
WEBDAV Working Group Surendra Reddy(Oracle)
Internet Draft Mark L Fisher(TCE)
draft-reddy-enp-protocol-00.txt June 12,1998
Expires December 12, 1998

Event Notification Protocol - ENP

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working docu-
 ments of the Internet Engineering Task Force (IETF), its areas, and
 its working groups. Note that other groups may also distribute work-
 ing documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or made obsolete by other documents at
 any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited. Please send comments to
 the Distributed Authoring and Versioning (WEBDAV) working group at
 <w3c-dist-auth@w3.org>, which may be joined by sending a message with
 subject "subscribe" to <w3c-dist-auth-request@w3.org>.

 Discussions of the WEBDAV working group are archived at
 <URL:http://www.w3.org/pub/WWW/Archives/Public/w3c-dist-auth>.

Abstract

 As the complexity of distributed applications increases, an
 increasing amount of processing is done using distributed processes,
 which typically execute without the direct supervision of an end
 user. The user must poll these processes periodically to check if
 they are completed successfully or not. This polling results in
 unnecessary wastage of network bandwidth as well as computing
 resources. The user generally cannot see intermediate results or
 progress reports for long running processes, they must wait till the
 process is completely finished before viewing the results.

 Thus the problem of monitoring events is central in distributed

Surendra Reddy et al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

draft-reddy-enp-protocol-00.txt May 25, 1998

 applications and protocols. A repeated need in such applications is
 receive notifications when a resource property value changes or
 event state changes. Current database systems provides mechanisms
 like constraints, triggers and active database rules. These
 facilities provides an automated means to ensure the database
 integrity or perform specific action when data changes. Need for
 such kind of requirement is fundamental is network applications.

 Event Notification Protocol(ENP) abstracts the notification
 requirements from the applications. ENP provides a lean and mean
 protocol with a client side semantics for processing notifications.
 The goal of ENP is to provide a service which allows users to select
 resources or events for which they wish to be notified in case
 changes of property values or state values occur. The Event
 Notification Protocol will also allow users to define what events or
 state changes they are interested in.

 This document describes the Event Notification Protocol. The
 objective is to provide a simple, scalable and highly efficient
 notification protocol while also providing the appropriate
 flexibility to meet the needs of both the internet and enterprise
 environments.

Table of Contents

 i. Status of this Memo .. 1

 ii. Abstract ... 1

1. Introduction ... 4

2. Notational Conventions 5
3. Event Notification Protocol 5

3.1 Overview ... 5
3.2 Notification Server 6
3.3 Event Consumer interface 6
3.4 Event Producer interface 6
3.5 How does ENP Work? 6
3.6 Event Producer publishing event data 7
3.7 Event Consumer Querying on Event State 7
3.8 ENP Notifying the Consumer 8
3.9 Simple Workflow Example 8

4. Data Model for Event Notification Protocol 10
4.1 The Event Property Model 10
4.2 Property Values .. 11
4.3 Property Names ... 11
4.4 Notification Attributes 11

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 2]

draft-reddy-enp-protocol-00.txt May 25, 1998

4.5 Notification Content 11
4.6 Triggers ... 11
4.7 Rules .. 11
4.8 Client Based Semantics 11

5. HTTP Method Definition Extensions 11
5.1 PROPFIND ... 11

5.1.1 Example - Retrieving Queued Notifications 12
5.2 PROPPATCH .. 13

5.2.1 Example - PROPPATCH 13

6. HTTP Headers for Event Notification Protocol 14
6.1 ENP Header ... 14
6.2 Depth Header ... 14
6.3 If Header .. 15
6.4 No-tag-list Production 15
6.5 Tagged-list Production 15
6.6 not Production ... 16
6.7 Matching Function 16

7. Status Code Extensions to HTTP/1.1 16
7.1 207 Multi-Status 16
7.2 422 Unprocessable Entity 16
7.3 424 Method Failure 16

