
Workgroup: Network Working Group

Published: 20 November 2019

Intended Status: Informational

Expires: 23 May 2020

Authors: J. F. Reschke

greenbytes

A JSON Encoding for HTTP Header Field Values

Abstract

This document establishes a convention for use of JSON-encoded field

values in HTTP header fields.

Editorial Note

This note is to be removed before publishing as an RFC.

Distribution of this document is unlimited. Although this is not a

work item of the HTTPbis Working Group, comments should be sent to

the Hypertext Transfer Protocol (HTTP) mailing list at ietf-http-

wg@w3.org, which may be joined by sending a message with subject

"subscribe" to ietf-http-wg-request@w3.org.

Discussions of the HTTPbis Working Group are archived at http://

lists.w3.org/Archives/Public/ietf-http-wg/.

XML versions and latest edits for this document are available from

http://greenbytes.de/tech/webdav/#draft-reschke-http-jfv.

The changes in this draft are summarized in Appendix E.14.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 May 2020.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

mailto:ietf-http-wg@w3.org
mailto:ietf-http-wg@w3.org
mailto:ietf-http-wg-request@w3.org?subject=subscribe
http://lists.w3.org/Archives/Public/ietf-http-wg/
http://lists.w3.org/Archives/Public/ietf-http-wg/
http://greenbytes.de/tech/webdav/#draft-reschke-http-jfv
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Data Model and Format

3. Sender Requirements

4. Recipient Requirements

5. Using this Format in Header Field Definitions

6. Deployment Considerations

7. Interoperability Considerations

7.1. Encoding and Characters

7.2. Numbers

7.3. Object Constraints

8. Internationalization Considerations

9. Security Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Examples

A.1. Content-Length

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

A.2. Content-Disposition

A.3. WWW-Authenticate

A.4. Accept-Encoding

Appendix B. Use of JSON Field Value Encoding in the Wild

B.1. W3C Reporting API Specification

B.2. W3C Clear Site Data Specification

B.3. W3C Feature Policy Specification

Appendix C. Relation to HTTP 'Key' Header Field

Appendix D. Discussion

Appendix E. Change Log

E.1. Since draft-reschke-http-jfv-00

E.2. Since draft-reschke-http-jfv-01

E.3. Since draft-reschke-http-jfv-02

E.4. Since draft-reschke-http-jfv-03

E.5. Since draft-reschke-http-jfv-04

E.6. Since draft-ietf-httpbis-jfv-00

E.7. Since draft-ietf-httpbis-jfv-01

E.8. Since draft-ietf-httpbis-jfv-02

E.9. Since draft-reschke-http-jfv-05

E.10. Since draft-reschke-http-jfv-06

E.11. Since draft-reschke-http-jfv-07

E.12. Since draft-reschke-http-jfv-08

E.13. Since draft-reschke-http-jfv-09

E.14. Since draft-reschke-http-jfv-10

Acknowledgements

Author's Address

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. Introduction

Defining syntax for new HTTP header fields ([RFC7230], Section 3.2)

is non-trivial. Among the commonly encountered problems are:

There is no common syntax for complex field values. Several well-

known header fields do use a similarly looking syntax, but it is

hard to write generic parsing code that will both correctly

handle valid field values but also reject invalid ones.

The HTTP message format allows header fields to repeat, so field

syntax needs to be designed in a way that these cases are either

meaningful, or can be unambiguously detected and rejected.

HTTP/1.1 does not define a character encoding scheme ([RFC6365],

Section 2), so header fields are either stuck with US-ASCII

([RFC0020]), or need out-of-band information to decide what

encoding scheme is used. Furthermore, APIs usually assume a

default encoding scheme in order to map from octet sequences to

strings (for instance, [XMLHttpRequest] uses the IDL type

"ByteString", effectively resulting in the ISO-8859-1 character

encoding scheme [ISO-8859-1] being used).

(See Section 8.3.1 of [RFC7231] for a summary of considerations for

new header fields.)

This specification addresses the issues listed above by defining

both a generic JSON-based ([RFC8259]) data model and a concrete wire

format that can be used in definitions of new header fields, where

the goals were:

to be compatible with header field recombination when fields

occur multiple times in a single message (Section 3.2.2 of

[RFC7230]), and

not to use any problematic characters in the field value (non-

ASCII characters and certain whitespace characters).

