
 INTERNET-DRAFT Saveen Reddy,
draft-reddy-dasl-protocol- Microsoft
04.txt Dale Lowry, Novell

 Surendra Reddy, Oracle
 Rick Henderson,
 Netscape
 Jim Davis, Xerox
 Alan Babich, Filenet
 Expires May 18, 1999
 November 18, 1998

DAV Searching & Locating

 Status of this Memo

 This document is an Internet draft. Internet drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas and its working groups. Note that other groups may also
 distribute working information as Internet drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months and can be updated, replaced or obsoleted by other
 documents at any time. It is inappropriate to use Internet
 drafts as reference material or to cite them as other than as
 "work in progress".

 To view the entire list of current Internet-Drafts, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
 (Northern Europe), ftp.nis.garr.it (Southern Europe),
 munnari.oz.au (Pacific Rim), ftp.ietf.org (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited. Please send comments
 to the mailing list at <www-webdav-dasl@w3.org>, which may be
 joined by sending a message with subject "subscribe" to <www-
 webdav-dasl-request@w3.org>.

 Discussions of the list are archived at
 <URL:http://www.w3.org/pub/WWW/Archives/Public/www-webdav-dasl>.

 Abstract

 This document specifies a set of methods, headers, and content-
 types composing DASL, an application of the HTTP/1.1 protocol to
 efficiently search for DAV resources based upon a set of client-
 supplied criteria.

https://datatracker.ietf.org/doc/html/draft-reddy-dasl-protocol-04.txt
https://datatracker.ietf.org/doc/html/draft-reddy-dasl-protocol-04.txt

Reddy, et al [Page 1]

INTERNET-DRAFT DASL November 18, 1998

 Table of Contents

 DAV SEARCHING & LOCATING..................................1

 TABLE OF CONTENTS...2

1. INTRODUCTION..4
1.1. DASL 4
1.2. Relationship to DAV................................5
1.3. Terms 5
1.4. Notational Conventions.............................5
1.5. An Overview of DASL at Work........................5

2. THE SEARCH METHOD.....................................5
2.1. Overview...5
2.2. The Request..6
2.2.1. The Request-URI...................................6
2.2.2. The Request Body..................................6
2.3. The DAV:searchrequest XML Element..................6
2.4. The Successful 207 (Multistatus) Response..........6
2.4.1. Extending the PROPFIND Response...................7
2.4.2. Example: A Simple Request and Response............7
2.5. Unsuccessful Responses.............................7
2.5.1. Example: Result Set Truncation....................8
2.6. Invalid Scopes & Search Redirections...............9
2.6.1. Indicating an Invalid Scope.......................9
2.6.2. Example of an Invalid Scope.......................9
2.6.3. Redirections.....................................10
2.6.4. Example of a Search Redirection..................10
2.6.5. Syntax for DAV:scopeerror........................10
2.6.6. Syntax for DAV:redirectarbiter...................10

3. DISCOVERY OF SUPPORTED QUERY GRAMMARS................11
3.1. The OPTIONS Method................................11
3.2. The DASL Response Header..........................11
3.3. Example: Grammar Discovery........................11

4. QUERY SCHEMA DISCOVERY: QSD..........................12
4.1. The DAV:queryschema Property......................13
4.1.1. Example of query schema discovery................13

5. THE DAV:BASICSEARCH GRAMMAR..........................14
5.1. Introduction......................................14
5.2. The DAV:basicsearch DTD...........................14
5.2.1. Example Query....................................15
5.3. DAV:select..16
5.4. DAV:from..16
5.4.1. Relationship to the Request-URI..................16
5.4.2. Scope 17
5.5. DAV:where...17

Reddy, et al [Page 2]

INTERNET-DRAFT DASL November 18, 1998

5.5.1. Use of Three-Valued Logic in Queries.............17
5.5.2. Handling Optional operators......................18
5.5.3. Treatment of NULL Values.........................18
5.5.4. Example: Testing for Equality....................18
5.5.5. Example: Relative Comparisons....................18
5.6. DAV:orderby.......................................19
5.6.1. Comparing Natural Language Strings...............19
5.6.2. Example of Sorting...............................19
5.7. Boolean Operators: DAV:and, DAV:or, and DAV:not...19
5.8. DAV:eq..20
5.9. DAV:lt, DAV:lte, DAV:gt, DAV:gte..................20
5.10. DAV:literal.......................................20
5.11. DAV:isdefined.....................................20
5.12. DAV:like..20
5.12.1. Syntax for the Literal Pattern.................21
5.12.2. Example of DAV:like............................21
5.13. DAV:contains......................................21
5.13.1. Example...22
5.13.2. Example...22
5.14. The DAV:limit XML Element.........................22
5.15. The DAV:nresults XML Element......................22
5.16. The DAV:casesensitive XML attribute...............23
5.17. The DAV:score Property............................23
5.18. The DAV:iscollection Property.....................23
5.18.1. Exampe of DAV:iscollection.....................23
5.19. Query Schema for DAV:basicsearch..................24
5.19.1. DTD for DAV:basicsearch QSD....................24
5.19.2. DAV:propdesc Element...........................24
5.19.3. The DAV:datatype Property Description..........25
5.19.4. The DAV:searchable Property Description........25
5.19.5. The DAV:selectable Property Description........25
5.19.6. The DAV:sortable Property Description..........26
5.19.7. The DAV:casesensitive Property Description.....26
5.19.8. The DAV:operators XML Element..................26
5.19.9. Example of Query Schema for DAV:basicsearch....26

6. INTERNATIONALIZATION CONSIDERATIONS..................27

7. SECURITY CONSIDERATIONS..............................27

8. SCALABILITY..28

9. AUTHENTICATION.......................................28

10. IANA CONSIDERATIONS................................28

11. COPYRIGHT..28

12. INTELLECTUAL PROPERTY..............................28

Reddy, et al [Page 3]

INTERNET-DRAFT DASL November 18, 1998

13. REFERENCES...28

14. AUTHOR'S ADDRESSES.................................29

15. APPENDICES...29
Appendix A Three-Valued Logic in DAV:basicsearch........29

16. CHANGE HISTORY.....................................31
 Feb 14, 1998..31
 Feb 28, 1998..31
 Mar 9, 1998...31
 Mar 11, 1998..31
 April 8, 1998...31
 May 8, 1998...31
 June 17, 1998...31
 June 23, 1998...31
 Jul 20, 1998..32
 July 28, 1998...32
 July 28, 1998...32
 September 4, 1998.......................................32
 September 22, 1998......................................32
 October 9, 1998...32
 November 2, 1998..33
 November 18, 1998.......................................33

 1. INTRODUCTION

 1.1. DASL

 This document defines DAV Searching & Locating (DASL), an
 application of HTTP/1.1 forming a lightweight search protocol to
 transport queries and result sets and allows clients to make use
 of server-side search facilities. [DASLREQ] describes the
 motivation for DASL.

 DASL will minimize the complexity of clients so as to facilitate
 widespread deployment of applications capable of utilizing the
 DASL search mechanisms.