8. Multi-Status Response .. 17

9. XML Element Definitions 17
9.1 eventrequest XML Element 17
9.2 subscribe XML element 17
9.3 einfo XML element 17
9.4 edata XML element 18
9.5 eattributes XML element 18
9.6 attribute XML element 18
9.7 estates XML element 19
9.8 enotify XML element 19
9.9 erule XML element 19
9.10 eauth XML element 20
9.11 unsubscribe XML element 20
9.12 eventref XML Element 20
9.13 eventid XML Element 20
9.14 eventstatus XML Element 20

10. Access Controls .. 20

11. Security Considerations 21

12. Author's Address ... 21

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 3]

draft-reddy-enp-protocol-00.txt May 25, 1998

1. Introduction

 As the complexity of distributed applications increases, an
 increasing amount of processing is done using distributed processes,
 which typically execute without the direct supervision of an end
 user. The user must poll these processes periodically to check if
 they are completed successfully or not. This polling results in
 unnecessary waste of network bandwidth as well as computing
 resources. The user generally cannot see intermediate results or
 progress reports for long running processes, they must wait till the
 process is completely finished before viewing the results.

 Thus the problem of monitoring event states is central in
 distributed applications and protocols. A repeated need in such
 applications is receive notifications when a resource property value
 changes. Current database systems provides mechanisms like
 constraints, triggers and active database rules. These facilities
 provides an automated means to ensure the database integrity or
 perform specific action when data changes. Need for such kind of
 requirement is fundamental is network applications.

 There is already a multitude of applications that requires
 notification mechanisms. Some of these applications include:
 o Internet Printing Protocol
 o Workflow
 o Distributed Authoring
 o Email

 Event Notification protocol(ENP) abstracts the notification requirements
 from the applications. ENP provides a lean and mean protocol with
 a client side semantics for processing notifications. The goal of ENP
 is to enable a generic event notification to do routing to all these
 applications domains.

 The main objective of this protocol is to provide a simple, scalable and
 highly efficient notification protocol while also providing the appropriate
 flexibility to meet the needs of both the internet and enterprise
 environments. This document describes a a set of methods, headers,
 request entity body formats, and response entity body formats anciliary
 to HTTP/1.1 to provide operations for:

 Properties: The ability to create, remove, and query information
 about events.

 triggers: The ability to register, unregister, define events or
 resources that need to be monitored.

 rules: The ability to notify subscribe when the requested

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 4]

draft-reddy-enp-protocol-00.txt May 25, 1998

 criteria defined on event satisfied.

 Requirements for these operations are described in a
 companion document, "Requirements for Event Notification Protocol"
 [S.Reddy,1998].

 ENP employs the property mechanism to store information about the
 current state of the event, rules and triggers associated with
 of these events.

2. Notational Conventions
 Since this document describes a set of extensions to the HTTP/1.1
 protocol, the augmented BNF used herein to describe protocol
 elements is exactly the same as described in section 2.1 of
 [Fielding et al., 1997]. Since this augmented BNF uses the basic
 production rules provided in section 2.2 of [Fielding et al., 1997],
 these rules apply to this document as well.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [Bradner,
 1997].

3. Event Notification Protocol

3.1. Overview
 The event notification protocol(ENP) defines two roles for the
 events: the supplier role and the consumer role. Event supplier
 produce event data and event consumers process event data. Event
 data are communicated between suppliers and consumers through Event
 Notification Protocol(ENP). Event Notification Protocol uses push
 and pull model to initiates communication. The push model allows a
 supplier of events to initiate the transfer of the event data to
 consumers. The pull model allows a consumer of events to request the
 event data from a supplier.

 ENP decouples the communication between producers and consumers.
 Event Channel is central to the idea of decoupling event producers
 and consumers. The most important of these is subscribe, which
 tells the event channel that the consumer is interested in receiving
 notifications matching with constraints. The event channel evaluates
 the constraints against each notification it receives and routes
 these notifications to all subscribed consumers matching with their
 constraints.

 The consumer may use either a blocking or non-blocking mechanism for
 receiving notifications. The consumer can periodically poll the

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt
https://datatracker.ietf.org/doc/html/rfc2119

Surendra Reddy et al. [Page 5]

draft-reddy-enp-protocol-00.txt May 25, 1998

 channel for events.