Note:[HSTRUCT], a work item of the IETF HTTP Working Group, is a

different attempt to address this set of problems -- it tries to

identify and formalize common field structures in existing header

fields; the syntax defined over there would usually lead to a more

compact notation.

2. Data Model and Format

In HTTP, header fields with the same field name can occur multiple

times within a single message (Section 3.2.2 of [RFC7230]). When

this happens, recipients are allowed to combine the field values

using commas as delimiter. This rule matches nicely JSON's array

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc7230#header.fields
https://rfc-editor.org/rfc/rfc6365#section-2
https://rfc-editor.org/rfc/rfc7231#considerations.for.new.header.fields
https://rfc-editor.org/rfc/rfc7230#field.order
https://rfc-editor.org/rfc/rfc7230#field.order

format (Section 5 of [RFC8259]). Thus, the basic data model used

here is the JSON array.

Header field definitions that need only a single value can restrict

themselves to arrays of length 1, and are encouraged to define error

handling in case more values are received (such as "first wins",

"last wins", or "abort with fatal error message").

JSON arrays are mapped to field values by creating a sequence of

serialized member elements, separated by commas and optionally

whitespace. This is equivalent to using the full JSON array format,

while leaving out the "begin-array" ('[') and "end-array" (']')

delimiters.

The ABNF character names and classes below are used (copied from

[RFC5234], Appendix B.1):

 CR = %x0D ; carriage return

 HTAB = %x09 ; horizontal tab

 LF = %x0A ; line feed

 SP = %x20 ; space

 VCHAR = %x21-7E ; visible (printing) characters

Characters in JSON strings that are not allowed or discouraged in

HTTP header field values -- that is, not in the "VCHAR" definition

-- need to be represented using JSON's "backslash" escaping

mechanism ([RFC8259], Section 7).

The control characters CR, LF, and HTAB do not appear inside JSON

strings, but can be used outside (line breaks, indentation etc.).

These characters need to be either stripped or replaced by space

characters (ABNF "SP").

Formally, using the HTTP specification's ABNF extensions defined in

Section 7 of [RFC7230]:

 json-field-value = #json-field-item

 json-field-item = JSON-Text

 ; see [RFC8259], Section 2,

 ; post-processed so that only VCHAR characters

 ; are used

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#arrays
https://rfc-editor.org/rfc/rfc5234#appendix-B.1
https://rfc-editor.org/rfc/rfc8259#strings
https://rfc-editor.org/rfc/rfc7230#abnf.extension

3. Sender Requirements

To map a JSON array to an HTTP header field value, process each

array element separately by:

generating the JSON representation,

stripping all JSON control characters (CR, HTAB, LF), or

replacing them by space ("SP") characters,

replacing all remaining non-VSPACE characters by the equivalent

backslash-escape sequence ([RFC8259], Section 7).

The resulting list of strings is transformed into an HTTP field

value by combining them using comma (%x2C) plus optional SP as

delimiter, and encoding the resulting string into an octet sequence

using the US-ASCII character encoding scheme ([RFC0020]).

4. Recipient Requirements

To map a set of HTTP header field instances to a JSON array:

combine all header field instances into a single field as per

Section 3.2.2 of [RFC7230],

add a leading begin-array ("[") octet and a trailing end-array

("]") octet, then

run the resulting octet sequence through a JSON parser.

The result of the parsing operation is either an error (in which

case the header field values needs to be considered invalid), or a

JSON array.

5. Using this Format in Header Field Definitions

Specifications defining new HTTP header fields need to take the

considerations listed in Section 8.3.1 of [RFC7231] into account.

Many of these will already be accounted for by using the format

defined in this specification.

Readers of HTTP-related specifications frequently expect an ABNF

definition of the field value syntax. This is not really needed

here, as the actual syntax is JSON text, as defined in Section 2 of

[RFC8259].

A very simple way to use this JSON encoding thus is just to cite

this specification -- specifically the "json-field-value" ABNF

production defined in Section 2 -- and otherwise not to talk about

the details of the field syntax at all.

