
Internet Engineering Taskforce N. Wilson
Internet-Draft RealVNC Ltd.
Intended status: Informational August 13, 2013
Expires: February 14, 2014

Use of the WebSocket Protocol as a Transport for the Remote Framebuffer
 Protocol

draft-realvnc-websocket-00

Abstract

 The Remote Framebuffer protocol (RFB) enables clients to connect to
 and control remote graphical resources. This document describes a
 transport for RFB using the WebSocket protocol, and defines a
 corresponding WebSocket subprotocol, enabling an RFB server to offer
 resources to clients with WebSocket connectivity, such as web-
 browsers.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 14, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Wilson Expires February 14, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/draft-realvnc-websocket-00
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft The RFB WebSocket Subprotocol August 2013

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Background . 2

 1.2. Overview of the WebSocket Protocol as a stream transport 3
2. Definitions . 4
3. Interaction with the WebSocket Protocol 4
3.1. The "Sec-WebSocket-Protocol" header 4
3.2. Close Frames . 5
3.3. Data Frames . 5

4. Versioning Considerations 6
5. IANA Considerations . 6
5.1. Registration of the RFB WebSocket Subprotocol 6

6. Security Considerations 7
6.1. Origin checking . 7
6.2. Encryption . 8
6.3. Creating a Safe JavaScript Environment 8

7. Acknowledgements . 8
8. References . 8
8.1. Normative References 9
8.2. Informative References 9

 Author's Address . 9

1. Introduction

1.1. Background

 This section is non-normative.

 The WebSocket Protocol [RFC6455] provides a reliable, full-duplex,
 message-oriented transport. The opening handshake is formatted as an
 HTTP request and response, enabling access to resources through
 intermediaries obeying HTTP semantics, such as proxies. This enables
 resources served over a WebSocket-based transport to be accessible to
 all web user-agents.

 In addition, although untrusted websites cannot be given a mechanism
 to make arbitrary TCP connections, web-browsers are able to offer web

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6455

Wilson Expires February 14, 2014 [Page 2]

Internet-Draft The RFB WebSocket Subprotocol August 2013

 resources such as JavaScript scripts the ability to make arbitrary
 connections using the WebSocket protocol. This is because the
 initial HTTP handshake, performed by the user agent rather than the
 untrusted web resource, conveys origin context, preventing a remote
 webpage from accessing servers on the local network unless the server
 is configured to allow such access.

 Therefore, offering RFB resources over a WebSocket-based transport
 opens access to a variety of devices unable to use the TCP transport
 described in The RFB Protocol [RFC6143].

 The purpose of defining a WebSocket subprotocol is firstly to give
 endpoints a clear way to indicate how the RFB stream is mapped to
 WebSocket frames, ensuring compatible transport of the stream by
 using an agreed mapping. Secondly, using a WebSocket subprotocol
 enables multiple services to run at once on a single server.
 Services which run over TCP/IP commonly use a port number allocated
 for each service to enable multiple services, but the behaviour of
 HTTP proxies makes it likely that WebSocket servers will commonly be
 run only on ports 80 and 443. The WebSocket subprotocol mechanism is
 analogous to the port number system of IP addressing, but a short
 string naturally associated with the service is to identify it,
 rather than a number.

1.2. Overview of the WebSocket Protocol as a stream transport

 This section is non-normative.

 The RFB Protocol [RFC6143], section 7 explains that the protocol may
 operate over any reliable stream- or message-oriented transport, but
 only describes the RFB as a stream of octets. This gives a clear
 mapping for the TCP/IP transport, but for message-oriented transport
 layers, the encapsulation of the RFB octet-stream must be specified.

 In this document, the WebSocket subprotocol for RFB is defined to
 place no importance on the message boundaries of the WebSocket layer.
 Instead, WebSocket messages are concatenated to form in each
 direction an octet-stream.