 DASL consists of:

 - the SEARCH method,

 - the DASL response header,

 - the DAV:searchrequest XML element,

 - the DAV:queryschema property,

 - the DAV:basicsearch XML element and query grammar, and

 - the DAV:basicsearchschema XML element.

Reddy, et al [Page 4]

INTERNET-DRAFT DASL November 18, 1998

 1.2. Relationship to DAV

 DASL relies on the resource and property model defined by
 [WebDAV]. DASL does not alter this model. Instead, DASL allows
 clients to access DAV-modeled resources through server-side
 search.

 1.3. Terms

 This draft uses the terms defined in [RFC2068], [WebDAV], and
 [DASLREQ].

 1.4. Notational Conventions

 The augmented BNF used by this document to describe protocol
 elements is exactly the same as the one described in Section 2.1
 of [RFC2068]. Because this augmented BNF uses the basic
 production rules provided in Section 2.2 of [RFC2068], those
 rules apply to this document as well.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 1.5. An Overview of DASL at Work

 One can express the basic usage of DASL in the following steps:

 - The client constructs a query using the DAV:basicsearch grammar.

 - The client invokes the SEARCH method on a resource that will
 perform the search (the search arbiter) and includes a text/xml
 request entity that contains the query.

 - The search arbiter performs the query.

 - The search arbiter sends the results of the query back to the
 client in the response. The server MUST send a text/xml entity
 that matches the [WebDAV] PROPFIND response.

 2. THE SEARCH METHOD

 2.1. Overview

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068#section-2.1
https://datatracker.ietf.org/doc/html/rfc2068#section-2.1
https://datatracker.ietf.org/doc/html/rfc2068#section-2.2
https://datatracker.ietf.org/doc/html/rfc2119

 The client invokes the SEARCH method to initiate a server-side
 search. The body of the request defines the query. The server
 MUST emit text/xml entity matching the [WebDAV] PROPFIND
 response.

 The SEARCH method plays the role of transport mechanism for the
 query and the result set. It does not define the semantics of
 the query. The type of the query defines the semantics.

Reddy, et al [Page 5]

INTERNET-DRAFT DASL November 18, 1998

 2.2. The Request

 The client invokes the SEARCH method on the resource named by the
 Request-URI.

 2.2.1. The Request-URI

 The Request-URI identifies the search arbiter.

 The SEARCH method per se defines no relationship between the
 arbiter and the scope of the search, rather the particular query
 grammar used in the query defines the relationship. For example,
 the FOO query grammar may force the request-URI to correspond
 exactly to the search scope.

 2.2.2. The Request Body

 The server MUST process a text/xml request body, and MAY process
 request bodies in other formats.

 If the client sends a text/xml body, it MUST include the
 DAV:searchrequest XML element. The DAV:searchrequest XML element
 identifies the query grammar, defines the criteria, the result
 record, and any other details needed to perform the search.

 2.3. The DAV:searchrequest XML Element

 <!ELEMENT searchrequest ANY >

 The DAV:searchrequest XML element contains a single XML element
 that defines the query. The name of the query element defines
 the type of the query. The value of that element defines the
 query itself.

 2.4. The Successful 207 (Multistatus) Response

 If the server returns 207 (Multistatus), then the search
 proceeded successfully and the response MUST match that of a
 PROPFIND.

 There MUST be one DAV:response for each resource that matched the
 search criteria. For each such response, the DAV:href element
 contains the URI of the resource, and the response MUST include a
 DAV:propstat element.

 In addition, the server MAY include DAV:response items in the
 reply where the DAV:href element contains a URI that is not a
 matching resource, e.g. that of a scope or the query arbiter.
 Each such response item MUST NOT contain a DAV:propstat element,
 and MUST contain a DAV:status. It SHOULD contain a
 DAV:responsedescription.

Reddy, et al [Page 6]

INTERNET-DRAFT DASL November 18, 1998

 2.4.1. Extending the PROPFIND Response

 A response MAY include more information than PROPFIND defines so
 long as the extra information does not invalidate the PROPFIND
 response. Query grammars SHOULD define how the response matches
 the PROPFIND response.

 2.4.2. Example: A Simple Request and Response

 This example demonstrates the request and response framework.
 The following XML document shows a simple (hypothetical) natural
 language query. The name of the query element is FOO:natural-
 language-query, thus the type of the query is FOO:natural-
 language-query. The actual query is "Find the locations of good
 Thai restaurants in Los Angeles". For this hypothetical query,
 the arbiter returns two properties for each selected resource.

 SEARCH / HTTP/1.1
 Host: ryu.com
 Content-Type: text/xml
 Connection: Close
 Content-Length: 243

 <?xml version="1.0"?>
 <D:searchrequest xmlns:D = "DAV:" xmlns:F = "FOO:">
 <F:natural-language-query>
 Find the locations of good Thai restaurants in Los Angeles
 </F:natural-language-query>
 </D:searchrequest>

 >> Response

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: 333

 <?xml version="1.0"?>
 <D:multistatus xmlns:D="DAV:" xmlns:F="FOO:" xmlns:R="

http://ryu.com/propschema">
 <D:response>
 <D:href>http://siamiam.com</D:href>
 <D:propstat>
 <D:prop>
 <R:location>259 W. Hollywood</R:location>
 <R:rating><R:stars>4</R:stars></R:rating>
 </D:prop>

http://ryu

 </D:propstat>
 </D:response>
 </D:multistatus>

 2.5. Unsuccessful Responses

 If an error occurred that prevented execution of the query, the
 server MUST indicate the failure with the appropriate status code

Reddy, et al [Page 7]

INTERNET-DRAFT DASL November 18, 1998

 and SHOULD include a DAV:multistatus element to point out errors
 associated with scopes.

 400 Bad Request. The query could not be executed. The request may
 be malformed (not valid XML for example). Additionally, this can
 be used for invalid scopes and search redirections.

 422 Unprocessable entity. The query could not be executed. If a
 text/xml request entity was provided, then it may have been valid
 (well-formed) but may have contained an unsupported or
 unimplemented query operator.

 507 (Insufficient Storage). The query produced more results
 than the server was willing to transmit. Partial results have
 been transmitted. The server MUST send a body that matches that
 for 207, except that there MAY exist resources that matched the
 search criteria for which no corresponding DAV:response exists in
 the reply.

 2.5.1. Example: Result Set Truncation

 A server MAY limit the number of resources in a reply, for
 example to limit the amount of resources expended in processing a
 query. If it does so, the reply MUST use status code 507. It
 SHOULD include the partial results.

 When a result set is truncated, there may be many more resources
 that satisfy the search criteria but that were not examined.

 If partial results are included and the client requested an
 ordered result set in the original request, then any partial
 results that are returned MUST be ordered as the client directed.

 Note that the partial results returned MAY be any subset of the
 result set that would have satisfied the original query.

