
Network Working Group E. Rescorla

Internet-Draft RTFM, Inc.

Intended status: Standards Track J. Hildebrand

Expires: September 09, 2011 Cisco Systems, Inc.

March 08, 2011

JavaScript Message Security Format

draft-rescorla-jsms-00.txt

Abstract

Many applications require the ability to send cryptographically secured

messages. While the IETF has defined a number of formats for such

messages (e.g. CMS) those formats use encodings which are not congenial

for Web applications. This document describes a new cryptographic

message format which is based on JavaScript Object Notation (JSON) and

thus is easy for Web applications to generate and parse.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 09, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

2. Conventions Used In This Document

3. Overview

3.1. Operational Modes

3.2. Conventions

3.3. Certificate Processing

3.4. Certificate Discovery

4. Message Format

4.1. Base64 Handling

4.2. Content Object

4.3. Common Elements

4.4. Signed Data

4.4.1. Signature Computation

4.4.2. Signature Verification

4.4.2.1. Certificate Processing

4.5. Encrypted Data

4.5.1. Message Encryption

4.5.2. Message Decryption

4.5.3. Key Derivation

4.5.4. CMK Encryption

4.5.4.1. Asymmetric Encryption

4.5.4.2. Symmetric Encryption

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4.6. Composition

5. Version Processing

6. IANA Considerations

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. JSON Schema

Appendix A.1. Message Contents Schema

Appendix A.2. Common Elements Schema

Appendix A.3. Signed Message Schema

Appendix A.4. PKIX Certificate Chain Schema

Appendix A.5. Encrypted Message Schema

Appendix A.6. Recipient Schema

Appendix B. Acknowledgments

Authors' Addresses

1. Introduction

Many applications require the ability to send cryptographically secured

(encrypted, digitally signed, etc.) messages. While the IETF has

defined a number of formats for such messages, those formats are widely

viewed as being excessively complicated for the demands of Web

applications, which typically only need the ability to secure simple

messages. In addition, existing formats use encoding mechanisms (e.g.,

ASN.1 BER/DER) which are not congenial for Web applications. This

presents an obstacle to the deployment of strong security by such

applications.

This document describes a new cryptographic message format, JavaScript

Message Security (JSMS) intended to meet the need of the Web

environment. While JSMS is modeled on existing formats -- principally

CMS [RFC5652] -- it uses JavaScript Object Notation (JSON) rather than

ASN.1/BER/DER, making it far easier for Web applications to handle. In

the interest of simplicity, JSMS also omits as many as possible of the

CMS modes (multiple signatures, password-based encryption).

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Encrypted Data

Signed Data

Minimize implementation complexity

Base64 as the only encoding

2. Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Overview

The JSMS message format is simply a JSON [RFC4627] dictionary with an

appropriate collection of fields. Each operating mode will have a

separate set of fields, with a common field to distinguish between the

modes.

3.1. Operational Modes

JSMS supports two operational modes:

A block of data encrypted under a random message

encryption key (MEK). The MEK is then separately encrypted for each

recipient, either via symmetric or asymmetric encryption. The data

is always integrity protected, either via a separate Message

Authentication Code (MAC) or an Authenticated Encryption with

Associated Data (AEAD) algorithm such as AES-GCM or AES-CCM.

A block of data signed by a single signer using his

asymmetric key and optionally carrying his certificate. Multiple

signatures are not permitted in order to keep things simple.

Any other desired security functions are provided by composition of

these modes. For instance, a signed and encrypted message is produced

by first creating a Signed message and then encrypting that data. (See

Section 4.6 for more on composition.

3.2. Conventions

In general, JSMS follows the following structural conventions:

Wherever possible, protocol choices

have been made such that the time and effort required to implement

the protocol in many different programming languages will be

minimized. This means that optimizations for bandwidth, CPU, and

memory utilization have been explicitly avoided.

Any data that does not have a

straightforward string representation (binary values, large

integers, etc.) is base64-encoded (see: [RFC4648]). In some cases,

No canonicalization

In-memory processing

hexadecimal encodings might be more convenient, but consistency is

even more important to reduce implementation complexity.