¶

1. ¶

2.

¶

3.

¶

¶

¶

1.

¶

2.

¶

3. ¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8259#strings
https://rfc-editor.org/rfc/rfc7230#field.order
https://rfc-editor.org/rfc/rfc7231#considerations.for.new.header.fields
https://rfc-editor.org/rfc/rfc8259#grammar

An alternative approach is just to repeat the ABNF-related parts

from Section 2.

This frees the specification from defining the concrete on-the-wire

syntax. What's left is defining the field value in terms of a JSON

array. An important aspect is the question of extensibility, e.g.

how recipients ought to treat unknown field names. In general, a

"must ignore" approach will allow protocols to evolve without

versioning or even using entire new field names.

6. Deployment Considerations

This JSON-based syntax will only apply to newly introduced header

fields, thus backwards compatibility is not a problem. That being

said, it is conceivable that there is existing code that might trip

over double quotes not being used for HTTP's quoted-string syntax

(Section 3.2.6 of [RFC7230]).

7. Interoperability Considerations

The "I-JSON Message Format" specification ([RFC7493]) addresses

known JSON interoperability pain points. This specification borrows

from the requirements made over there:

7.1. Encoding and Characters

This specification requires that field values use only US-ASCII

characters, and thus by definition use a subset of UTF-8

(Section 2.1 of [RFC7493]).

7.2. Numbers

Be aware of the issues around number precision, as discussed in

Section 2.2 of [RFC7493].

7.3. Object Constraints

As described in Section 4 of [RFC8259], JSON parser implementations

differ in the handling of duplicate object names. Therefore, senders

MUST NOT use duplicate object names, and recipients SHOULD either

treat field values with duplicate names as invalid (consistent with

[RFC7493], Section 2.3) or use the lexically last value (consistent

with [ECMA-262], Section 24.3.1.1).

Furthermore, ordering of object members is not significant and can

not be relied upon.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7230#field.components
https://rfc-editor.org/rfc/rfc7493#section-2.1
https://rfc-editor.org/rfc/rfc7493#section-2.2
https://rfc-editor.org/rfc/rfc8259#section-4
https://rfc-editor.org/rfc/rfc7493#section-2.3
http://www.ecma-international.org/ecma-262/6.0/#sec-internalizejsonproperty

[RFC0020]

[RFC5234]

[RFC7230]

[RFC7231]

8. Internationalization Considerations

In HTTP/1.1, header field values are represented by octet sequences,

usually used to transmit ASCII characters, with restrictions on the

use of certain control characters, and no associated default

character encoding, nor a way to describe it

([RFC7230], Section 3.2). HTTP/2 does not change this.

This specification maps all characters which can cause problems to

JSON escape sequences, thereby solving the HTTP header field

internationalization problem.

Future specifications of HTTP might change to allow non-ASCII

characters natively. In that case, header fields using the syntax

defined by this specification would have a simple migration path (by

just stopping to require escaping of non-ASCII characters).

9. Security Considerations

Using JSON-shaped field values is believed to not introduce any new

threads beyond those described in Section 12 of [RFC8259], namely

the risk of recipients using the wrong tools to parse them.

Other than that, any syntax that makes extensions easy can be used

to smuggle information through field values; however, this concern

is shared with other widely used formats, such as those using

parameters in the form of name/value pairs.

10. References

10.1. Normative References

Cerf, V., "ASCII format for network interchange", STD 80,

RFC 20, DOI 10.17487/RFC0020, October 1969, <https://

www.rfc-editor.org/info/rfc20>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Fielding, R., Ed. and J. F. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. F. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7230#header.fields
https://rfc-editor.org/rfc/rfc8259#section-12
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231

[RFC7493]

[RFC8259]

[CLEARSITE]

[ECMA-262]

[FEATUREPOL]

[HSTRUCT]

[ISO-8859-1]

[KEY]

[REPORTING]

[RFC6266]

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/info/rfc7493>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", RFC 8259, DOI 10.17487/RFC8259,

December 2017, <https://www.rfc-editor.org/info/rfc8259>.