 SEARCH / HTTP/1.1
 Host: gdr.com
 Content-Type: text/xml
 Connection: Close
 Content-Length: xxxxx

 <?xml version="1.0"?>
 <D:searchrequest xmlns:D="DAV:">
 <D:basicsearch>

 the query goes here
 </D:basicsearch>
 </D:searchrequest>

 >> Response

 HTTP/1.1 507 Insufficient Storage
 Content-Type: text/xml
 Content-Length: 738

Reddy, et al [Page 8]

INTERNET-DRAFT DASL November 18, 1998

 <?xml version="1.0"?>
 <D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>http://www.gdr.com/sounds/unbrokenchain.au</D:href>
 <D:propstat>
 <D:prop/>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
 <D:response>

 <D:href>http://tech.mit.edu/archive96/photos/Lesh1.jpg</D:href>
 <D:propstat>
 <D:prop/>
 <D:status>HTTP/1.1 200 OK</D:status>
 <D:/propstat>
 </D:response>
 <D:response>
 <D:href>http://gdr.com</href>
 <D:status>HTTP/1.1 507 Insufficient Storage</D:status>
 <D:responsedescription>
 Only first two matching records were returned
 </D:responsedescription>
 </D:response>
 </D:multistatus>

 2.6. Invalid Scopes & Search Redirections

 2.6.1. Indicating an Invalid Scope

 A client may submit a scope that the arbiter may be unable to
 query. The inability to query may be due to network failure,
 administrative policy, security, etc. This raises the condition
 described as an "invalid scope".

 To indicate an invalid scope, the server MUST respond with a 400
 (Bad Request).

 The response includes a text/xml body with a DAV:multistatus
 element. Each DAV:resource in the DAV:multistatus identifies a
 scope. To indicate that this scope is the source of the error,
 the server MUST include the DAV:scopeerror element.

 2.6.2. Example of an Invalid Scope

 HTTP/1.1 400 Bad-Request

 Content-Type: text/xml
 Content-Length: xxxxx

 <?xml version="1.0" ?>

 <d:multistatus xmlns:d="DAV:">
 <d:response>

Reddy, et al [Page 9]

INTERNET-DRAFT DASL November 18, 1998

 <d:href>http://www.foo.com/X</d:href>
 <d:status>HTTP/1.1 404 Object Not Found</d:status>
 <d:scopeerror/>
 </d:response>
 </d:multistatus>

 2.6.3. Redirections

 As described above, a server can indicate only that the scope is
 invalid. Some search arbiters may be able to indicate that other
 search arbiters exist for that scope.

 In this case, the server MUST:

 (1) include the DAV:scopeerror element

 (2) include the DAV:status element for that scope. The value of
 this element MUST be a 303 (See Other) response.

 (3) include the DAV:redirectarbiter element for each arbiter the
 client should use for the redirect. The value of this element is
 the URI of the arbiter to use. Multiple DAV:redirectarbiter
 elements are allowed.

 2.6.4. Example of a Search Redirection

 HTTP/1.1 400 Bad-Request
 Content-Type: text/xml
 Content-Length: xxxxx

 <?xml version="1.0" ?>
 <?xml:namespace ns="DAV:" prefix="d" ?>

 <d:multistatus>
 <d:response>
 <d:href>http://www.foo.com/X</d:href>
 <d:status>HTTP/1.1 303 See Other</d:status>
 <d:scopeerror/>
 <d:redirectarbiter>http://bar.com/B</d:redirectarbiter>
 <d:redirectarbiter>http://baz.com/B</d:redirectarbiter>
 </d:response>
 </d:multistatus>

 2.6.5. Syntax for DAV:scopeerror

 <!ELEMENT scopeerror EMPTY>

 2.6.6. Syntax for DAV:redirectarbiter

 <!ELEMENT redirectarbiter (#PCDATA)>

Reddy, et al [Page 10]

INTERNET-DRAFT DASL November 18, 1998

 3. DISCOVERY OF SUPPORTED QUERY GRAMMARS

 Servers MUST support discovery of the query grammars supported by
 a resource.

 Clients can determine which query grammars are supported by an
 arbiter by invoking OPTIONS on the search arbiter. If the
 resource supports SEARCH, then the DASL response header will
 appear in the response. The DASL response header lists the
 supported grammars.

 3.1. The OPTIONS Method

 The OPTIONS method allows the client to discover if a resource
 supports the SEARCH method and to determine the list of search
 grammars supported for that resource.

 The client issues the OPTIONS method against a resource named by
 the Request-URI. This is a normal invocation of OPTIONS defined
 in [RFC2068].

 If a resource supports the SEARCH method, then the server MUST
 list SEARCH in the OPTIONS response as defined by [RFC2068].

 DASL servers MUST include the DASL header in the OPTIONS
 response. This header identifies the search grammars supported by
 that resource.

 3.2. The DASL Response Header

 DASLHeader = "DASL" ":" Coded-URL-List
 Coded-URL-List : Coded-URL [, Coded-URL-List]
 Coded-URL ; defined in section 8.4 of [WEBDAV]

 The DASL response header indicates server support for a query
 grammar in the OPTIONS method. The value is a URI that indicates
 the type of grammar. This header MAY be repeated.

 For example:

 DASL: <http://foo.bar.com/syntax1>
 DASL: <http://akuma.com/syntax2>
 DASL: <FOO:natural-language-query>

 3.3. Example: Grammar Discovery

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
http://foo.bar.com/syntax1
http://akuma.com/syntax2

 This example shows that the server supports search on the
 /somefolder resource with the following query grammars:

http://foo.bar.com/syntax1 and http://akuma.com/syntax2.

 >> Request

 OPTIONS /somefolder HTTP/1.1
 Connection: Close
 Host: ryu.com

Reddy, et al [Page 11]

http://foo.bar.com/syntax1
http://akuma.com/syntax2

INTERNET-DRAFT DASL November 18, 1998

 >> Response

 HTTP/1.1 200 OK
 Date: Tue, 20 Jan 1998 20:52:29 GMT
 Connection: close
 Accept-Ranges: none
 Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE,
 MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH
 Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE,
 MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH
 DASL: <http://foo.bar.com/syntax1>
 DASL: <http://akuma.com/syntax2>

 4. QUERY SCHEMA DISCOVERY: QSD

 Servers MAY support the discovery of the schema for a query
 grammar.

 The DASL response header provides means for clients to discover
 the set of query grammars supported by a resource. This alone is
 not sufficient information for a client to generate a query. For
 example, the DAV:basicsearch grammar defines a set of queries
 consisting of a set of operators applied to a set of properties
 and values, but the grammar itself does not specify which
 properties may be used in the query. QSD for the
 DAV:basicsearch grammar allows a client to discover the set of
 properties that are searchable, selectable, and sortable.
 Moreover, although the DAV:basicsearch grammar defines a minimal
 set of operators, it is possible that a resource might support
 additional operators in a query. For example, a resource might
 support a optional operator that can be used to express content-
 based queries in a proprietary syntax. QSD allows a client to
 discover these operators and their syntax. The set of
 discoverable quantities will differ from grammar to grammar, but
 each grammar can define a means for a client to discover what can
 be discovered.