In many cryptographic message formats, canonical

encodings are used to allow the same value to be computed at both

sender and recipient (e.g., for digital signatures). This is

inconvenient in JSON, which just views messages as a bundle of key/

value pairs. Instead, whenever canonicalization would be required,

the relevant data is serialized and base64-encoded for transport,

allowing both sides to run computations over the same original set

of octets.

We assume that the entire message can fit in main

memory and make no effort to design a wire representation which can

be handled in small chunks in a single pass. This means, for

instance, that there is no need to have a message digest indicator

at the beginning of the message and then the signature at the end,

as is done in CMS. Fields are simply serialized in whatever order is

most convenient for the JSON implementation. The examples in this

document are generally shown in whatever order seems most readable

and are not normative.

3.3. Certificate Processing

Experience has shown that certificate handling (path construction) is

one of the trickier parts of building a cryptographic system. While

JSMS supports PKIX certificates, its certificate processing is far

simpler than that of CMS. When a JSMS agent provides its certificate,

it must provide an ordered chain (as in TLS [RFC5246]) terminating in

its own certificate, thus removing the need to construct certificate

paths. The certificates MUST be ordered with the end-entity certificate

first and each certificate that follows signing the certificate

immediately preceding it. In addition, because many implementations

will not want to do any ASN.1/BER processing at all, we will define a

Web Service which applications can use for chain validation and

translation to an easy-to-parse format. (See [TODO]).

3.4. Certificate Discovery

JSMS will often be used in an online messaging environment with users

that have an address of the form user@domain, such as email, XMPP, or

SIP. As such, protocols such as WebFinger [I-D.hammer-webfinger] or an

end-to-end protocol can be used to retrieve appropriate certificates.

Downstream uses of JSMS SHOULD define a discovery mechanism suitable

for the intended use.

4. Message Format

All of the field definitions in this section make use of JSON Schema

[I-D.zyp-json-schema]. For each of the fields that is designed to hold

Implementation Note:

ContentType:

Type:

Data:

ID:

Created:

an enumerated value, a registry will be created allowing other values

to be used in addition to the values enumerated in the schema.

4.1. Base64 Handling

As stated in section 3.1 of [RFC4648], Base64 does not require

linefeeds after a specific number of characters. Since linefeeds are

not valid characters in a JSON string, whenever a field is specified to

be Base64-encoded in this document, it MUST NOT include any line

breaks. Base64-encoded fields also MUST NOT include JSON-encoded

linefeeds such as "\n". Any linebreaks in the middle of Base64-encoded

sections of the examples are unintended side-effects of the production

process.

Much existing Base64-encoding code will generate

linefeeds every 64 or 76 characters of output. Ensure that these

linefeeds are removed before inserting the output into a JSON

structure.

4.2. Content Object

JSMS operates by providing transformations on "Content" objects, which

are just mime-typed JSON objects. These objects are then wrapped in a

signed/encrypted wrapper with the following fields:

A MIME [RFC2045] media type that MUST be included

indicating the type of the "Data" field.

The constant string "content", to facilitate easy determination

that this is the target content. This is useful (for example) in

certain operating conditions where you must continue to unwrap

layers of signatures until you get to the content. This field MUST

be included.

The data value MUST be included as a text encoded as Base64

(See: [RFC4648]).

An OPTIONAL universally unique ID that identifies this message,

for use in detecting replay attacks.

An OPTIONAL field describing the UTC date/time that the

content was encoded into JSON, formatted according to the "date-

time" production of [RFC3339].

Signing and encryption transform a "Content" object into "Signed" and

"Encrypted" objects respectively. Verification and decryption transform

"Signed" and "Encrypted" objects back into "Content" objects. For

example:

Version:

Type:

SignedData:

DigestAlgorithm:

SignatureAlgorithm:

{

 "ContentType":"text/plain; charset=UTF-8",

 "Type":"content",

 "Data":"SGVsbG8sIFdvcmxkCg==",

 "ID":"746a4c9f-8e84-4313-b669-81590ee2949e",

 "Created":"2011-03-07T16:17Z"

}

4.3. Common Elements

A JSMS message is a JSON dictionary object containing a set of specific

values.