 This is firstly because some RFB messages may be large, such as those
 containing pixel data, and requiring these to be processed as a
 single message may be large burden for some clients. The WebSocket
 API [WSAPI] requires an implementation of the API to buffer the
 fragments of the WebSocket message until the entire message has been
 received. Although the RFB server and any WebSocket-aware proxy can
 fragment the message as it chooses, a client application such as a
 mobile web-browser may have to consume several megabytes of memory to
 satisfy the requirements of the WebSocket API.

https://datatracker.ietf.org/doc/html/rfc6143
https://datatracker.ietf.org/doc/html/rfc6143#section-7

Wilson Expires February 14, 2014 [Page 3]

Internet-Draft The RFB WebSocket Subprotocol August 2013

 Secondly, it is advantageous to RFB servers to be able to wrap the
 RFB stream in WebSocket messages flexibly. As well as being a
 convenience to implementors of RFB servers, it also enables WebSocket
 connectivity to be added to legacy software using a proxy. Without
 requiring knowledge the protocol, and generic proxy may be used which
 concatenates WebSocket messages received from the WebSocket client to
 send over TCP to the RFB server, and reads bytes from the RFB server
 and sends them to the client via WebSocket messages.

2. Definitions

 RFB client, server, endpoint: As defined in The RFB Protocol
[RFC6143], section 1. An RFB endpoint is an RFB client or server.

 WebSocket client, server, endpoint: As described in The WebSocket
 Protocol [RFC6455], section 1.2.

 RFB WebSocket subprotocol: The WebSocket subprotocol (described in
[RFC6455] section 1.9) which acts as a transport for the RFB

 Protocol, as described in this document.

 RFB WebSocket client, server, endpoint: An RFB client, server, or
 endpoint respectively which is also a WebSocket client, server, or
 endpoint and uses the RFB WebSocket subprotocol as the RFB
 transport.

3. Interaction with the WebSocket Protocol

 The WebSocket Protocol contains a number of features not present in
 TCP. These are discussed here in turn, and their interpretation by
 RFB entities conforming to the RFB WebSocket subprotocol.

3.1. The "Sec-WebSocket-Protocol" header

 The WebSocket Protocol [RFC6455] section 4, "Opening Handshake",
 describes the use of the "Sec-WebSocket-Protocol" header to indicate
 negotiation of a WebSocket subprotocol. The requirements of this
 section as described by the key words "MUST", "SHOULD", and so on,
 are not superseded by use of the RFB WebSocket subprotocol. A
 WebSocket client aware of the RFB WebSocket subprotocol may choose to
 request the subprotocol by including the token "rfb" in the "Sec-
 WebSocket-Protocol" header in its request. A WebSocket server aware
 of the RFB WebSocket subprotocol may choose to respond to such a
 request by including a "Sec-WebSocket-Protocol" header in its
 response containing the token "rfb".

 The interpretation of any data following the opening WebSocket
 handshake is determined by any subprotocols in effect. If the RFB

https://datatracker.ietf.org/doc/html/rfc6143#section-1
https://datatracker.ietf.org/doc/html/rfc6455#section-1.2
https://datatracker.ietf.org/doc/html/rfc6455#section-1.9
https://datatracker.ietf.org/doc/html/rfc6455#section-4

Wilson Expires February 14, 2014 [Page 4]

Internet-Draft The RFB WebSocket Subprotocol August 2013

 WebSocket subprotocol was not requested by the client or was not
 selected by the server, then this document does not place any
 interpretation on the subsequent data. In particular, if a client
 requests any subprotocol but the server not include it in its
 response, the client need not assume any particular meaning for the
 data that follows. This is because WebSocket servers are likely to
 ignore requsts for any unknown subprotocols and proceed. If the
 WebSocket client requires use of a particular subprotocol, it is its
 responsibility to close the connection if use of the subprotocol was
 not successfully negotiated.

 The RFB WebSocket subprotocol does not place any restrictions on use
 of the subprotocol alongside WebSocket extensions. (Note that only
 one subprotocol may be used by a WebSocket connection.) The effect
 of any such extensions is outside the scope of this document.

3.2. Close Frames

 When the RFB WebSocket subprotocol is in use, the status code and
 reason of any WebSocket Close frames relate only to the WebSocket
 transport, not the RFB stream using the transport. The WebSocket
 connection will normally be closed by a status code 1000 ("Normal
 Closure") or 1001 ("Going Away"). Any status code or reason sent by
 the WebSocket client or server SHOULD NOT convey RFB-specific
 information. No status codes in the private use range 4000-4999 are
 defined by this subprotocol. No mapping is provided between
 WebSocket Close frame status codes and strings using RFB messages.