 In general, the schema for a given query grammar depends on both
 the resource (the arbiter) and the scope. A given resource might
 have access to one set of properties for one potential scope, and
 another set for a different scope. For example, consider a
 server able to search two distinct collections, one holding
 cooking recipes, the other design documents for nuclear weapons.
 While both collections might support properties such as author,
 title, and date, the first might also define properties such as
 calories and preparation time, while the second defined

http://foo.bar.com/syntax1
http://akuma.com/syntax2

 properties such as yield and applicable patents. Two distinct
 arbiters indexing the same collection might also have access to
 different properties. For example, the recipe collection
 mentioned above might also indexed by a value-added server that
 also stored the names of chefs who had tested the recipe. Note
 also that the available query schema might also depend on other
 factors, such as the identity of the principal conducting the
 search, but these factors are not exposed in this protocol.

Reddy, et al [Page 12]

INTERNET-DRAFT DASL November 18, 1998

 Each query grammar supported by DASL defines its own syntax for
 expressing the possible query schema. A client retrieves the
 schema for a given query grammar on an arbiter resource with a
 given scope by invoking the SEARCH method on that arbiter, with
 that grammar and scope, with a query whose DAV:select element
 includes the DAV:queryschema property. This property is defined
 only in the context of such a search, a server SHOULD not treat
 it as defined in the context of a PROPFIND on the scope. The
 content of this property is an XML element whose name and syntax
 depend upon the grammar, and whose value may (and likely will)
 vary depending upon the grammar, arbiter, and scope.

 The query schema for DAV:basicsearch is defined in section 5.19.

 4.1. The DAV:queryschema Property

 <!ELEMENT queryschema ANY >

 4.1.1. Example of query schema discovery

 In this example, the arbiter is recipes.com, the grammar is
 DAV:basicsearch, the scope is also recipes.com.

 SEARCH / HTTP/1.1
 Host: recipes.com
 Content-Type: application/xml
 Connection: Close
 Content-Length: xxx

 <?xml version="1.0"?>
 <D:searchrequest xmlns:D="DAV:">
 <D:basicsearch>
 <D:select>
 <D:queryschema/>
 </D:select>

 <D:from><D:scope><D:href>http://recipes.com</d:href></D:scope></D
 :from>
 </D:basicsearch>
 </D:searchrequest>

 Response:

 HTTP/1.1 207 Multistatus
 Content-Type: application/xml
 Content-Length: xxx

 <?xml version="1.0"?>
 <D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>http://recipes.com</D:href>
 <D:propstat>
 <D:prop>
 <D:querygrammar>
 <D:basicsearchschema>

Reddy, et al [Page 13]

INTERNET-DRAFT DASL November 18, 1998

 See section 5.19.9 for actual contents
 </D:basicsearchschema>
 </D:querygrammar>
 </D:prop>
 <D:status>HTTP/1.1 200 Okay</D:status>
 </D:propstat>
 </D:response>
 </D:multistatus>

 5. THE DAV:BASICSEARCH GRAMMAR

 5.1. Introduction

 DAV:basicsearch uses an extensible XML syntax that allows clients
 to express search requests that are generally useful for WebDAV
 scenarios. DASL-extended servers MUST accept this grammar, and
 MAY accept others grammars.

 DAV:basicsearch has several major components: DAV:select,
 DAV:from, DAV:where, DAV:orderby, and DAV:limit. DAV:select
 provides the result record definition. DAV:from defines the
 scope. DAV:where defines the criteria. DAV:orderby defines the
 sort order of the result set. DAV:limit provides constraints on
 the query as a whole.

 5.2. The DAV:basicsearch DTD

 <!ELEMENT basicsearch (select, from, where?, orderby?, limit?)
 >

 <!ELEMENT select (allprop | prop) >

 <!ELEMENT from (scope) >
 <!ELEMENT scope (href, depth?) >

 <!ENTITY %comp_ops "eq | lt | gt| lte | gte">
 <!ENTITY %log_ops "and | or | not">
 <!ENTITY %special_ops "isdefined">
 <!ENTITY %string_ops "like">
 <!ENTITY %content_ops "contains">

 <!ENTITY %all_ops "%comp_ops; | %log_ops; | %special_ops;
 |
 %string_ops; | %content_ops;">

 <!ELEMENT where (%all_ops;) >

 <!ELEMENT and ((%all_ops;) +) >

 <!ELEMENT or ((%all_ops;) +) >

Reddy, et al [Page 14]

INTERNET-DRAFT DASL November 18, 1998

 <!ELEMENT not (%all_ops;) >

 <!ELEMENT lt (prop , literal) >
 <!ATTLIST lt casesensitive
 (1|0) 1 >

 <!ELEMENT lte (prop , literal) >
 <!ATTLIST lte casesensitive
 (1|0) 1 >

 <!ELEMENT gt (prop , literal) >
 <!ATTLIST gt casesensitive
 (1|0) 1 >

 <!ELEMENT gte (prop , literal) >
 <!ATTLIST gte casesensitive
 (1|0) 1 >

 <!ELEMENT eq (prop , literal) >
 <!ATTLIST eq casesensitive
 (1|0) 1 >

 <!ELEMENT literal (#PCDATA)>
 <!ATTLIST literal xml:space (default|preserve) preserve >

 <!ELEMENT isdefined (prop) >
 <!ELEMENT like (prop, literal) >
 <!ELEMENT contains (#PCDATA)>

 <!ELEMENT orderby (order+) >
 <!ELEMENT order (prop, (ascending | descending)?)
 <!ATTLIST order casesensitive
 (1|0) 1 >
 <!ELEMENT ascending EMPTY>
 <!ELEMENT descending EMPTY>

 <!ELEMENT limit (nresults) >
 <!ELEMENT nresults (#PCDATA) >

 5.2.1. Example Query

 This query retrieves the content length values for all resources
 located under the server's "/container1/" URI namespace whose
 length exceeds 10000.

 <d:searchrequest>

 <d:basicsearch>
 <d:select>
 <d:prop><d:getcontentlength/></d:prop>
 </d:select>
 <d:from>
 <d:scope>
 <d:href>/container1/</d:href>

Reddy, et al [Page 15]

INTERNET-DRAFT DASL November 18, 1998

 <d:depth>infinity</d:depth>
 </d:scope>
 </d:from>
 <d:where>
 <d:gt>
 <d:prop><d:getcontentlength/></d:prop>
 <d:literal>10000</d:literal>
 </d:gt>
 </d:where>
 <d:orderby>
 <d:order>
 <d:prop><d:getcontentlength/><d:prop>
 <d:ascending/>
 </d:order>
 </d:orderby>
 </d:basicsearch>
 </d:searchrequest>

 5.3. DAV:select

 DAV:select defines the result record. This document defines two
 possible values: DAV:allprop and DAV:prop, both defined in
 [WebDAV].

 If the value is DAV:allprop, the result record for a given
 resource includes all the properties for that resource.

 If the value is DAV:prop, then the result record for a given
 resource includes only those properties named by the DAV:prop
 element. Each property named by the DAV:prop element must be
 referenced in the Multistatus response.

 The rules governing the status codes for each property match
 those of the PROPFIND method defined in [WebDAV].

 5.4. DAV:from

 DAV:from defines the query scope. This contains exactly one
 DAV:scope element. The scope element contains a mandatory
 DAV:href element and an optional DAV:depth element.