The following fields MUST be present in all messages:

The version number. For this specification this value MUST be

set to the string "1.0". See Section 5 for details on version

handling.

The type of the message. MUST be either "signed" or "encrypted",

to indicate a signed message (Section 4.4) or an encrypted message

(Section 4.5) respectively.

4.4. Signed Data

A "signed" message contains a signed data block plus a digital

signature over that data. To simplify implementation, only one signer

is allowed. In addition to the required fields from Section 4.3, the

fields in a signature message are:

This field MUST consist of a Base64-encoded "Content"

structure (see Section 4.2), which MUST have been encoded into

octets as UTF-8 prior to Base64-encoding. The signature is computed

over the UTF-8 octet stream before Base64-encoding to ensure that

the sender and receiver have the exact same representation.

The message digest used to compute the signature.

This field MUST be present for RSA-based signatures but MAY be

omitted for future signatures which do not allow flexible digests.

For now, this field MUST have the value "SHA-256", meaning the

digest algorithm was SHA-256 [FIPS-180-3].

The signature algorithm used to compute the

signature. This field MUST be present. For now, this field MUST have

Signer:

CertChain:

Signature:

the value "RSA-PKCS1-1.5", meaning the signature algorithm was

RSASSA-PKCS1-v1_5 as specified in [RFC3447].

The signer's identity, expressed as a URI [RFC3986]. This

field MUST be present.

The signer's certificate chain, if any (see Section

4.4.2.1).

The Base64-encoded signature, which MUST be included (see

Section 4.4.1).

{

 "SignedData":"ewogICAgIkNvbnRlbnRUeXBlIjoidGV4dC9wbGFpbjsgY2hhcn

 NldD1VVEYtOCIsCiAgICAiVHlwZSI6ImNvbnRlbnQiLAogICAg

 IkRhdGEiOiJTR1ZzYkc4c0lGZHZjbXhrQ2c9PSIsCiAgICAiSU

 QiOiI3NDZhNGM5Zi04ZTg0LTQzMTMtYjY2OS04MTU5MGVlMjk0

 OWUiLAogICAgIkNyZWF0ZWQiOiIyMDExLTAzLTA3VDE2OjE3Wi

 IKfQ==",

 "DigestAlgorithm":"SHA-256",

 "SignatureAlgorithm":"RSA-PKCS1-1.5",

 "Signer":"xmpp:romeo@example.net",

 "Signature":"sNsxJltUaz4pSzAtJiPZagUMV4SwWugWexGbffK/WJRDi2uq7TxN

 /V9SwG/kvQ7CaTABbeUuc6cKGO5YxnH5hME3bHB5L9PKPWSjxzxo

 68RPxQyPli2YJDDHKVPbofEa86CLqYcwTF5qrcL7fQFvlRSOVxpS

 SJfIdiAJNA+nEnk="

}

4.4.1. Signature Computation

The signature is computed over the string prior to base64 encoding.

I.e., the processing order for encoding is:

Serialize the inner "Content" value into a UTF8-encoded octet

series X.

Compute the signature value over X, and call the result Y. (In

the case of signatures which use digests, this means feed the

literal octets of the signature into the digest function.)

Compute the Base64 representation of X and insert it into the

"SignedData" field of the message.

Compute the Base64 representation of Y, and insert the result

into the "Signature" field.

This procedure removes dependencies on the exact serialization

algorithm; variation in spacing, field order, etc. do not affect

signature validity since the Base64 representation preserves them on

the wire and protects them from modification by intermediaries.

1.

2.

3.

4.

Note:
An alternative algorithm would be to compute the signature on

the base64 representation itself, but this has two disadvantages:

(1) any intermediaries which change spacing/line breaks would break

the signature. (2) it is inconsistent with the algorithm for

encryption (Section 4.5), which is designed to avoid multiple base64

encoding.

This procedure only specifies the input to the signature computation.

The details of the computation depend on the signature algorithm

itself. The mapping from code points to algorithms is found in Section

6.

4.4.2. Signature Verification

In order to verify the signature, the steps of the previous section are

reversed.