 Any RFB-specific close data MAY be conveyed using an appropriate RFB
 message. For example, in the case of an RFB authentication failure,
 the close condition may be conveyed using an RFB SecurityResult
 message as appropriate, after which the WebSocket connection may be
 closed using a Close frame status code indicating success. As long
 as there were no errors in the transport, the WebSocket Close frame
 does not use a status code indicating failure, even though the RFB
 connection failed to be established, because the RFB error was
 conveyed as application data over the WebSocket transport.

 The meaning of any status codes used in Close frames MUST refer to
 the state of the WebSocket protocol, for status codes defined in the
 WebSocket Protocol and any subsequent versions or other
 specifications registered by the IANA in the Close Code Number
 Registry. For example, the status code 1002 ("Protocol Error")
 describes errors in the WebSocket protocol and not an error in the
 RFB stream carried by the transport.

3.3. Data Frames

Wilson Expires February 14, 2014 [Page 5]

Internet-Draft The RFB WebSocket Subprotocol August 2013

 The RFB octet-stream is transported using Data frames with opcode 0x2
 (Binary). When the RFB WebSocket subprotocol is in use and no
 WebSocket extensions are in use, WebSocket clients MUST send RFB data
 using Binary messages.

 RFB WebSocket subprotocol does not specify any multiplexing of
 connections or interleaving of data with other streams. Where no
 WebSocket extensions are in use, RFB WebSocket clients MUST use
 Binary messages exclusively for RFB data, such that the octets from
 the ordered stream of Binary WebSocket messages when truncated
 conform with the description given in the RFB Protocol [RFC6143].

 The frame boundaries do not have to be aligned in any way with the
 RFB stream. RFB WebSocket endpoints, when receiving messages, MUST
 NOT vary their behaviour based on the framing of the RFB stream using
 WebSocket messages. It is suggested that RFB WebSocket endpoints
 avoid sending empty messages, and that endpoints impose a suitable
 limit on the size of the messages they send to avoid placing
 unnecessary load on clients.

 The interpration of Text messages (with opcode 0x1) is unspecified.
 RFB WebSocket endpoints SHOULD NOT send Text messages, but if a
 WebSocket extension is in use which uses these messages they may be
 sent. An RFB WebSocket client receiving such a message SHOULD fail
 the WebSocket connection (as defined in section 7.1.7 of [RFC6455])
 except where any mechanism has been used to negotiate a meaning for
 these messages. In general, WebSocket extensions may modify the
 interpretation of data, and as appropriate each the definition of
 each extension must specify how it interacts with application data
 using Binary messages in order to be compatible with the RFB
 WebSocket subprotocol, which is beyond the scope of this document.

4. Versioning Considerations

 The RFB WebSocket subprotocol is identified by the token "rfb". This
 token contains no version component, since the RFB protocol is
 already versioned in its initial handshake. The definition of this
 subprotocol makes no reference to the specific format of messages in
 RFB 3.8, so is applicable to subsequent versions of the RFB protocol.

5. IANA Considerations

 RFC Editor Note: Please set the RFC number assigned for this document
 in the sub-sections below and remove this note.

5.1. Registration of the RFB WebSocket Subprotocol

https://datatracker.ietf.org/doc/html/rfc6143
https://datatracker.ietf.org/doc/html/rfc6455#section-7.1.7

Wilson Expires February 14, 2014 [Page 6]

Internet-Draft The RFB WebSocket Subprotocol August 2013

 This specification describes a WebSocket subprotocol registered in
 the WebSocket Subprotocol Name Registry defined in [RFC6455], section

11.5.