 One of the major goals of this protocol is to leverage on the
 existing protocols and provide this service as extensions rather
 than developing a whole new protocol. By closely looking at the
 WebDAV efforts, Event Notification Protocol can easily be achived
 with no extensions to methods and fewer extensins to request and
 response headers. Following are the major protocol elements:
 o Notification Server
 o Event Producer interface
 o Event Consumer interface

3.2. Notification Server
 The notification server will be responsible for managing the
 notification content database and to perform notification delivery.
 This server will respond to two kinds of responses as explained in

section 3.1. Event producers sends requests to notification servers
 to register the state changes or any event related attributes with
 the server. Notification server queues these notifications for
 delivery to subscribed consumers. Event consumers request for
 various notifications of their interest. Event producers will have
 a writer role into the event database maintained by the notification
 server where as event consumers will have read only role.

3.3. Event Consumer interface
 The event consumers subscribe to specific events with the
 notification server or event consumer can also request notification
 server to start the specific process instance and notify them or
 defined set of users or group upon completion of the event.

3.4. Event Producer interface
 The event producers are the process instances which modify the event
 states, or produce event data. However, notification server point
 of view these process instances are black boxes and notification
 server doesnot need to know the internal semantics of these
 execution steps. Instead, notification server is only interested in
 maintaining the published attributes and observer the changes that
 occurs on these values, deliver them to the subscribed consumers.

3.5. How does ENP Work?
 ENP acts as a event channel which propages event notifications to
 event producers and consumers. Event Producers and Consumers need to
 subscribe their services with the ENP so that event consumers can
 query ENP to find out what services are avialable.

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 6]

draft-reddy-enp-protocol-00.txt May 25, 1998

3.6. Event Consumer requesting for a service

 ENP based print service registers the event data with the ENP.

 >> Request

 <advertise>
 <einfo id="http://www.printspooler.com/lpservice",
 name="distributed printer service">
 <eattributes>
 <attribute name="printername", type="string">
 printer-200
 </attribute>
 <attribute name="job", type="string">
 printer-200-1001
 </attribute>
 </eattributes>
 <estates>
 <vstate>
 <state>aborted</state>
 <state>canceled</state>
 <state>completed</state.
 </vstate>
 <cstate>
 <state>completed</state>
 </cstate>
 </estates>
 </advertise>

 >> Response

 <multiresponse>
 <enpresponse>
 <response> HTTP/1.1 100 Successful </response>
 </enpresponse>
 </multiresponse>

 In the above example, ENP complaint print servce, notifies the ENP
 server that print event identified by http://www.printspooler.com/lpservice
 has <aborted, completed,canceld> as valid states and current state of this
 event is <completed> for the job=printer-200-1001 and printer=printer-200.

 3.7. Event Consumer Querying on Event State

 ENP client queries the ENP to figure out the status of the print
 service.
 >> Request

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt
http://www.printspooler.com/lpservice

Surendra Reddy et al. [Page 7]

draft-reddy-enp-protocol-00.txt May 25, 1998

 <enprequest>
 <query>
 <einfo id="http://www.printspooler.com/lpservice">
 <erule>
 <eterm>
 <eprop>job</eprop> <eop="eq"/>
 <evalue type=string>printer-200-1001</evalue>
 </eterm><and/>
 <eterm>
 <eprop>printer</eprop> <eop="eq"/>
 <evalue type=string>printer-200</evalue>
 </eterm>
 </erule>
 <enotify type="mail">skreddy@us.oracle.com</enotify>
 </query>
 </enprequest>

 >> Response

 <multi-response>
 <enpresponse>
 <response> HTTP/1.1 100 Successful </response>
 </enpresponse>
 </multiresponse>
 In the above example, event consumer sends a query to ENP to find out
 the print event with job=printer-200-1001 AND printer=printer-200. This
 request tells the ENP to notify the event consumer through email whenever
 the print job is completed. In this case, notification request is transient
 which means that it is valid only for one notification. Event consumer
 can also indicate persistent notifications, which means ENP keep notifying
 the event consumer as long as these events are advertised with the ENP.