Process the provided "Signer" and "CertChain" fields as

described in Section 4.4.2.1 in order to determine the sender's

public key.

Base64 decode the "SignedData" field in order to recover a

string X.

Verify the "Signature" field against X using the sender's

public key and the "SignatureAlgorithm" and "DigestAlgorithm"

fields. If the signature fails, return an error.

Deserialize X to recover the inner "Content" value.

Check any "ID" or "Created" fields for replay.

Using the value of the "ContentType" field to give MIME type

context, Base64-decode the "Data" field to retrieve the

intended message.

4.4.2.1. Certificate Processing

JSMS uses the "CertChain" element to carry certificate chains. For the

moment, each certificate in the chain is expected to be a PKIX

certificate BER-encoded then Base64-encoded. Future versions of this

document will likely specify other valid certificate formats, since one

of the goals of this format is to avoid . The meaning of the fields is

described below:

1.

2.

3.

4.

5.

6.

Type:

Chain:

The type of the certificate chain. The only defined value is

"PKIX", referring to PKIX [RFC5280] certificates.

An array of certificate values. In the case of "PKIX"

certificates this is a list of base64-encoded DER/BER PKIX

certificate values. PKIX certificates MUST be represented in order

with each certificate certifying the next and the final certificate

representing the end-entity.