 DAV:href indicates the URI for a collection to use as a scope.

 When the scope is a collection, if DAV:depth is "1", the search
 includes the members of the collection. When it is "infinity",
 the search includes all recursive members of the
 collection.8.5.1.

 5.4.1. Relationship to the Request-URI

 If the DAV:scope element is an absolute URI, the scope is exactly
 that URI.

 If the DAV:scope element is a relative URI, the scope is taken to
 be relative to the request-URI.

Reddy, et al [Page 16]

INTERNET-DRAFT DASL November 18, 1998

 5.4.2. Scope

 A Scope can be an arbitrary URI.

 Servers, of course, may support only particular scopes. This may
 include limitations for particular schemes such as "http:" or
 "ftp:" or certain URI namespaces.

 If a scope is given that is not supported the server MUST respond
 with a 400 status code that includes a Multistatus error. A
 scope in the query appears as a resource in the response and must
 include an appropriate status code indicating its validity with
 respect to the search arbiter.

 Example:

 HTTP/1.1 400 Bad Request
 Content-Type: text/xml
 Content-Length: 428

 <?xml version="1.0" ?>
 <d:multistatus xmlns:D="DAV:" xmlns:F="FOO:" >

 <d:response>
 <d:href>http://www.foo.com/scope1</d:href>
 <d:status>HTTP/1.1 502 Bad Gateway</d:status>
 </d:response>

 </d:multistatus>

 This example shows the response if there is a scope error. The
 response provides a Multistatus with a status for the scope. In
 this case, the scope cannot be reached because the server cannot
 search another server (502).

 5.5. DAV:where

 DAV:where element defines the search condition for inclusion of
 resources in the result set. The value of this element is an XML
 element that defines a search operator that evaluates to one of
 the Boolean truth values TRUE, FALSE, or UNKNOWN. The search
 operator contained by DAV:where may itself contain and evaluate
 additional search operators as operands, which in turn may
 contain and evaluate additional search operators as operands,
 etc. recursively.

 5.5.1. Use of Three-Valued Logic in Queries

 Each operator defined for use in the where clause that returns a
 Boolean value MUST evaluate to TRUE, FALSE, or UNKNOWN. The
 resource under scan is included as a member of the result set if
 and only if the search condition evaluates to TRUE.

 Consult Appendix A for details on the application of three-valued
 logic in query expressions.

Reddy, et al [Page 17]

INTERNET-DRAFT DASL November 18, 1998

 5.5.2. Handling Optional operators

 If a query provides an operator that is not supported by the
 server, then the server MUST respond with a 422 (Unprocessable
 Entity) status code.

 5.5.3. Treatment of NULL Values

 If a SEARCH PROPFIND for a property value would yield a 404 or
 403 response for that property, then that property is considered
 NULL.

 NULL values are "less than" all other values in comparisons.

 Empty strings (zero length strings) are not NULL values. An
 empty string is "less then" a string with length greater than
 zero.

 The DAV:isdefined operator is defined to test if the value of a
 property is NULL.

 5.5.4. Example: Testing for Equality

 The example shows a single operator (DAV:eq) applied in the
 criteria.

 <d:where>
 <d:eq>
 <d:prop> <d:getcontentlength/> </d:prop>
 <d:literal> 100 </d:literal>
 </d:eq>
 </d:where>

 5.5.5. Example: Relative Comparisons

 The example shows a more complex operation involving several
 operators (DAV:and, DAV:eq, DAV:gt) applied in the criteria. This
 DAV:where expression matches those resources that are
 "image/gifs" over 4K in size.

 <D:where>
 <D:and>
 <D:eq>
 <D:prop> <D:getcontenttype/> </D:prop>
 <D:literal> image/gif </D:literal>
 </D:eq>

 <D:gt>
 <D:prop> <D:getcontentlength/> </D:prop>
 <D:literal> 4096 </D:literal>
 </D:gt>
 </D:and>
 </D:where>

Reddy, et al [Page 18]

INTERNET-DRAFT DASL November 18, 1998

 5.6. DAV:orderby

 The DAV:orderby element specifies the ordering of the result set.
 It contains one or more DAV:order elements, each of which
 specifies a comparison between two items in the result set.
 Informally, a comparison specifies a test that determines whether
 one resource appears before another in the result set.
 Comparisons are applied in the order they occur in the
 DAV:orderby element, earlier comparisons being more significant.

 The comparisons defined here use only a single property from each
 resource, compared using the same ordering as the DAV:lt operator
 (ascending) or DAV:gt operator (descending). If neither direction
 is specified, the default is DAV:ascending.

 In the context of the DAV:orderby element, null values are
 considered to collate before any actual (i.e., non null) value,
 including strings of zero length (as in ANSI standard SQL, c.f.,
 ANSI X3.135-1992).

 5.6.1. Comparing Natural Language Strings.

 Comparisons on strings take into account the language defined for
 that property. Clients MAY specify the language using the
 xml:lang attribute. If no language is specified either by the
 client or defined for that property by the server or if a
 comparison is performed on strings of two different languages,
 the results are undefined.

 The DAV:casesensitive attribute may be used to indicate case-
 sensitivity for comparisons.

 5.6.2. Example of Sorting

 This sort orders first by last name of the author, and then by
 size, in descending order, so that the largest works appear
 first.

 <d:orderby>
 <d:order>
 <d:prop><r:lastname/></d:prop>
 <d:ascending/>
 </d:order>
 <d:order>
 <d:prop><d:getcontentlength/></d:prop>
 <d:descending/>

 </d:order>
 </d:orderby>

 5.7. Boolean Operators: DAV:and, DAV:or, and DAV:not

 The DAV:and operator performs a logical AND operation on the
 expressions it contains.

Reddy, et al [Page 19]

INTERNET-DRAFT DASL November 18, 1998

 The DAV:or operator performs a logical OR operation on the values
 it contains.

 The DAV:not operator performs a logical NOT operation on the
 values it contains.

 5.8. DAV:eq

 The DAV:eq operator provides simple equality matching on property
 values.

 The DAV:casesensitive attribute may be used with this element.

 5.9. DAV:lt, DAV:lte, DAV:gt, DAV:gte

 The DAV:lt, DAV:lte, DAV:gt, and DAV:gte operators provide
 comparisons on property values. The DAV:casesensitive attribute
 may be used with these elements.

 5.10. DAV:literal

 DAV:literal allows literal values to be placed in an expression.

 Because white space in literal values is significant to in
 comparisons, DAV:literal makes use of the xml:space attribute to
 identify this significance. The default value of this attribute
 for DAV:literal is preserve. Consult section 2.10 of [XML] for
 more information on the use of this attribute.

 5.11. DAV:isdefined

 The DAV:isdefined operator allows clients to determine whether a
 property is defined on a resource on a resource. The meaning of
 "defined on a resource" is found in section 5.5.3.

 Example:

 <d:isdefined>
 <d:prop><x:someprop/></d:prop>
 </d:isdefined>

 The DAV:isdefined operator is optional.