3.8. ENP Notifying the Consumer
 When the ENP print service(event producer) advertises the event
 state with the ENP, it will validate the notification attributes to
 match with the subscribers constraints and routes them accordingly
 to consumers.

 <notification>
 <eventid> 00.0.22.33.111.wewewwe </eventid>
 <message> Print Job printer-200-1001 Completed Successfully </
message>
 </notification>

3.9. Simple Workflow Example
 In this scenario, consumer subscribes with the ENP to notify users
 accounts and purchases on successful completion of the purchase

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

 order processing. Various protocol interactions are described below:

Surendra Reddy et al. [Page 8]

draft-reddy-enp-protocol-00.txt May 25, 1998

 (1). User Agent to ENP (subscribing for event notifications)
 >> Request

 <enprequest>
 <subscribe>
 <einfo id = http://www.foo.com/porder>
 <erule>
 <eterm>
 <eprop>ponumber</eprop> <eop="eq"/>
 <evalue type=string>L234567/evalue>
 </eterm><and/>
 <eterm>
 <state>completed</state>
 </eterm>
 </erule>
 <enotify type="mail">accounts@us.oracle.com</enotify>
 <enotify type="mail">purchase@cs.oracle.com</enotify>
 </subscribe>
 </enprequest>

 >> Response

 <multi-response>
 <enpresponse>
 <response> HTTP/1.1 100 Successful </response>
 </enpresponse>
 </multi-response>

 (2). ENP Producer to ENP(Advertising event state and data)

 "porder" process instance completes the purchase order processing,
 sends the result data payload to the ENP.
 >> Request

 <advertise>
 <einfo id="http://www.foo.com/porder",
 name="purchase order processing">
 <eattributes>
 <attribute name="ponumber", type="string">
 L234567
 </attribute>
 <attribute name="amount", type="real">
 1000.20
 </attribute>
 <attribute name="vendor", type="string">
 Sun Microsystems, Inc.
 </attribute>
 </eattributes>

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt
http://www.foo.com/porder

Surendra Reddy et al. [Page 9]

draft-reddy-enp-protocol-00.txt May 25, 1998

 <estates>
 <vstate>
 <state>aborted</state>
 <state>canceled</state>
 <state>completed</state.
 </vstate>
 <cstate>
 <state>completed</state>
 </cstate>
 <edata content-type=base64 length=2000>
 BASE64ENCODEDDATAHERE
 </edata>
 </advertise>

 >> Response

 <multi-response>
 <enpresponse>
 <response> HTTP/1.1 100 Successful </response>
 </enpresponse>
 </multi-response>
 (3). ENP to ENP Consumer(Notification)

 ENP notifies the "porder" completion notification and result data to
the
 subscriber through the known notification route.
 <notification>
 <einfo id = http://www.foo.com/porder>
 <estate>
 <cstate>completed</cstate>
 </estate>
 <edata content-type=base64 length=2000>
 BASE64ENCODEDDATAHERE
 </edata>
 </notification>

4. Data Model for Event Notification Protocol

4.1. The Event Property Model
 Properties are meta data that describe the state of a
 event/resource, subscribers, monitorable events, triggers, and
 rules.

 The ENP property model is similar to WebDAV property model and
 consists of name/value pairs. The name of a property identifies the
 property's syntax and semantics, and provides an address by which to
 refer to its syntax and semantics.

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt
http://www.foo.com/porder

Surendra Reddy et al. [Page 10]

draft-reddy-enp-protocol-00.txt May 25, 1998

4.2. Property Values
 The value of a property is, at minimum, well formed XML.

4.3. Property Names
 A property name is a universally unique identifier that is
 associated with a schema that provides information about the syntax
 and semantics of the property.

 Because a property's name is universally unique, clients can depend
 upon consistent behavior for a particular property across multiple
 resources.

4.4. Notification Attributes
 The notification attribute data contains the of the process
 instance(URI), triggers(changes for which subscribers should be
 notified), filters(set of conditions that need to be applied to
 notifications before delivering them to the subscribed users), and
 the list of addresses to which the notification is sent.

