
Workgroup: WG Working Group

Internet-Draft:

draft-reitzenstein-kitten-opaque-00

Published: 6 October 2022

Intended Status: Informational

Expires: 9 April 2023

Authors: N. von Reitzenstein Čerpnjak

A SASL and GSS-API Mechanism family using the asymmetric password-

authenticated key agreement OPAQUE

Abstract

This specification describes a family of Simple Authentication and

Security Layer (SASL, RFC4422) authentication mechanisms based on

the OPAQUE asymmetric password-authenticated key agreement (PAKE)

algorithm.

They offer two distinct advantages over the SCRAM family of

mechanisms. The underlying OPAQUE algorithm provides the ability for

clients to register without the servers getting access to the clear

text password of an user, preventing password exfiltration at

registration. Secondly a successful authentication produces a long-

term secret key only known to the client that can be used to access

encrypted server-side data without needing to share keys between

clients via a side-band mechanism.

When used in combination with TLS or an equivalent security layer

these mechanisms allow for secure channel binding.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Common Authentication

Technology Next Generation Working Group mailing list

(kitten@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/kitten/.

Source for this draft and an issue tracker can be found at https://

github.com/dequbed/draft-reitzenstein-auth-opaque.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/kitten/
https://mailarchive.ietf.org/arch/browse/kitten/
https://github.com/dequbed/draft-reitzenstein-auth-opaque
https://github.com/dequbed/draft-reitzenstein-auth-opaque

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Conventions and Definitions

2. Introduction

3. OPAQUE Algorithm Overview

4. OPAQUE Mechanism Names

5. OPAQUE Authentication Exchange

5.1. OPAQUE Attributes

5.2. SASL Mechanism Requirements

6. Channel Binding

6.1. Default Channel Binding

7. OPAQUE-A255SHA(-PLUS)

8. Formal Syntax

9. Security Considerations

10. Open Issues

11. IANA Considerations

12. Normative References

Acknowledgments

Author's Address

1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

2. Introduction

This specification describes a family of authentication mechanisms

called OPAQUE, based on the asymmetric PAKE of the same name. The

mechanisms provide strong mutual authentication and allow binding

the authentication to an pre-existing underlying encrypted

transport.

OPAQUE as specified in this document is a Simple Authentication and

Security Layer (SASL) mechanism compatible to the bridge between

SASL and the Generic Security Services Application Programming

Interface (GSS-API) called "GS2" [RFC5801]. This means that the

mechanism can be used as either a SASL mechanism or a GSS-API

mechanism.

The OPAQUE algorithm provides the following features which this

mechanism makes use of: * The authentication information stored in

an authentication database on the server is not sufficient to

impersonate the client. It is additionally salted and bound to a

private key of the server, making pre-stored dictionary attack

impossible. * Successfull authentication does not grant the server

enough information to impersonate the client. * Mutual

authentication is implicit and required. A successfull

authentication always strongly authenticates both sides of the

exchange. * A successfull authentication provides both parties with

an emphemeral shared secret. This secret has high entropy and can be

used to establish a trusted encrypted channel without deriving trust

from a 3rd party. * A successfull authentication additionally

provides the client with a constant secret. This secret is only

known to the client and the same for every authentication. It can be

used to e.g. store encrypted data on the server without having to

manage keys locally.

3. OPAQUE Algorithm Overview

The Authenticated Key Exchange defined by OPAQUE consists of three

messages -- KE1, KE2 and KE3 -- send by the client (KE1, KE3) and

server (KE2) respectively. A client knows the outcome of the

authentication after receiving KE2, the server after receiving KE3.

The following is a description of a full SASL OPAQUE authentication

exchange. Nothing in OPAQUE prevents sending the first client

response with the SASL authentication request as defined by an

application protocol ("initial client response"). See [RFC4422] for

more details.