{

 "Type":"PKIX",

 "Chain":[

 "MIICPjCCAaegAwIBAgIBETANBgkqhkiG9w0BAQUFADBDMRMwEQ

 YKCZImiZPyLGQBGRYDY29tMRcwFQYKCZImiZPyLGQBGRYHZXhh

 bXBsZTETMBEGA1UEAxMKRXhhbXBsZSBDQTAeFw0wNDA0MzAxND

 I1MzRaFw0wNTA0MzAxNDI1MzRaMEMxEzARBgoJkiaJk/IsZAEZ

 FgNjb20xFzAVBgoJkiaJk/IsZAEZFgdleGFtcGxlMRMwEQYDVQ

 QDEwpFeGFtcGxlIENBMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCB

 iQKBgQDC15dtKHCqW88jLoBwOe7bb9Ut1WpPejQt+SJyR3Ad74

 DpyjCMAMSabltFtG6l5myUDfqR6UD8JZ3Ht2gZVo8RcGrX8ckR

 Tzp+P5mNbnaldF9epFVT5cdoNlPHHTsSpoX+vW6hyt81UKwI17

 m0flz+4qMs0SOEqpjAm2YYmmhH6QIDAQABo0IwQDAdBgNVHQ4E

 FgQUCGivhTPIOUp6+IKTjnBqSiCELDIwDgYDVR0PAQH/BAQDAg

 EGMA8GA1UdEwEB/wQFMAMBAf8wDQYJKoZIhvcNAQEFBQADgYEA

 bPgCdKZh4mQEplQMbHITrTxH+/ZlE6mFkDPqdqMm2fzRDhVfKL

 fvk7888+I+fLlS/BZuKarh9Hpv1X/vs5XK82aIg06hNUWEy7yb

 uMitxV5G2QsOjYDhMyvcviuSfkpDqWrvimNhs25HOL7oDaNnXf

 P6kYE8krvFXyUl63zn2KE=",

 "MIICcTCCAdqgAwIBAgIBEjANBgkqhkiG9w0BAQUFADBDMRMwEQ

 YKCZImiZPyLGQBGRYDY29tMRcwFQYKCZImiZPyLGQBGRYHZXhh

 bXBsZTETMBEGA1UEAxMKRXhhbXBsZSBDQTAeFw0wNDA5MTUxMT

 Q4MjFaFw0wNTAzMTUxMTQ4MjFaMEMxEzARBgoJkiaJk/IsZAEZ

 FgNjb20xFzAVBgoJkiaJk/IsZAEZFgdleGFtcGxlMRMwEQYDVQ

 QDEwpFbmQgRW50aXR5MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCB

 iQKBgQDhauQDMJcCPPQQ87UeTX8Ue/b10HjppIrwo3Xs7bZWln

 +ImYWa8j5od4frntGfwLQX3KuJI6QdfhYjTE+oTfUxuHyq4xpJ

 CfRLJtsnZzCCEgFK6Rq2wQxTi2z8L3pD7DM2fjKye9WqzwEUxh

 LsE/ItFHqLIVgUE0xGo5ryFpX/IwIDAQABo3UwczAhBgNVHREE

 GjAYgRZlbmQuZW50aXR5QGV4YW1wbGUuY29tMB0GA1UdDgQWBB

 QXe5Iw/0TWZuGQECJsFk/AjkHdbTAfBgNVHSMEGDAWgBQIaK+F

 M8g5Snr4gpOOcGpKIIQsMjAOBgNVHQ8BAf8EBAMCBsAwDQYJKo

 ZIhvcNAQEFBQADgYEAACAoNFtoMgG7CjYOrXHFlRrhBM+urcdi

 FKQbNjHA4gw92R7AANwQoLqFb0HLYnq3TGOBJl7SgEVeM+dwRT

 s5OyZKnDvyJjZpCHm7+5ZDd0thi6GrkWTg8zdhPBqjpMmKsr9z

 1E3kWORi6rwgdJKGDs6EYHbpc7vHhdORRepiXc0="

]

}

Recipients:

KDF:

Encryption:

Integrity:

Data:

The recipient MUST verify the certificate chain (in the case of PKIX

certificates according to [RFC5280]). If any validation failure occurs,

the implementation MUST abort processing and return an error.

Once the certificate chain is validated, the end-entity certificate

must contain an identity which matches the "Signer" field. In the case

of PKIX certificates, the certificate MUST contain a subjectAltName

field of type "uniformResourceIdentifier". This field MUST be

equivalent to the URI in the "Signer" field. If not, an error MUST be

returned.

4.5. Encrypted Data

An "encrypted" message contains an encrypted "Content" block. All

"encrypted" messages contain a symmetric integrity check, either via a

MAC or via an AEAD [RFC5116] algorithm such as Galois/Counter Mode

(GCM: [GCM]). A message may be encrypted to an arbitrary number of

recipients. Each recipient is represented by a "Recipient" block, which

contains a copy of the keying material encrypted for that recipient.

Both symmetric and asymmetric key establishment is supported. In order

to support both integrity and encryption, what is carried in the

Recipient block is a Content Master Key (CMK) which is then used with a

Key Derivation Function (KDF) to generate the Content Encryption Key

(CEK) used to encrypt the message and the Content Integrity Key (CIK)

used with the MAC. In addition to the required fields from Section 4.3

the fields in an encrypted message are:

The list of recipients. This is an array of Recipient

objects, each of which establishes the CMK for that recipient.

Specifies the key derivation function used to generate the CEK

and the CIK from the CMK. This field MAY be absent if an AEAD

algorithm is used, in which case the CEK is derived by copying the

CMK.

Specifies the properties of the encryption. The Algorithm

field MUST contain the encryption algorithm and the IV field

specifies the initialization vector (if required for the algorithm).

This field MUST be present.

Specifies the properties of the integrity check. The

Algorithm field MUST contain the MAC algorithm and the Value field

MUST contain the MAC. This field MAY be absent if no integrity check

is used.

Contains the ciphertext.

Each Recipient object provides an encrypted copy of the CMK for a

single recipient. The meaning of the fields is described below:

KEKidentifier

RecipientName:

CertificateDigest:

KeyIdentifier

Algorithm:

Value:

Describes the key encrypting key (KEK) used to encrypt

the CMK. Either a "RecipientName" or a "KeyIdentifier" MUST be

provided. If the "RecipientName" is provided, then a

"CertificateDigest" SHOULD be provided.

Provides the recipient's name in URI form.

For now, the SHA-1 fingerprint of the PKIX

certificate associated with the recipient.

The name of a shared symmetric key known to both

sender and recipient. This need not be globally unique as long as

it is unique within the recipient's context.

The algorithm used to encrypt the CMK. For now, one of

"RSA-PKCS1-1.5" (meaning RSASSA-PKCS1-v1_5 as specified in

[RFC3447]) or "AES-256-CBC" (meaning [FIPS-180-3]). Note the JSMS

only supports key transport and not key agreement (since key

agreement can always be turned into key transport).