4.5. Notification Content
 The notification content data contains additional information that
 need to delivered along with the notifications.

4.6. Triggers
 Defines what actions to be performed.

4.7. Rules
 Defines what triggers need to be activated on what property values.
 Rules provides a mechanism to filter unwanted notifications.

4.8. Client Based Semantics
 ENP protocol doesnot know anything about property value semantics
 and it doesn't interpret these values. Client process SHOULD be
 responsible for interpreting the meaning of these notifications.
 Client based semantics are essential for scalable protocol.

5. HTTP Method Definition Extensions
 This protocol is completely defined around the WebDAV. Following
 sections describe who existing methods in WebDAV can be used to
 define additional requirements for Event Notification Protocol.

5.1. PROPFIND
 The PROPFIND method retrieves all pending events from the event
 queue identified by the Request-URI. All events are identified
 uniquely using UUIDs[P.Leach].

 A client MUST submit a eventquery XML element in the body of the

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 11]

draft-reddy-enp-protocol-00.txt May 25, 1998

 request method describing what information is being requested. It
 is possible to request particular event attribute, all property
 values, or a list of the names of the events's properties.

 All servers MUST support returning a response of content type
 text/xml that contains a multistatus XML element that describes the
 results of the attempts to retrieve the pending event notifications
 from the queue.

 If there are no pending notifications available from the queue then
 not found result MUST be included in the response.

 The results of this method SHOULD NOT be cached.

5.1.1. Example - Retrieving Queued Notifications
 >>Request

 PROPFIND /enpqueue HTTP/1.1
 Host: www.foo.com
 enprequest-type: Query
 Content-type: text/xml
 Content-Length: xyz

 <?xml version="1.0" ?>
 <?xml:namespace ns="ENP:" prefix="D" ?>
 <D:eventquery>
 <D:allevents/>
 </D:eventquery>

 >>Response

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: xxxxx

 <?xml version="1.0" ?>
 <?xml:namespace ns="ENP:" prefix="D" ?>
 <D:multistatus>
 <D:response>
 <D:eventinfo>
 <eventid>abc0001</eventid>
 <eventprop>DELETED</eventprop>
 <eventsource>Surendra Reddy</eventsource>
 <eventdate> May 10, 1998 </eventdate>
 <resref>http://www.foo.com/container/res1.html</resref>
 </D:eventinfo>
 <D:eventinfo>
 <eventid>xyz0002</eventid>

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 12]

draft-reddy-enp-protocol-00.txt May 25, 1998

 <eventprop>UPDATED</eventprop>
 <eventsource>unknown</eventsource>
 <eventdate>May 10, 1998</eventdate>
 <resref>http://www.foo.com/container/test.html</resref>
 </D:eventinfo>
 </D:response>

 </D:multistatus>
 In this example, PROPFIND is executed on the event queue identified
 by http://www.foo.com/skreddy. The eventquery XML element specifies
 the name of the event properties whose values are being requested.

5.2. PROPPATCH
 The PROPPATCH method processes instructions specified in the request
 body to define, set and/or remove properties defined on the events
 identified by the Request-URI. The PROPATCH method is also used to
 subscribe, unsubscribe for event notifications.

 The request message body of a PROPPATCH method MUST contain the
 eventrequest XML element. Instruction processing MUST occur in the
 order instructions are received (i.e., from top to bottom).
 Instructions MUST either all be executed or none executed. Thus if
 any error occurs during processing all executed instructions MUST be
 undone and a proper error result returned.

5.2.1. Example - PROPPATCH
 >>Request

 PROPPATCH /bar.html HTTP/1.1
 Host: www.foo.com
 enprequest-type: Create
 Content-Type: text/xml
 Content-Length: xxxx

 <?xml version="1.0" ?>
 <?xml:namespace ns="DAV:" prefix="D" ?>
 <D:eventrequest>
 <subscribe reqref="001">
 <href>http://www.foo.com/enp.html</href>
 <eventprop>update</eventprop>
 <eventprop>delete</evenrprop>
 <notifyroute>mailto:skreddy@us.oracle.com</notifyroute>
 </subscribe>

