR/2012/WD-webrtc-20120821/>.

Authors' Addresses

 Robin Raymond
 Hookflash
 436, 3553 31 St. NW
 Calgary, Alberta T2L 2K7

 Email: robin@hookflash.com

 Erik Lagerway
 Hookflash
 436, 3553 31 St. NW
 Calgary, Alberta T2L 2K7
 Canada

 Email: erik@hookflash.com

 Inaki Baz Castillo
 Versatica
 Barakaldo
 Basque Country
 Spain

 Email: ibc@aliax.net

 Roman Shpount
 TurboBridge
 4905 Del Ray Ave Suite 300
 Bethesda, MD 20814
 USA

 Email: rshpount@turbobridge.com

https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc6347
http://www.w3.org/TR/2012/WD-webrtc-20120821/

Raymond, et al. Expires January 07, 2014 [Page 32]