The OPAQUE client starts by being in posession of an username and

password. It uses the password to generate a KE1 structure as per

OPAQUE [I-D.irtf-cfrg-opaque], and sends it and the username to the

¶

¶

¶

¶

¶

server. The server retrieves the corresponding authentication

information, i.e. registration record, OPRF seed, server private

key, and the key-stretching function (KSF) parameters used at

registration. It uses the first three to generate a KE2 structure as

per OPAQUE [I-D.irtf-cfrg-opaque] and sends that, channel binding

data (if any) and the KSF parameters to the client.

The client authenticates the server using KE2 and the KSF

parameters, also showing the integrity of the channel binding data

in the process, and generates a final KE3 it can return to the

server.

The three messages KE1, KE2 and KE3 are generated using the

following functions specified in OPAQUE [I-D.irtf-cfrg-opaque]:

The values of client_identity and server_identity are set to:

With the values and encodings of the remaining parameters per the

OPAQUE specification, and + indicating concatenation.

Upon receipt of KE3 the server can validate the authentication

exchange including integrity of the channel binding data it sent

previously, and extract a session key that strongly authenticates

the client to the server.

4. OPAQUE Mechanism Names

An OPAQUE mechanism name is the string "OPAQUE-" followed by an

uppercase identifier for the cryptographic primitives being used.

The identifier is limited to 7 octets (20 - len("OPAQUE-") - len("-

PLUS")) which is too short to contain the full names of all

cryptographic primitives used. Thus OPAQUE mechanisms using new

groups of primitives SHOULD be registered with IANA to allow

implementers to identify all required primitives.

The PLUS suffix is only used when the authenticating parties support

channel binding. If the server supports channel binding it SHOULD

advertise both the "bare" and "plus" version of whichever OPAQUE

variant it support. If the server does not it will only advertise

the "bare" version.

¶

¶

¶

KE1 := ClientInit(password)

KE2 := ServerInit(server_identity, server_private_key, server_public_key, record, credential_identifier, oprf_seed, KE1, client_identity)

KE3 := ClientFinish(client_identity, server_identity, KE2)

¶

¶

client_identity := client-first-message + "," + client_public_key

server_identity := server-message-bare + "," + server_public_key

¶

¶

¶

¶

¶

5. OPAQUE Authentication Exchange

First, the client sends the "client-first-message" containing:

A GS2 header consisting of a flag indicating channel binding

support and usage, and an optional SASL authorization identity.

The authentication ID (AuthID) of the user.

OPAQUE KE1, containing the OPRF credential request, a nonce, and

an ephemeral public key.

In response the server sends the "server-message" containing:

An encoding of requested channel binding data

Parameters for the KSF that needs to be used by the client

OPAQUE KE2, containting the OPRF credential response, a nonce,

and an ephemeral public key.

A MAC proving the integrity of the exchange so far and

cryptographically authenticating the server to the client (also

contained in KE2)

The client then recovers a long term private key and client-only

export key from the OPRF response using the defined KSF with the

user-provided password and parameters sent by the server.

To finalize the authentication a client sends a "client-final-

message" containing itself a MAC over the exchange (in KE3), thus

cryptographically authenticating the client to the server.

5.1. OPAQUE Attributes

This section details all attributes permissible in messages, their

use and their value format. All Attributes a single US-ASCII letters

and case-sensitive. The selection of letters used for attributes is

based on SCRAM [RFC5802] to make it easier to adapt extensions

defined for SCRAM to this mechanism.