 </D:eventrequest>

 >>Response

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt
http://www.foo.com/skreddy

Surendra Reddy et al. [Page 13]

draft-reddy-enp-protocol-00.txt May 25, 1998

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: xxxxx

 <?xml version="1.0" ?>
 <?xml:namespace ns="DAV:" prefix="D" ?>
 <D:multistatus>
 <D:response reqref="001>
 <D:status>HTTP/1.1 100 Successful </D:status>
 <D:eventref>abc001<eventref>
 </D:response>
 <D:response reqref="002">
 <D:status>HTTP/1.1 424 Method Failure</D:status>
 </D:response>
 </D:multistatus>
 In this example, the client requests the server to subscribe for
 state change on resource http://www.foo.com/enp.html to update or delete.
 In this case, ENP will notify the client through notification route
 mailto:skreddy@us.oracle.com whenever the resource update or delete
 property changes.

 In the second request, client registers for an event validate for state
 chane to complete. Upon successful completion of this event, ENP triggers

http://www.foo.com/cgi-bin/generate event and on completion of this trigger
 it notifies the client at URL identified by http://www.foo.com/.

6. HTTP Headers for Event Notification Protocol

6.1. ENP Header
 ENP = "ENP" ":" "1.0"

 This header indicates that the server supports the ENP schema and
 protocol as specified. All ENP compliant servers MUST return the ENP
 header on all OPTIONS responses.

6.2. Depth Header
 For instance, user may want to set a notification on a collection,
 but not all descendants. In this case, the user should be given the
 option of not letting its changes propagate. Depth header provides
 the user with this functionality to control of the depth of the
 notifications. If Depth header is set to 0, then changes trigger on
 the collection only, if it is 1 it applies to all immediate
 descendants of the collection. If depth header is set to infinitity
 all changes performed on all descendants of the collection.

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt
http://www.foo.com/enp.html
http://www.foo.com/cgi-bin/generate
http://www.foo.com/

Surendra Reddy et al. [Page 14]

draft-reddy-enp-protocol-00.txt May 25, 1998

6.3. If Header
 If = "If" ":" (1*No-tag-list | 1*Tagged-list)
 No-tag-list = List
 Tagged-list = Resource 1*List
 Resource = Coded-url
 List = "(" 1*(["Not"](State-token ")"
 State-token = Coded-url
 Coded-url = "<" URI ">"
 The If header is intended to have similar functionality to the If-
 Match header defined in section 14.25 of [Fielding et al., 1997].
 However the If header is intended for use with any URI which
 represents state information, referred to as a state token, about an
 event as well as e-tags.

 All ENP compliant resources MUST honor the If header.
 The If header's purpose is to define a filter with aseries of state
 lists. If the state of the event to which the header is applied does not
 match any of the specified state lists then the request MUST fail
 with a 412 Precondition Failed. If one of the described state lists
 matches the state of the resource then the request may succeed and respond
 with all events that satisfies the given filter.

6.3.1. No-tag-list Production
 The No-tag-list production describes a series of state tokens. If
 multiple No-tag-list productions are used then only one needs to
 match the state of the resource for the method to be allowed to
 continue.

 If a method, due to the presence of a Depth or Destination header,
 is applied to multiple resources then the No-tag-list production
 MUST be applied to each resource the method is applied to.

6.3.2. Tagged-list Production
 The tagged-list production scopes a list production. That is, it
 specifies that the lists following the resource specification only
 apply to the specified resource. The scope of the resource
 production begins with the list production immediately following the
 resource production and ends with the next resource production, if
 any.

 When the If header is applied to a particular resource, the Tagged-
 list productions MUST be searched to determine if any of the listed
 resources match the operand resource(s) for the current method. If
 none of the resource productions match the current resource then the
 header MUST be ignored. If one of the resource productions does
 match the name of the resource under consideration then the list
 productions following the resource production MUST be applied to the

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 15]

draft-reddy-enp-protocol-00.txt May 25, 1998

 resource in the manner specified in the previous section.

 The same URI MUST NOT appear more than once in a resource production
 in an If header.