 5.12. DAV:like

 The DAV:like is an optional operator intended to give simple
 wildcard-based pattern matching ability to clients.

 The operator takes two arguments.

 The first argument is a DAV:prop element identifying a single
 property to evaluate.

 The second argument is a DAV:literal element that gives the
 pattern matching string.

Reddy, et al [Page 20]

INTERNET-DRAFT DASL November 18, 1998

 5.12.1. Syntax for the Literal Pattern

 Pattern := [wildcard] 0*(text [wildcard])
 wildcard := exactlyone | zeroormore
 text := 1*(<octet> | escapesequence)
 exactlyone : = "?"
 zeroormore := "%"
 escapechar := "\"
 escapesequence := "\" (exactlyone | zeroormore | escapechar)

 The value for the literal is composed of wildcards separated by
 segments of text. Wildcards may begin or end the literal.
 Wildcards may not be adjacent.

 The "?" wildcard matches exactly one character.

 The "%" wildcard matches zero or more characters

 The "\" character is an escape sequence so that the literal can
 include "?" and "%". To include the "\" character in the
 pattern, the escape sequence "\\" is used..

 5.12.2. Example of DAV:like

 This example shows how a client might use DAV:like to identify
 those resources whose content type was a subtype of image.

 <D:where>
 <D:like>
 <D:prop><D:getcontenttype/></D:prop>
 <D:literal>image%</D:literal>
 </D:like>
 </D:where>

 5.13. DAV:contains

 The DAV:contains operator is an optional operator that provides
 content-based search capability. This operator implicitly
 searches against the text content of a resource, not against
 content of properties. The DAV:contains operator is intentionally
 not overly constrained, in order to allow the server to do the
 best job it can in performing the search.

 The DAV:contains operator evaluates to a Boolean value. It
 evaluates to TRUE if the content of the resource satisfies the
 search. Otherwise, It evaluates to FALSE.

 Within the DAV:contains XML element, the client provides a
 phrase: a single word or whitespace delimited sequence of words.
 Servers MAY ignore punctuation in a phrase. Case-sensitivity is
 left to the server.

 The following things may or may not be done as part of the
 search: Phonetic methods such as soundex may or may not be
 used. Word stemming may or may not be performed. Thesaurus
 expansion of words may or may not be done. Right or left
 truncation may or may not be performed. The search may be case

Reddy, et al [Page 21]

INTERNET-DRAFT DASL November 18, 1998

 insensitive or case sensitive. The word or words may or may not
 be interpreted as names. Multiple words may or may not be
 required to be adjacent or "near" each other. Multiple words may
 or may not be required to occur in the same order. Multiple words
 may or may not be treated as a phrase. The search may or may not
 be interpreted as a request to find documents "similar" to the
 string operand.

 The DAV:score property is intended to be useful to rank documents
 satisfying the DAV:Contains operator.

 5.13.1. Example

 The example below shows a search for the phrase Peter Forsberg .

 Depending on its support for content-based searching, a server
 MAY treat this as a search for documents that contain the words
 Peter and Forsberg .

 <D:where>
 <D:contains>Peter Forsberg</D:contains>
 </D:where>

 5.13.2. Example

 The example below shows a search for resources that contain
 Peter and Forsberg .

 <D:where>
 <D:and>
 <D:contains>Peter</D:contains>
 <D:contains>Forsberg</D:contains>
 </D:and>
 </D:where>

 5.14. The DAV:limit XML Element

 <!ELEMENT limit (nresults) >

 The DAV:limit XML element contains requested limits from the
 client to limit the size of the reply or amount of effort
 expended by the server.

 5.15. The DAV:nresults XML Element

 <!ELEMENT nresults (#PCDATA)> ;only digits

 The DAV:nresults XML element contains a requested maximum number
 of records to be returned in a reply. The server MAY disregard
 this limit. The value of this element is an integer.

Reddy, et al [Page 22]

INTERNET-DRAFT DASL November 18, 1998

 5.16. The DAV:casesensitive XML attribute

 The DAV:casesensitive attribute allows clients to specify case-
 sensitive or case-insensitive behavior for DAV:basicsearch
 operators.

 The possible values for DAV:casesensitive are "1" or "0". The "1"
 value indicates case-sensitivity. The "0" value indicates case-
 insensitivity. The default value is server-specified.

 Support for the DAV:casesensitive is optional. A server should
 respond with an error 422 if the DAV:casesensitive attribute is
 used but cannot be supported.

 5.17. The DAV:score Property

 <!ELEMENT score (#PCDATA)>

 The DAV:score XML element is a synthetic property whose value is
 defined only in the context of a query result where the server
 computes a score, e.g. based on relevance. It may be used in
 DAV:select or DAV:orderby elements. Servers SHOULD support this
 property. The value is a string representing the score, an
 integer from zero to 10000 inclusive, where a higher value
 indicates a higher score (e.g. more relevant).

 Clients should note that, in general, it is not meaningful to
 compare the numeric values of scores from two different queries
 unless both were executed by the same underlying search system on
 the same collection of resources.

 5.18. The DAV:iscollection Property

 <!ELEMENT iscollection (#PCDATA)>

 The DAV:iscollection XML element is a synthetic property whose
 value is defined only in the context of a query.

 The property is TRUE (the literal string "1") of a resource if
 and only if a PROPFIND of the DAV:resourcetype property for that
 resource would contain the DAV:collection XML element. The
 property is FALSE (the literal string "0") otherwise.

 Rationale: This property is provided in lieu of defining generic
 structure queries, which would suffice for this and for many more
 powerful queries, but seems inappropriate to standardize at this

 time.

 5.18.1. Exampe of DAV:iscollection

 This example shows a search criterion that picks out all and only
 the resources in the scope that are collections.

 <D:where>
 <D:eq>

Reddy, et al [Page 23]

INTERNET-DRAFT DASL November 18, 1998

 <D:prop><D:iscollection></D:prop>
 <D:literal>1<D:literal>
 </D:eq>
 </D:where>

 5.19. Query Schema for DAV:basicsearch

 The DAV:basicsearch grammar defines a search criteria that is a
 Boolean-valued expression, and allows for an arbitrary set of
 properties to be included in the result record. The result set
 may be sorted on a set of property values. Accordingly the DTD
 for schema discovery for this grammar allows the server to
 express:

 - the set of properties that may be either searched, returned, or
 used to sort, and a hint about the data type of such properties

 - the set of optional operators defined by the resource.

 5.19.1. DTD for DAV:basicsearch QSD

 <!ELEMENT basicsearchschema (properties, operators)>
 <!ELEMENT properties (propdesc*)>
 <!ELEMENT propdesc (prop, ANY)>
 <!ELEMENT operators (opdesc*)>
 <!ELEMENT opdesc ANY>
 <!ELEMENT operand_property EMPTY>
 <!ELEMENT operand_literal EMPTY>

 The DAV:properties element holds a list of descriptions of
 properties.

 The DAV:operators element describes the optional operators that
 may be used in a DAV:where element.