Note that similar to SCRAM the order of attributes is fixed for all

messages, except for extension attributes which are limited to

C: n,,n=user,r=<ke1>

S: c=<cbdata>,i=<params>,v=<ke2>

C: p=<ke3>

¶

¶

*

¶

* ¶

*

¶

¶

* ¶

* ¶

*

¶

*

¶

¶

¶

¶

designated positions but may appear in any order. Implementations

MUST NOT assume a specific ordering of extensions.

a: This is an optional attribute and is part of the GS2 [RFC5801]

bridge between GSS-API and SASL. Its specification and usage is

the same as defined in [RFC5802], Section 5.1.

n: This attribute specifies the name of the user whose password

is used for authentication (aka "authentication identity"

[RFC4422]). Its encoding, preparation, and usage is the same as

defined in [RFC5802], Section 5.1.

m: This attribute is reserved for future extensibility. In this

version of OPAQUE its presence in a client or server message MUST

cause authentication failure when the attribute is parsed by the

other end.

r: This attribute specifies a base64-encoded serialization of the

KE1 message as specified by [OPAQUE].

c: This REQUIRED attribute specifies the base64-encoded GS2

header and channel binding data. Its specification is the same as

defined in [RFC5802], Section 5.1, however it is sent by the

server to the client instead of the other way around as in SCRAM.

i: This attribute specifies base64-encoded parameters for the KSF

to be used. The format of the parameters is specific to the KSF

in use.

v: This attribute specifies a base64-encoded serialization of the

KE2 message as specified by [OPAQUE].

p: This attribute specifies a base64-encoded serialization of the

KE3 message as specified by [OPAQUE].

Further as of now unspecified mandatory and optional extensions.

Mandatory extensions are encoded using the "m" attribute,

optional attributes may use any unassigned attribute name.

Unknown optional attributes MUST be ignored upon receipt.

5.2. SASL Mechanism Requirements

This section describes the required information for SASL mechanisms

as laid out in [RFC4422], Section 5.

1) "OPAQUE-A255SHA" and "OPAQUE-A255SHA-PLUS"

2a) OPAQUE is a client-first mechanism

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5802#section-5.1
https://rfc-editor.org/rfc/rfc5802#section-5.1
https://rfc-editor.org/rfc/rfc5802#section-5.1
https://rfc-editor.org/rfc/rfc4422#section-5

2b) OPAQUE does not send any additional data to indicate a

successful outcome. All authentication exchanges take 3 messages

regardless of success.

3) OPAQUE can transfer authorization identities from the client to

the server.

4) OPAQUE does not offer security layers but allows channel binding.

5) OPAQUE uses a MAC to protect the integrity of the entire

authentication exchange including the authzid.

6. Channel Binding

OPAQUE supports binding the authentication to an underlying secure

transport. Support for channel binding is optional, therefore the

usage of channel binding is negotiable.

The negotiation of channel binding is performed as defined in

[RFC5802], Section 6 with the following differences:

The non-PLUS and PLUS variants of the mechanism are instead named

OPAQUE-<variant> and OPAQUE-<variant>-PLUS respectively.

As it is the server who sends the channel binding data the client

is responsible to verify this data by constructing the expected

value of the "c=" attribute and comparing it to the received one.

This comparison SHOULD be implemented to be constant-time.

6.1. Default Channel Binding

'tls-exporter' is the default channel binding type for any

application that do not specify one.

Servers MUST implement the 'tls-exporter' [RFC9266] channel binding

type if they implement any channel binding and use TLS. Clients

SHOULD implement the 'tls-exporter' [RFC9266] channel binding type

if they implement any and use TLS.

Servers MUST use the channel binding type indicated by the client,

or fail authentication if they do not support it.

7. OPAQUE-A255SHA(-PLUS)

TODO: Define one set of primitives; probably OPAQUE-A255SHA(-PLUS),

using HKDF, HMAC, ristretto255, SHA-512 and Argon2i(d?)

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5802#section-6

8. Formal Syntax

The following syntax specification is written in Augmented Backus-

Naur Form (ABNF) notation as specified in [RFC5234]. The non-

terminals "UTF8-2", "UTF8-3" and "UTF8-4" are defined in [RFC3629].

The syntax is based in large parts on [RFC5802], Section 7, which

may be referenced for clarification. If this specification and

[RFC5802] are in conflict, this speification takes priority.