10.2. Informative References

West, M., "Clear Site Data", W3C Working Draft WD-clear-

site-data-20171130, 30 November 2017, <https://

www.w3.org/TR/2017/WD-clear-site-data-20171130/>. Latest

version available at https://www.w3.org/TR/clear-site-

data/.

Ecma International, "ECMA-262 6th Edition, The ECMAScript

2015 Language Specification", Standard ECMA-262, June

2015, <http://www.ecma-international.org/ecma-262/6.0/>.

Clelland, I., "Feature Policy", W3C Draft Community

Group Report , 3 October 2019, <https://wicg.github.io/

feature-policy/>.

Nottingham, M. and P-H. Kamp, "Structured Headers for

HTTP", Work in Progress, Internet-Draft, draft-ietf-

httpbis-header-structure-14, October 2019, <https://

tools.ietf.org/html/draft-ietf-httpbis-header-

structure-14>.

International Organization for Standardization,

"Information technology -- 8-bit single-byte coded

graphic character sets -- Part 1: Latin alphabet No. 1",

ISO/IEC 8859-1:1998, 1998.

Fielding, R. and M. Nottingham, "The Key HTTP Response

Header Field", Work in Progress, Internet-Draft, draft-

ietf-httpbis-key-01, March 2016, <https://tools.ietf.org/

html/draft-ietf-httpbis-key-01>.

Creager, D., Grigorik, I., Meyer, P., and M. West,

"Reporting API", W3C Working Draft WD-

reporting-1-20180925, 25 September 2018, <https://

www.w3.org/TR/2018/WD-reporting-1-20180925/>. Latest

version available at https://www.w3.org/TR/reporting-1/.

Reschke, J. F., "Use of the Content-Disposition Header

Field in the Hypertext Transfer Protocol (HTTP)", RFC

https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc8259
https://www.w3.org/TR/2017/WD-clear-site-data-20171130/
https://www.w3.org/TR/2017/WD-clear-site-data-20171130/
https://www.w3.org/TR/clear-site-data/
https://www.w3.org/TR/clear-site-data/
http://www.ecma-international.org/ecma-262/6.0/
https://wicg.github.io/feature-policy/
https://wicg.github.io/feature-policy/
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-14
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-14
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-14
https://tools.ietf.org/html/draft-ietf-httpbis-key-01
https://tools.ietf.org/html/draft-ietf-httpbis-key-01
https://www.w3.org/TR/2018/WD-reporting-1-20180925/
https://www.w3.org/TR/2018/WD-reporting-1-20180925/
https://www.w3.org/TR/reporting-1/

[RFC6365]

[RFC7235]

[RFC8187]

[XMLHttpRequest]

6266, DOI 10.17487/RFC6266, June 2011, <https://www.rfc-

editor.org/info/rfc6266>.

Hoffman, P. and J. Klensin, "Terminology Used in

Internationalization in the IETF", BCP 166, RFC 6365, DOI

10.17487/RFC6365, September 2011, <https://www.rfc-

editor.org/info/rfc6365>.

Fielding, R., Ed. and J. F. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/info/rfc7235>.

Reschke, J. F., "Indicating Character Encoding and

Language for HTTP Header Field Parameters", RFC 8187, DOI

10.17487/RFC8187, September 2017, <https://www.rfc-

editor.org/info/rfc8187>.

WhatWG, "XMLHttpRequest", , <https://

xhr.spec.whatwg.org/>.

Appendix A. Examples

This section shows how some of the existing HTTP header fields would

look like if they would use the format defined by this

specification.

A.1. Content-Length

"Content-Length" is defined in Section 3.3.2 of [RFC7230], with the

field value's ABNF being:

 Content-Length = 1*DIGIT

So the field value is similar to a JSON number

([RFC8259], Section 6).

Content-Length is restricted to a single field instance, as it

doesn't use the list production (as per Section 3.2.2 of [RFC7230]).

However, in practice multiple instances do occur, and the definition

of the header field does indeed discuss how to handle these cases.