 5.19.2. DAV:propdesc Element

 Each instance of a DAV:propdesc element describes the property or
 properties in the DAV:prop element it contains. All subsequent
 elements are descriptions that apply to those properties. All
 descriptions are optional and may appear in any order. Servers
 SHOULD support all the descriptions defined here, and MAY define
 others.

 DASL defines eight descriptions. The first group (DAV:datatype,
 DAV:searchable, DAV:selectable, DAV:sortable, and

 DAV:casesensitive) provide a hints about the property value, and
 may be useful to a user interface prompting for a value. The
 second group identify portions of the query (DAV:where,
 DAV:select, and DAV:orderby). If a property has a description
 for a section, then the server MUST allow the property to be
 used in that section. These descriptions are optional. If a
 property does not have such a description, or is not described at
 all, then the server MAY still allow the property to be used in
 the corresponding section.

Reddy, et al [Page 24]

INTERNET-DRAFT DASL November 18, 1998

 5.19.3. The DAV:datatype Property Description

 The DAV:datatype element contains a single XML element that
 provides a hint about the domain of the property, which may be
 useful to a user interface prompting for a value to be used in a
 query. The namespace for expressing a DASL defined data type is
 "urn:uuid:C2F41010-65B3-11d1-A29F-00AA00C14882/".

 <!ELEMENT datatype ANY >

 DASL defines the following data type elements:

 NAME CONTENTS EXAMPLE

 boolean 1
 0

 string Foobar

 int -259
 23

 float .314159265358979E+1
 5.33

 dateTime.tz 1994-11-05T08:15:5Z

 If the data type of a property is not given, then the data type
 defaults to string.

 5.19.4. The DAV:searchable Property Description

 <!ELEMENT searchable EMPTY >

 If this element is present, then the server MUST allow this
 property to appear within a DAV:where element where an operator
 allows a property. Allowing a search does not mean that the
 property is guaranteed to be defined on every resource in the
 scope, it only indicates the server's willingness to check.

 5.19.5. The DAV:selectable Property Description

 <!ELEMENT selectable EMPTY >

 This element indicates that the property may appear in the
 DAV:select element.

Reddy, et al [Page 25]

INTERNET-DRAFT DASL November 18, 1998

 5.19.6. The DAV:sortable Property Description

 This element indicates that the property may appear in the
 DAV:orderby element

 <!ELEMENT sortable EMPTY >

 5.19.7. The DAV:casesensitive Property Description

 This element only applies to properties whose data type is
 "string" as per the DAV:datatype property description. Its
 presence indicates that compares performed for searches, and the
 comparisons for ordering results on the string property will be
 case sensitive. (The default is case insensitive.)

 <!ELEMENT casesensitive EMPTY >

 5.19.8. The DAV:operators XML Element

 The DAV:operators element describes every optional operator
 supported in a query. (Mandatory operators are not listed since
 they are mandatory and permit no variation in syntax.). All
 optional operators that are supported MUST be listed in the
 DAV:operators element. The listing for an operator consists of
 the operator (as an empty element), followed by one element for
 each operand. The operand MUST be either DAV:operand_property or
 DAV:operand_literal, which indicate that the operand in the
 corresponding position is a property or a literal value,
 respectively. If an operator is polymorphic (allows more than
 one operand syntax) then each permitted syntax MUST be listed
 separately.

 <D:propdesc><D:like/><D:operand_property/><D:operand_literal/></D
 :propdesc>

 5.19.9. Example of Query Schema for DAV:basicsearch

 <D:basicsearchschema xmlns:D="DAV:" xmlns:t="urn:uuid:C2F41010-
 65B3-11d1-A29F-00AA00C14882/" xmlns:J="http://jennicam.org">
 <D:properties>
 <D:propdesc>
 <D:prop><D:getcontentlength/></D:prop>
 <D:datatype><t:int></D:datatype>
 <D:searchable/><D:selectable/><D:sortable/>
 </D:propdesc>
 <D:propdesc>
 <D:prop><D:getcontenttype/><D:displayname></D:prop>

 <D:searchable/><D:selectable/> <D:sortable/>
 </D:propdesc>
 <D:propdesc>
 <D:prop><J:fstop/></D:prop>
 <D:selectable/>
 </D:propdesc>
 </D:properties>

Reddy, et al [Page 26]

INTERNET-DRAFT DASL November 18, 1998

 <D:operators>
 <D:opdesc>
 <D:isdefined/><D:operand_property/>
 </D:opdesc>
 <D:opdesc>
 <D:like/><D:operand_property/><D:operand_literal/>
 </D:opdesc>
 </D:operators>
 </D:basicsearchschema>

 This response lists four properties. The datatype of the last
 three properties is not given, so it defaults to string. All are
 selectable, and the first three may be searched. All but the
 last may be used in a sort. Of the optional DAV operators,
 DAV:isdefined and DAV:like are supported.

 Note: The schema discovery defined here does not provide for
 discovery of supported values of the DAV:casesensitive attribute.
 This may require that the reply also list the mandatory
 operators.

 6. INTERNATIONALIZATION CONSIDERATIONS

 Clients have the opportunity to tag properties when they are
 stored in a language. The server SHOULD read this language-
 tagging by examining the xml:lang attribute on any properties
 stored on a resource.

 The xml:lang attribute specifies a nationalized collation
 sequence when properties are compared.

 Comparisons when this attribute differs have undefined order.

 7. SECURITY CONSIDERATIONS

 This section is provided to detail issues concerning security
 implications of which DASL applications need to be aware. All of
 the security considerations of HTTP/1.1 also apply to DASL. In
 addition, this section will include security risks inherent in
 searching and retrieval of resource properties and content.

 A query must not allow one to retrieve information about values
 or existence of properties that one could not obtain via
 PROPFIND. (e.g. by use in DAV:orderby, or in expressions on
 properties.)

 Server should prepare for denial of service attacks. For example
 a client may issue a query for which the result set is expensive
 to calculate or transmit because many resources match or must be
 evaluated.

Reddy, et al [Page 27]

INTERNET-DRAFT DASL November 18, 1998

 8. SCALABILITY

 Query grammars are identified by URIs. Applications SHOULD not
 attempt to retrieve these URIs even if they appear to be
 retrievable (for example, those that begin with "http://")

 9. AUTHENTICATION

 Authentication mechanisms defined in WebDAV will also apply to
 DASL.

 10. IANA CONSIDERATIONS

 This document uses the namespace defined by [WebDAV] for XML
 elements. All other IANA considerations mentioned in [WebDAV]
 also applicable to DASL

 11. COPYRIGHT

 To be supplied.

 12. INTELLECTUAL PROPERTY

 To be supplied.

 13. REFERENCES

 [DASLREQ] J. Davis, S. Reddy, J. Slein, "Requirements for DAV
 Searching and Locating", September 3 1998, internet-draft, work-
 in-progress, draft-davis-dasl-requirements-00.txt

 [RFC2068] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068,
 U.C. Irvine, DEC, MIT/LCS, January 1997.

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels." RFC 2119, BCP 14. Harvard University. March,
 1997.