Used definitions from [RFC5802] are reproduced here for convenience:

¶

¶

¶

https://rfc-editor.org/rfc/rfc5802#section-7

ALPHA = <as defined in RFC 5234 appendix B.1>

DIGIT = <as defined in RFC 5234 appendix B.1>

UTF8-2 = <as defined in RFC 3629 (STD 63)>

UTF8-3 = <as defined in RFC 3629 (STD 63)>

UTF8-4 = <as defined in RFC 3629 (STD 63)>

attr-val = ALPHA "=" value

 ;; Generic syntax of any attribute sent

 ;; by server or client

value = 1*value-char

value-safe-char = %x01-2B / %x2D-3C / %x3E-7F /

 UTF8-2 / UTF8-3 / UTF8-4

 ;; UTF8-char except NUL, "=", and ",".

value-char = value-safe-char / "="

printable = %x21-2B / %x2D-7E

 ;; Printable ASCII except ",".

 ;; Note that any "printable" is also

 ;; a valid "value".

base64-char = ALPHA / DIGIT / "/" / "+"

base64-4 = 4base64-char

base64-3 = 3base64-char "="

base64-2 = 2base64-char "=="

base64 = *base64-4 [base64-3 / base64-2]

posit-number = %x31-39 *DIGIT

 ;; A positive number.

saslname = 1*(value-safe-char / "=2C" / "=3D")

 ;; Conforms to <value>.

authzid = "a=" saslname

 ;; Protocol specific.

cb-name = 1*(ALPHA / DIGIT / "." / "-")

 ;; See RFC 5056, Section 7.

 ;; E.g., "tls-server-end-point" or

 ;; "tls-unique".

gs2-cbind-flag = ("p=" cb-name) / "n" / "y"

 ;; "n" -> client doesn't support channel binding.

 ;; "y" -> client does support channel binding

 ;; but thinks the server does not.

 ;; "p" -> client requires channel binding.

 ;; The selected channel binding follows "p=".

gs2-header = gs2-cbind-flag "," [authzid] ","

 ;; GS2 header for OPAQUE

username = "n=" saslname

 ;; Usernames are prepared using SASLprep.

reserved-mext = "m=" 1*(value-char)

 ;; Reserved for signaling mandatory extensions.

 ;; The exact syntax will be defined in

 ;; the future.

channel-binding = "c=" base64

 ;; base64 encoding of cbind-input.

cbind-data = 1*OCTET

cbind-input = gs2-header [cbind-data]

 ;; cbind-data MUST be present for

 ;; gs2-cbind-flag of "p" and MUST be absent

 ;; for "y" or "n".

¶

The following definitions are specific to OPAQUE:

9. Security Considerations

The KSF parameters and channel bindings aren't authenticated before

KSF usage, allowing a DoS of a client by an malicious actor posing

as the server.

If not used with a secure channel providing confidentiality this

mechanism leaks the authid and authzid of an authenticating user to

any passive observer.

The cryptographic security of this mechanism is not increased over

the one provided by the underlying OPAQUE algorithm, so all security

considerations applying to that specification also apply to this

one.

10. Open Issues

OPAQUE allows for a static context to be bound into generated

keys to prevent cross-protocol and downgrade attacks. We should

probably set that to the mechanism name (e.g. 'OPAQUE-A255SHA')

With the current design the KSF parameters can not be MAC-

verified until after they have been used. This is bad. The only

other option is using the ephemeral keypair to generate a MAC key

and use that. This may impact security.

This mechanism should be extended to also become a GSS-API

mechanism like SCRAM is.