If Content-Length was defined using the JSON format discussed here,

the ABNF would be something like:

 Content-Length = #number

 ; number: [RFC8259], Section 6

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc6266
https://www.rfc-editor.org/info/rfc6266
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc8187
https://www.rfc-editor.org/info/rfc8187
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://rfc-editor.org/rfc/rfc7230#header.content-length
https://rfc-editor.org/rfc/rfc8259#numbers
https://rfc-editor.org/rfc/rfc7230#field.order

...and the prose definition would:

restrict all numbers to be non-negative integers without

fractions, and

require that the array of values is of length 1 (but allow the

case where the array is longer, but all members represent the

same value)

A.2. Content-Disposition

Content-Disposition field values, defined in [RFC6266], consist of a

"disposition type" (a string), plus multiple parameters, of which at

least one ("filename") sometime needs to carry non-ASCII characters.

For instance, the first example in Section 5 of [RFC6266]:

has a disposition type of "Attachment", with filename parameter

value "example.html". A JSON representation of this information

might be:

which would translate to a header field value of:

The third example in Section 5 of [RFC6266] uses a filename

parameter containing non-US-ASCII characters:

Note that in this case, the "filename*" parameter uses the encoding

defined in [RFC8187], representing a filename starting with the

Unicode character "€" (EURO SIGN, U+20AC), followed by " rates". If

the definition of Content-Disposition would have used the format

proposed here, the workaround involving the "parameter*" syntax

would not have been needed at all.

The JSON representation of this value could then be:

¶

¶

*

¶

*

¶

¶

¶

 Attachment; filename=example.html¶

¶

 {

 "Attachment": {

 "filename" : "example.html"

 }

 }

¶

¶

 { "Attachment": { "filename" : "example.html" } }¶

¶

 attachment; filename*=UTF-8''%e2%82%ac%20rates¶

¶

¶

 { "attachment": { "filename" : "\u20AC rates" } }¶

https://rfc-editor.org/rfc/rfc6266#section-5
https://rfc-editor.org/rfc/rfc6266#section-5

A.3. WWW-Authenticate

The WWW-Authenticate header field value is defined in Section 4.1 of

[RFC7235] as a list of "challenges":

...where a challenge consists of a scheme with optional parameters:

An example for a complex header field value given in the definition

of the header field is:

(line break added for readability)

A possible JSON representation of this field value would be the

array below:

...which would translate to a header field value of:

A.4. Accept-Encoding

The Accept-Encoding header field value is defined in Section 5.3.4

of [RFC7231] as a list of codings, each of which allowing a weight

parameter 'q':

¶

 WWW-Authenticate = 1#challenge¶

¶

 challenge = auth-scheme [1*SP (token68 / #auth-param)]¶

¶

 Newauth realm="apps", type=1, title="Login to \"apps\"",

 Basic realm="simple"

¶

¶

¶

 [

 {

 "Newauth" : {

 "realm": "apps",

 "type" : 1,

 "title" : "Login to \"apps\""

 }

 },

 {

 "Basic" : {

 "realm": "simple"

 }

 }

]

¶

¶

 { "Newauth" : { "realm": "apps", "type" : 1,

 "title": "Login to \"apps\"" }},

 { "Basic" : { "realm": "simple"}}

¶

¶

https://rfc-editor.org/rfc/rfc7235#header.www-authenticate
https://rfc-editor.org/rfc/rfc7231#header.accept-encoding

 Accept-Encoding = #(codings [weight])

 codings = content-coding / "identity" / "*"

 weight = OWS ";" OWS "q=" qvalue

 qvalue = ("0" ["." 0*3DIGIT])

 / ("1" ["." 0*3("0")])

An example for a complex header field value given in the definition

of the header field is:

Due to the defaulting rules for the quality value ([RFC7231],

Section 5.3.1), this could also be written as:

A JSON representation could be:

...which would translate to a header field value of:

In this example, the part about "gzip" appears unnecessarily

verbose, as the value is just an empty object. A simpler notation

would collapse members like these to string literals:

If this is desirable, the header field definition could allow both

string literals and objects, and define that a mere string literal

¶

¶

 gzip;q=1.0, identity; q=0.5, *;q=0¶

¶

 gzip, identity; q=0.5, *; q=0¶

¶

 [

 {

 "gzip" : {

 }

 },

 {

 "identity" : {

 "q": 0.5

 }

 },

 {

 "*" : {

 "q": 0

 }

 }

]

¶

¶

 {"gzip": {}}, {"identity": {"q": 0.5}}, {"*": {"q": 0}}¶

¶

 "gzip", {"identity": {"q": 0.5}}, {"*": {"q": 0}}¶

https://rfc-editor.org/rfc/rfc7231#quality.values

would be mapped to a member whose name is given by the string

literal, and the value is an empty object.