 Subprotocol Identifier: "rfb"

 Subprotocol Common Name: RFB

 Subprotocol Definition: RFC??? (this document)

6. Security Considerations

6.1. Origin checking

 Using the WebSocket protocol as a transport presents fresh
 challenges, since the connections can be created by untrusted
 resources which originate outside the local subnetwork and have
 traversed any firewalls in place. This differs from TCP connections.
 For example, an RFB server accessible over TCP on the local
 subnetwork may be configured on the assumption that connections
 originate inside the trusted subnet, and this assumption may be
 enforced using a firewall. To make a connection, any client has to
 have already gained access to the subnet.

 This is not the case for a RFB server which accepts connections over
 the WebSocket protocol, which is specifically designed so that it is
 safe to allow untrusted resources to make WebSocket connections, on
 the assumption that WebSocket servers carefully enforce any
 applicable restrictions on the origin of content. In the TCP
 example, the RFB server does not need to enforce the restriction that
 connections originate inside the subnet, as this is implemented using
 the firewall. A web-browser running on a machine in the subnet may
 open up WebSocket connections though based on scripts loaded from any
 source at all on a webpage, originating outside the subnet. The web-
 browser is only able to allow the script to do this on the basis that
 the Origin header it sends conveys enough information for the
 WebSocket server to apply any policies and decide if the connection
 is to be accepted.

https://datatracker.ietf.org/doc/html/rfc6455

Wilson Expires February 14, 2014 [Page 7]

Internet-Draft The RFB WebSocket Subprotocol August 2013

 Therefore, any WebSocket server implementers must carefully consider
 the implications of opening up access to resources via the WebSocket
 Protocol. In the case of an RFB server which is accessible over TCP
 as well as the RFB WebSocket subprotocol, the TCP connection may be
 hidden behind a firewall or NAT or for any other reason may be not
 publicly accessible on the internet. In this case, the origin
 restrictions in place for the TCP connections should be enforced for
 the WebSocket server also, or else clearly documented in such a way
 that administrators of the software do not misunderstand the scope of
 who can connect in to the server.

 Unless all WebSocket software that runs in a LAN environment is
 implemented to enforce these restrictions, web-browsers vendors may
 not be able to justify continuing to permit untrusted web resources
 (JavaScript) to make WebSocket connections.

6.2. Encryption

 Where applicable, the Secure WebSocket Protocol (using the WebSocket
 Protocol over TLS [RFC5246]) may be used. However, it is not
 practicable in all circumstances to provision many dynamic RFB
 servers on a LAN with a certificate which browsers can verify, so
 implementors may choose to perform encryption at the application
 level using an encrypting RFB Security Type, and verify the peer
 using identities which can be verified by the RFB implementation
 rather than the browser.

6.3. Creating a Safe JavaScript Environment

 Many of the RFB clients using WebSockets are likely to be implemented
 in JavaScript and executed by web-browsers. In this case,
 implementors must be aware of the difficulties of executing
 JavaScript in a safe context. Banners and other resources loaded
 alongside the page may substitute functions into top-level objects
 and subvert the security of the connection or skim passwords. When
 implementing any application which prompts for a user's password or
 sends and receives data which may be sensitive, the application must
 be loaded from a safe context, such as a web page served over HTTPS,
 and which loads no untrusted external resources. Certain operations
 required for encryption, such as secure random number generation, may
 require browser support such as the Web Cryptography API [WCAPI].

7. Acknowledgements

 Thanks to Pierre Garnero of Visteon for feedback during drafting.

8. References

https://datatracker.ietf.org/doc/html/rfc5246

Wilson Expires February 14, 2014 [Page 8]

Internet-Draft The RFB WebSocket Subprotocol August 2013

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6143] Richardson, T. and J. Levine, "The Remote Framebuffer
 Protocol", RFC 6143, March 2011.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
6455, December 2011.

8.2. Informative References

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [WCAPI] Dahl, D., Ed. and R. Sleevi, Ed., "Web Cryptography API,
 W3C Working Draft", June 2013.

 [WSAPI] Hickson, I., Ed., "The WebSocket API", April 2013.

Author's Address

 Nicholas Wilson
 RealVNC Ltd.
 Betjeman House, 104 Hills Road
 Cambridge CB2 1LQ
 UK

 Phone: +44 1223 310411
 Email: ncw@realvnc.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6143
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc5246

Wilson Expires February 14, 2014 [Page 9]