 [WebDAV] Y. Goland, E.J. Whitehead, A. Faizi, S.R. Carter, D.
 Jenson, "Extensions for Distributed Authoring on the World Wide
 Web", November 16 1998, internet-draft, work-in-progress, draft-

ietf-webdav-protocol-10.txt.

https://datatracker.ietf.org/doc/html/draft-davis-dasl-requirements-00.txt
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/draft-ietf-webdav-protocol-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-webdav-protocol-10.txt

 [XML] T. Bray, J. Paoli, C. M. Sperberg-McQueen, "Extensible
 Markup Language (XML) 1.0", September 16, 1998, W3C
 Recommendation.

 [XMLNS] T. Bray, D. Hollander, A. Layman, "Namespaces in XML",
 November, 1998, W3C Proposed Recommendation.

http://www.w3.org/TR/PR-xml-names

Reddy, et al [Page 28]

http://www.w3.org/TR/PR-xml-names

INTERNET-DRAFT DASL November 18, 1998

 14. AUTHOR'S ADDRESSES

 Saveen Reddy
 Microsoft
 One Microsoft Way
 Redmond WA, 9085-6933
 Email:saveenr@microsoft.com

 Dale Lowry
 Novell
 1555 N. Technology Way
 M/S ORM-M-314
 Orem, UT 84097
 Email: dlowry@novell.com

 Surendra Reddy
 Oracle Corporation
 600 Oracle Parkway, M/S 6op3,
 Redwoodshores, CA 94065
 Email: skreddy@us.oracle.com
 Phone:(650) 506 5441

 Rick Henderson
 Netscape
 Email: rickh@netscape.com

 Jim Davis
 Xerox PARC
 3333 Coyote Hill Road
 Palo Alto CA 94304
 650-812-4301
 Email: jdavis@parc.xerox.com

 Alan Babich
 Filenet
 3565 Harbor Blvd.
 Costa Mesa, CA 92626
 714-966-3403
 Email: ababich@filenet.com

 15. APPENDICES

Appendix A Three-Valued Logic in DAV:basicsearch

 ANSI standard three valued logic is used when evaluating the
 search condition (as defined in the ANSI standard SQL
 specifications, for example in ANSI X3.135-1992, section 8.12,

 pp. 188-189, section 8.2, p. 169, General Rule 1)a), etc.).

 ANSI standard three valued logic is undoubtedly the most widely
 practiced method of dealing with the issues of properties in the
 search condition not having a value (e.g., being null or not
 defined) for the resource under scan, and with undefined

Reddy, et al [Page 29]

INTERNET-DRAFT DASL November 18, 1998

 expressions in the search condition (e.g., division by zero,
 etc.). Three valued logic works as follows.

 Undefined expressions are expressions for which the value of the
 expression is not defined. Undefined expressions are a completely
 separate concept from the truth value UNKNOWN, which is, in fact,
 well defined. Property names and literal constants are considered
 expressions for purposes of this section. If a property in the
 current resource under scan has not been set to a value (either
 because the property is not defined for the current resource, or
 because it is null for the current resource), then the value of
 that property is undefined for the resource under scan. DASL 1.0
 has no arithmetic division operator, but if it did, division by
 zero would be an undefined arithmetic expression.

 If any subpart of an arithmetic, string, or datetime
 subexpression is undefined, the whole arithmetic, string, or
 datetime subexpression is undefined.

 There are no manifest constants to explicitly represent undefined
 number, string, or datetime values.

 Since a Boolean value is ultimately returned by the search
 condition, arithmetic, string, and datetime expressions are
 always arguments to other operators. Examples of operators that
 convert arithmetic, string, and datetime expressions to Boolean
 values are the six relational operators ("greater than", "less
 than", "equals", etc.). If either or both operands of a
 relational operator have undefined values, then the relational
 operator evaluates to UNKNOWN. Otherwise, the relational operator
 evaluates to TRUE or FALSE, depending upon the outcome of the
 comparison.

 The Boolean operators DAV:and, DAV:or and DAV:not are evaluated
 according to the following rules:

 UNKNOWN and UNKNOWN = UNKNOWN

 UNKNOWN or UNKKNOWN = UNKNOWN

 not UNKNOWN = UNKNOWN

 UNKNOWN and TRUE = UNKNOWN

 UNKNOWN and FALSE = FALSE

 UNKNOWN and UNKNOWN = UNKNOWN

 UNKNOWN or TRUE = TRUE

 UNKNOWN or FALSE = UNKNOWN

 UNKNOWN or UNKNOWN = UNKNOWN

Reddy, et al [Page 30]

INTERNET-DRAFT DASL November 18, 1998

 16. CHANGE HISTORY

 Feb 14, 1998

 Initial Draft

 Feb 28, 1998

 Referring to DASL as an extension to HTTP/1.1 rather than DAV

 Added new sections "Notational Conventions", "Protocol Model",
 "Security Considerations"

 Changed section 3 to "Elements of Protocol"

 Added some stuff to introduction

 Added "result set" terminology

 Added "IANA Considerations".

 Mar 9, 1998

 Moved sub-headings of "Elements of Protocol" to first level and
 removed "Elements of Protocol" Heading.

 Added an sentence in introduction explaining that this is a
 "sketch" of a protocol.

 Mar 11, 1998

 Added orderby, data typing, three valued logic, query schema
 property, and element definitions for schema for basicsearch.

 April 8, 1998

 - made changes based on last week s DASL BOF.

 May 8, 1998

 Removed most of DAV:searcherror; converted to DAV:searchredirect

 Altered DAV:basicsearch grammar to use avoid use of ANY in DTD

 June 17, 1998

 -Added details on Query Schema Discovery

 -Shortened list of data types

 June 23, 1998

 moved data types before change history

Reddy, et al [Page 31]

INTERNET-DRAFT DASL November 18, 1998

 rewrote the data types section

 removed the casesensitive element and replace with the
 casesensitive attribute

 added the casesensitive attribute to the DTD for all operations
 that might work on a string

 Jul 20, 1998

 A series of changes. See Author s meeting minutes for details.

 July 28, 1998

 Changes as per author's meeting. QSD uses SEARCH, not PROPFIND.

 Moved text around to keep concepts nearby.

 Boolean literals are 1 and 0, not T and F.

 contains changed to contentspassthrough.

 Renamed rank to score.

 July 28, 1998

 Added Dale Lowry as Author

 September 4, 1998

 Added 422 as response when query lists unimplemented operators.

 dav:literal declares a default value for xml:space, 'preserve'
 (see XML spec, section 2.10)

 moved to new XML namespace syntax

 September 22, 1998

 Changed "simplesearch" to "basicsearch"

 Changed isnull to isdefined

 Defined NULLness as having a 404 or 403 response

 used ENTITY syntax in DTD

 Added redirect

 October 9, 1998

 Fixed a series of typographical and formatting errors.

 Modified the section of three-valued logic to use a table rather
 than a text description of the role of UNKNOWN in expressions.

Reddy, et al [Page 32]

INTERNET-DRAFT DASL November 18, 1998

 November 2, 1998

 Added the DAV:contains operator.

 Removed the DAV:contentpassthrough operator.

 November 18, 1998

 Various author comments for submission

 Reddy, et al [Page 33]