The CMK encrypted under the specified algorithm and key.

4.5.1. Message Encryption

The message encryption process is as follows.

Generate a random CMK. The CMK MUST have a length at least

equal to that of the larger of the required integrity or

encryption keys and MUST be generated randomly. See [RFC4086]

for considerations on generating random values. [[TODO - we

need a section on generating randomness in browsers - it's easy

to screw up]]

Encrypt the CMK for each recipient (see Section 4.5.4)

Generate a random IV (if required for the algorithm).

Run the key derivation algorithm (see Section 4.5.3) to

generate the CEK and CIK (if not using an AEAD algorithm).

Serialize the content into a bitstring M.

Encrypt M using the CEK and IV to form the bitstring C.

Set the Value element equal to the base64-encoded

representation of C.

If not using an AEAD algorithm, compute the function I =

MAC(CIK, C) using the chosen integrity algorithm. Note that

1.

2.

3.

4.

5.

6.

7.

8.

MasterKey:

Label:

Length:

this is EtA encryption which is considered the best

cryptographic choice (See: [krawczyk-ate]). Set the

Integrity.Value element equal to the base64-encoded

representation of I.

4.5.2. Message Decryption

The message decryption process is the reverse of the encryption

process.

Identify a Recipient block which appears to reference a key

known to the recipient.

Decrypt the CMK. If this fails and another Recipient block

appears plausible, that MAY be tried.

Run the key derivation algorithm (see Section 4.5.3) to

generate the CEK and CIK (if not using an AEAD algorithm).

If not using an AEAD algorithm, compute the integrity check

value I' on the binary representation of the Value element

using the indicated integrity check. If the Integrity.Value

does not match I', then an error MUST be reported and

processing MUST be aborted.

Decrypt the binary representation of the Value element and

output the result

4.5.3. Key Derivation

The key derivation process converts the CMK into a CEK. It assumes as a

primitive a Key Derivation Function (KDF) which notionally takes three

arguments: [RFC5246] PRF using P_XXX as the underlying P_hash function.

The master key used to compute the individual use keys

The use key label, used to differentiate individual use keys

The length of the desired use key

The only real KDF specified in this document is the TLS PRF, which is

invoked as PRF(MasterKey, Label) with an empty seed and produces an

arbitrary length output. The appropriate number of bits (Length) is

simply extracted from the beginning of the output. The KDF name "P_XXX"

in this document refers the the TLS

To compute the CEK from the CMK, the label "Encryption" is used.

To compute the CIK from the CMK, the label "Integrity" is used.

When AEAD algorithms are used the KDF element MUST NOT be present. When

they are not used, it MUST be present.

1.

2.

3.

4.

5.

4.5.4. CMK Encryption

JSMS supports two forms of CMK encryption:

Asymmetric encryption under the recipient's public key.

Symmetric encryption under a shared key.

4.5.4.1. Asymmetric Encryption

In the asymmetric encryption mode, the CMK is encrypted under the

recipient's public key. The only currently defined asymmetric

encryption mode is RSA-PKCS1-1.5, which refers to [RFC3447] RSAES-

PKCS1-v1_5.

4.5.4.2. Symmetric Encryption

In the symmetric encryption mode, the CMK is encrypted under a

symmetric key shared between the sender and receiver. All such modes

MUST provide integrity for the CMK. This document defines four such

modes: AES-128-CBC, AES-256-CBC referring to the [RFC5649] AES key

wrapping modes and AES-128-GCM, AES-256-GCM, referring to AES

encryption with GCM. For GCM the random 64-bit IV is prepended to the

ciphertext.

4.6. Composition

This document does not specify a combination signed and encrypted mode.

However, because the contents of a message can be arbitrary, and

encryption and data origin authentication can be provided by

recursively encapsulating multiple JSMS messages. In general, senders

SHOULD sign the message and then encrypt the result (thus encrypting

the signature). This prevents attacks in which the signature is

stripped, leaving just an encrypted message, as well as providing

privacy for the signer.