6.3.3. not Production
 Every state token is either current, and hence describes the state
 of a resource, or is not current, and does not describe the state of
 a resource. The boolean operation of matching a state token to the
 current state of a resource thus resolves to a true or false value.
 The not production is used to reverse that value. The scope of the
 not production is the state-token immediately following it.
 If: (Not <loctoken:write1> <locktoken:write2>)
 When submitted with a request, this If header requires that all
 operand resources must not be locked with locktoken:write1 and must
 be locked with locktoken:write2.

6.4. Matching Function
 When performing If header processing, the definition of a matching
 state token is as follows.

 Matching state token: Where there is an exact match between the
 state token in the If header and any state token on the resource.

7. Status Code Extensions to HTTP/1.1

 The following status codes are added to those defined in HTTP/1.1
 [Fielding et al., 1997].

7.1. 207 Multi-Status
 The response provides status for multiple independent operations.

7.2. 422 Unprocessable Entity
 The server understands the content type of the request entity, but
 was unable to process the contained instructions.

7.3. 424 Method Failure
 The method was not executed on a particular resource within its
 scope because some part of the method's execution failed causing the
 entire method to be aborted. For example, if a command in a
 PROPPATCH method fails then, at minimum, the rest of the commands
 will also fail with 424 Method Failure.

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 16]

draft-reddy-enp-protocol-00.txt May 25, 1998

8. Multi-Status Response
 The default 207 Multi-Status response body is a text/xml HTTP entity
 that contains a single XML element called multistatus, which
 contains a set of XML elements called response which contain 200,
 300, 400, and 500 series status codes generated during the method
 invocation. 100 series status codes SHOULD NOT be recorded in a
 response XML element.

9. XML Element Definitions
 In the section below, the final line of each section gives the
 element type declaration using the format defined in [Bray, Paoli,
 Sperberg-McQueen, 1998]. The "Value" field, where present, specifies
 futher restrictions on the allowable contents of the XML element
 using BNF (i.e., to further restrict the values of a PCDATA
 element).

9.1. eventrequest XML Element

 <!ELEMENT eventrequest((subscribe | unsubscribe | eventquery | advertise)
+)>

9.2. subscribe XML element
 <!ELEMENT subscribe(einfo, enotify, erule*, eauth*)>
 <!ATTLIST subscribe
 sref ID #REQUIRED >

9.3. einfo XML element
 <!ELEMENT einfo(edata*, eattributes*, estates*)>
 <!ATTLIST einfo
 eid ID #REQUIRED
 ename PCDATA #IMPLIED
 etimestamp CDATA #IMPLIED
 eref CDATA #IMPLED>

 Attributes:

 eid An identifier which uniquely identiies the event.

 ename A short description for the event.

 etimestamp It is set to the time at which event notifications is
 sent and it is in UTC format.
 eref This points to URI which contains the data for this
 event.
 Content:

 edata Pay load of event data.

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 17]

draft-reddy-enp-protocol-00.txt May 25, 1998

 eattributes Event properties. This information is advertised by the
 event producer.

 estates Valid states of the event. This information is advertised
 by the event producer. These properties are queryable and
 selectable for the event consumers.

9.4. edata XML element
 in 4
 <!ELEMENT edata ANY >
 <!ATTLIST edata
 content-type ID #REQUIRED
 content-length ID #REQUIRED >

 Attributes:

 content-type It defines the content format of the edata element. Valid
 values are:
 xml the data is structured using XML
 mime the data consists of mime message
 base64 the data consists of binary information using
 base64 encoding
 content-length It defines the content legth in bytes.

 Content:

 ANY pay load of the event data encoded in the format specified
 in content-type attribute.

9.5. eattributes XML element

 <!ELEMENT eattributes(attribute+)>

 Content:

 attribute defines event properties as name/value pairs.

9.6. attribute XML element
 <!ELEMENT attribute ANY >
 <!ATTLIST attribute
 name #PCDATA #REQUIRED
 type #PCDATA #REQUIRED >

 Attributes:

 name identifies the attribute name. This attribute refers
 to the event identified by the einfo element.
 type identifies the type of the event attribute value.