For what it's worth, one of the most common cases for 'Accept-

Encoding' would become:

which would be only a small overhead over the original format.

Appendix B. Use of JSON Field Value Encoding in the Wild

Since work started on this document, various specifications have

adopted this format. At least one of these moved away after the HTTP

Working Group decided to focus on [HSTRUCT] (see thread starting at

https://lists.w3.org/Archives/Public/ietf-http-wg/2016OctDec/

0505.html).

The sections below summarize the current usage of this format.

B.1. W3C Reporting API Specification

Defined in W3C Working Draft "Reporting API" (Section 3.1 of

[REPORTING]). Still in use in latest working draft dated September

2018.

B.2. W3C Clear Site Data Specification

Used in earlier versions of "Clear Site Data". The current version

replaces the use of JSON with a custom syntax that happens to be

somewhat compatible with an array of JSON strings (see Section 3.1

of [CLEARSITE] and https://lists.w3.org/Archives/Public/ietf-http-

wg/2017AprJun/0214.html for feedback).

B.3. W3C Feature Policy Specification

Originally defined in W3C Draft Community Group Report "Feature

Policy" ([FEATUREPOL]), but now replaced with a custom syntax (see

https://github.com/WICG/feature-policy/pull/83).

Appendix C. Relation to HTTP 'Key' Header Field

[KEY] aims to improve the cacheability of responses that vary based

on certain request header fields, addressing lack of granularity in

the existing "Vary" response header field

([RFC7231], Section 7.1.4). If the JSON-based format described by

this document gains popularity, it might be useful to add a JSON-

aware "Key Parameter" (see Section 2.3 of [KEY]).

¶

¶

 "gzip", "deflate"¶

¶

¶

¶

¶

¶

¶

¶

https://lists.w3.org/Archives/Public/ietf-http-wg/2016OctDec/0505.html
https://lists.w3.org/Archives/Public/ietf-http-wg/2016OctDec/0505.html
https://www.w3.org/TR/2018/WD-reporting-1-20180925/#header
https://www.w3.org/TR/2017/WD-clear-site-data-20171130/#header
https://lists.w3.org/Archives/Public/ietf-http-wg/2017AprJun/0214.html
https://lists.w3.org/Archives/Public/ietf-http-wg/2017AprJun/0214.html
https://github.com/WICG/feature-policy/pull/83
https://rfc-editor.org/rfc/rfc7231#header.vary
https://tools.ietf.org/html/draft-ietf-httpbis-key-01#section-2.3

Appendix D. Discussion

This approach uses a default of "JSON array", using implicit array

markers. An alternative would be a default of "JSON object". This

would simplify the syntax for non-list-typed header fields, but all

the benefits of having the same data model for both types of header

fields would be gone. A hybrid approach might make sense, as long as

it doesn't require any heuristics on the recipient's side.

Note: a concrete proposal was made by Kazuho Oku in https://

lists.w3.org/Archives/Public/ietf-http-wg/2016JanMar/0155.html.

Use of generic libs vs compactness of field values..

Appendix E. Change Log

This section is to be removed before publishing as an RFC.

E.1. Since draft-reschke-http-jfv-00

Editorial fixes + working on the TODOs.

E.2. Since draft-reschke-http-jfv-01

Mention slightly increased risk of smuggling information in header

field values.

E.3. Since draft-reschke-http-jfv-02

Mention Kazuho Oku's proposal for abbreviated forms.

Added a bit of text about the motivation for a concrete JSON subset

(ack Cory Benfield).

Expand I18N section.

E.4. Since draft-reschke-http-jfv-03

Mention relation to KEY header field.