¶

client-first-message-bare =

 [reserved-mext ","] username "," auth-request

 ["," extensions]

client-first-message = gs2-header client-first-message-bare

validator = "v=" base64

server-message-bare =

 [reserved-mext ","] channel-binding "," ksf-params ","

 credentials-response ["," extensions]

server-message = server-message-bare "," validator

client-final-message = "p=" base64

¶

¶

¶

¶

*

¶

*

¶

*

¶

[I-D.irtf-cfrg-opaque]

[OPAQUE]

[RFC2119]

[RFC3629]

[RFC4422]

[RFC5234]

[RFC5801]

11. IANA Considerations

The IANA is requested to add the following family of SASL mechanisms

to the SASL Mechanism registry established by [RFC4422]:

To: iana@iana.org Subject: Registration of new SASL family OPAQUE

SASL mechanism name (or prefix for the family): OPAQUE- Security

Considerations: See this document Published Specification: See this

document For futher information: Contact the authors of this

document. Owner/Change controller: the IETF Note: None

12. Normative References

"The OPAQUE Asymmetric PAKE Protocol", n.d.,

<https://github.com/cfrg/draft-irtf-cfrg-opaque>.

Bourdrez, D., Krawczyk, H., Lewi, K., and C. A. Wood,

"The OPAQUE Asymmetric PAKE Protocol", Work in Progress,

Internet-Draft, draft-irtf-cfrg-opaque-09, 6 July 2022,

<https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-

opaque-09>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/rfc/rfc3629>.

Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple

Authentication and Security Layer (SASL)", RFC 4422, DOI

10.17487/RFC4422, June 2006, <https://www.rfc-editor.org/

rfc/rfc4422>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Josefsson, S. and N. Williams, "Using Generic Security

Service Application Program Interface (GSS-API)

Mechanisms in Simple Authentication and Security Layer

(SASL): The GS2 Mechanism Family", RFC 5801, DOI

¶

¶

¶

https://github.com/cfrg/draft-irtf-cfrg-opaque
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-09
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-09
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3629
https://www.rfc-editor.org/rfc/rfc4422
https://www.rfc-editor.org/rfc/rfc4422
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234

[RFC5802]

[RFC8174]

[RFC9266]

10.17487/RFC5801, July 2010, <https://www.rfc-editor.org/

rfc/rfc5801>.

Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,

"Salted Challenge Response Authentication Mechanism

(SCRAM) SASL and GSS-API Mechanisms", RFC 5802, DOI

10.17487/RFC5802, July 2010, <https://www.rfc-editor.org/

rfc/rfc5802>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Whited, S., "Channel Bindings for TLS 1.3", RFC 9266, DOI

10.17487/RFC9266, July 2022, <https://www.rfc-editor.org/

rfc/rfc9266>.

Acknowledgments

Thank you to Daniel Bourdrez, Hugo Krawczyk, Kevin Lewi, and C. A.

Wood for their work on the OPAQUE PAKE that this mechanism is based

on. Thank you to Abhijit Menon-Sen, Alexey Melnikov, Nicolas

Williams, and Chris Newman for their work on the SCRAM RFC, most of

which this draft oh so blatanly steals for its own gain.

Author's Address

Nadja von Reitzenstein Čerpnjak

Email: me@dequbed.space

¶

https://www.rfc-editor.org/rfc/rfc5801
https://www.rfc-editor.org/rfc/rfc5801
https://www.rfc-editor.org/rfc/rfc5802
https://www.rfc-editor.org/rfc/rfc5802
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc9266
https://www.rfc-editor.org/rfc/rfc9266
mailto:me@dequbed.space

	A SASL and GSS-API Mechanism family using the asymmetric password-authenticated key agreement OPAQUE
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Conventions and Definitions
	2. Introduction
	3. OPAQUE Algorithm Overview
	4. OPAQUE Mechanism Names
	5. OPAQUE Authentication Exchange
	5.1. OPAQUE Attributes
	5.2. SASL Mechanism Requirements

	6. Channel Binding
	6.1. Default Channel Binding

	7. OPAQUE-A255SHA(-PLUS)
	8. Formal Syntax
	9. Security Considerations
	10. Open Issues
	11. IANA Considerations
	12. Normative References
	Acknowledgments
	Author's Address