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 18]

draft-reddy-enp-protocol-00.txt May 25, 1998

 Valid values are:
 string the attribute value is a string value
 int the attribute value is an integer value.
 real the attribute value is a decimal value
 date the attribute valie is a date value
 xml the data is structured using XML
 mime the data consists of mime message
 base64 the data consists of binary information using
 base64 encoding

 Content:

 ANY pay load of the event attribute value encoded in the format
 specified in type attribute.

9.7. estates XML element
 <!ELEMENT estates (vstate,cstate)>
 <!ELEMENT vstate (state+)>
 <!ELEMENT cstate (state)>
 <!ELEMENT state (#PCDATA)>

9.8. enotify XML element
 <!ELEMENT enotify (einfo+)>

9.9. erule XML element
 <!ELEMENT erule (term, ((and | or),term)+)
 <!ELEMENT and EMPTY>
 <!ELEMENT or EMPTY>

 <!ELEMENT term (propname, propop, propvalue)>
 <!ELEMENT propname (#PCDATA)>
 <!ELEMENT propvalue ANY
 <!ATTLIST propvalue
 content-type ID #REQUIRED
 content-length ID #REQUIRED>

 <!ELEMENT propop (eq,lt,le,ge,gt)
 <!ELEMENT eq EMPTY>
 <!ELEMENT le EMPTY>
 <!ELEMENT lt EMPTY>
 <!ELEMENT gt EMPTY>

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 19]

draft-reddy-enp-protocol-00.txt May 25, 1998

9.10. eauth XML element
 <!ELEMENT eauth #PCDATA
 <!ELEMENT eauth
 content-type ID #REQUIRED
 content-length ID #REQUIRED >

9.11. unsubscribe XML element
 <!ELEMENT unsubscribe(einfo, enotify, erule*, eauth*)>
 <!ATTLIST unsubscribe
 sref ID #REQUIRED >

9.12. eventref XML Element
 Name: eventref
 Namespace: ENP:
 Purpose: Identifies the event as a URI.
 Value: URI ; See section 3.2.1 of [Fielding et al., 1997]

 <!ELEMENT eventref (#PCDATA)>

9.13. eventid XML Element
 Name: eventid
 Namespace: ENP:
 Purpose: Identifies the event uniquely. When the event is subscribed,
 servers returns the unique id using UUIDs.
 Description:

 <!ELEMENT eventid (src+, dst+) >

9.14. eventstatus XML Element
 Name: eventstatus
 Namespace: ENP:
 Purpose: Specifies the status of the event. Valid values are
 COMPLETED, IN-PROGERSS, KILLED, MODIFIED, DELETED.

 <!ELEMENT eventid (#PCDATA) >

10. Access Controls
 ENP provides three levels of access control mechanisms. The first
 level of access is for all process related meta data which is owned
 by individual process i.e. event producers as per the access control
 rights assigned my these processes. Notification server will
 challenges the each process supply authentication information before
 it gives access to this data. Second level of access is read-only
 access to the notification content and data to event consumers.
 Third level of access controls are for the data genrated by the
 notification server.

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 20]

draft-reddy-enp-protocol-00.txt May 25, 1998

11. Security Considerations
 The ENP will provide a level of security identical to the WebDAV or
 HTTP/1.1 protocol. However, within the limits of the delivery
 system, security will be provided by the following principles:

 (1). The right to create the notification requests will be
 protected by ACLs.

 (2). A clear separation between self-notifications and group
 notifications will be enforced.

12. Author's Address
 Surendra Reddy
 Oracle Corporation
 500 Oracle Parkway
 M/S 6op3
 Redwoodshores, CA 94065

 Phone: +1(650) 506 5441
 Fax: +1(650) 654 6205
 Email: skreddy@us.oracle.com

 Mark Leighton Fisher
 Thomson Consumer Electronics
 Indianapolis, IN
 email: fisherm@indy.tce.com

 Expires December 12, 1998

https://datatracker.ietf.org/doc/html/draft-reddy-enp-protocol-00.txt

Surendra Reddy et al. [Page 21]