E.5. Since draft-reschke-http-jfv-04

Between June and December 2016, this was a work item of the HTTP

working group (see https://datatracker.ietf.org/doc/draft-ietf-

httpbis-jfv/). Work (if any) continues now on https://

datatracker.ietf.org/doc/draft-reschke-http-jfv/.

Changes made while this was a work item of the HTTP Working Group:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://lists.w3.org/Archives/Public/ietf-http-wg/2016JanMar/0155.html
https://lists.w3.org/Archives/Public/ietf-http-wg/2016JanMar/0155.html
https://datatracker.ietf.org/doc/draft-ietf-httpbis-jfv/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-jfv/
https://datatracker.ietf.org/doc/draft-reschke-http-jfv/
https://datatracker.ietf.org/doc/draft-reschke-http-jfv/

E.6. Since draft-ietf-httpbis-jfv-00

Added example for "Accept-Encoding" (inspired by Kazuho's feedback),

showing a potential way to optimize the format when default values

apply.

E.7. Since draft-ietf-httpbis-jfv-01

Add interop discussion, building on I-JSON and ECMA-262 (see

https://github.com/httpwg/http-extensions/issues/225).

E.8. Since draft-ietf-httpbis-jfv-02

Move non-essential parts into appendix.

Updated XHR reference.

E.9. Since draft-reschke-http-jfv-05

Add meat to "Using this Format in Header Field Definitions".

Add a few lines on the relation to "Key".

Summarize current use of the format.

E.10. Since draft-reschke-http-jfv-06

RFC 5987 is obsoleted by RFC 8187.

Update CLEARSITE comment.

E.11. Since draft-reschke-http-jfv-07

Update JSON and HSTRUCT references.

FEATUREPOL doesn't use JSON syntax anymore.

E.12. Since draft-reschke-http-jfv-08

Update HSTRUCT reference.

Update notes about CLEARSITE and FEATUREPOL.

E.13. Since draft-reschke-http-jfv-09

Update HSTRUCT and FEATUREPOL references.

Update note about REPORTING.

Changed category to "informational".

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/httpwg/http-extensions/issues/225

E.14. Since draft-reschke-http-jfv-10

Update HSTRUCT reference.

Acknowledgements

Thanks go to the Hypertext Transfer Protocol Working Group

participants.

Author's Address

Julian F. Reschke

greenbytes GmbH

Hafenweg 16

48155 Münster

Germany

Email: julian.reschke@greenbytes.de

URI: http://greenbytes.de/tech/webdav/

¶

¶

mailto:julian.reschke@greenbytes.de
http://greenbytes.de/tech/webdav/

	A JSON Encoding for HTTP Header Field Values
	Abstract
	Editorial Note
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Data Model and Format
	3. Sender Requirements
	4. Recipient Requirements
	5. Using this Format in Header Field Definitions
	6. Deployment Considerations
	7. Interoperability Considerations
	7.1. Encoding and Characters
	7.2. Numbers
	7.3. Object Constraints

	8. Internationalization Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Examples
	A.1. Content-Length
	A.2. Content-Disposition
	A.3. WWW-Authenticate
	A.4. Accept-Encoding
	Appendix B. Use of JSON Field Value Encoding in the Wild
	B.1. W3C Reporting API Specification
	B.2. W3C Clear Site Data Specification
	B.3. W3C Feature Policy Specification
	Appendix C. Relation to HTTP 'Key' Header Field
	Appendix D. Discussion
	Appendix E. Change Log
	E.1. Since draft-reschke-http-jfv-00
	E.2. Since draft-reschke-http-jfv-01
	E.3. Since draft-reschke-http-jfv-02
	E.4. Since draft-reschke-http-jfv-03
	E.5. Since draft-reschke-http-jfv-04
	E.6. Since draft-ietf-httpbis-jfv-00
	E.7. Since draft-ietf-httpbis-jfv-01
	E.8. Since draft-ietf-httpbis-jfv-02
	E.9. Since draft-reschke-http-jfv-05
	E.10. Since draft-reschke-http-jfv-06
	E.11. Since draft-reschke-http-jfv-07
	E.12. Since draft-reschke-http-jfv-08
	E.13. Since draft-reschke-http-jfv-09
	E.14. Since draft-reschke-http-jfv-10
	Acknowledgements
	Author's Address