5. Version Processing

For the moment, all version numbers in the protocol MUST be 1.0.

Receivers MUST return an error for any other version number. More

interesting version processing will be defined in the future.

6. IANA Considerations

[TODO]

Register MIME types

Registries for signature, encryption, MAC

*

*

*

*

Well known HTTP URLs

7. Security Considerations

Much more to follow here.

8. References

8.1. Normative References

[RFC2045]

Freed, N. and N.S. Borenstein, "Multipurpose

Internet Mail Extensions (MIME) Part One: Format

of Internet Message Bodies", RFC 2045, November

1996.

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[RFC3339]
Klyne, G. and C. Newman, "Date and Time on the

Internet: Timestamps", RFC 3339, July 2002.

[RFC3447]

Jonsson, J. and B. Kaliski, "Public-Key

Cryptography Standards (PKCS) #1: RSA Cryptography

Specifications Version 2.1", RFC 3447, February

2003.

[RFC4086]

Eastlake, D., Schiller, J. and S. Crocker,

"Randomness Requirements for Security", BCP 106,

RFC 4086, June 2005.

[RFC4627]

Crockford, D., "The application/json Media Type

for JavaScript Object Notation (JSON)", RFC 4627,

July 2006.

[RFC4648]
Josefsson, S., "The Base16, Base32, and Base64

Data Encodings", RFC 4648, October 2006.

[RFC5116]
McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, January 2008.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.2", RFC 5246,

August 2008.

[RFC5280]

Cooper, D., Santesson, S., Farrell, S., Boeyen,

S., Housley, R. and W. Polk, "Internet X.509

Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile", RFC

5280, May 2008.

[RFC5649]

Housley, R. and M. Dworkin, "Advanced Encryption

Standard (AES) Key Wrap with Padding Algorithm",

RFC 5649, September 2009.

[I-D.zyp-

json-schema]

Zyp, K and G Court, "A JSON Media Type for

Describing the Structure and Meaning of JSON

Documents", Internet-Draft draft-zyp-json-

schema-03, November 2010.

[FIPS-180-3]

*

mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:GK@ACM.ORG
mailto:chris.newman@sun.com
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc5116
http://tools.ietf.org/html/rfc5116
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5649
http://tools.ietf.org/html/rfc5649
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/html/draft-zyp-json-schema-03

National Institute of Standards and Technology

(NIST) , "Secure Hash Standard (SHS)", FIPS PUB

180-3, October 2008.

8.2. Informative References

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter,

"Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 3986, January 2005.

[I-D.hammer-

webfinger]

Hammer-Lahav, E, Fitzpatrick, B and B Cook, "The

WebFinger Protocol", Internet-Draft draft-hammer-

webfinger-00, October 2009.

[RFC5652]
Housley, R., "Cryptographic Message Syntax (CMS)",

STD 70, RFC 5652, September 2009.

[krawczyk-

ate]

Krawczyk, H., "The Order of Encryption and

Authentication for Protecting Communications (or:

How Secure Is SSL?)", Advances in cryptology--

CRYPTO 2001 August 2001, .

[GCM]

National Institute of Standards and Technology

(NIST) , "Recommendation for Block Cipher Modes of

Operation: Galois/Counter Mode (GCM) and GMAC", SP

800-38D, November 2007.

Appendix A. JSON Schema

The following schemas formally define various namespaces used in this

document, in conformance with [I-D.zyp-json-schema]. Because validation

of JSON documents is optional, these schemas are not normative and are

provided for descriptive purposes only.

Appendix A.1. Message Contents Schema

mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/draft-hammer-webfinger-00
http://tools.ietf.org/html/draft-hammer-webfinger-00
http://tools.ietf.org/html/rfc5652

{

 "description":"Message Contents",

 "type":"object",

 "properties":{

 "ContentType":{

 "description":"A MIME content type",

 "type":"string",

 "required":true

 },

 "Type":{

 "description":"Dictionary type",

 "type":"string",

 "enum":["content"],

 "required":true

 },

 "Data":{

 "description":"The underlying data",

 "type":"string",

 "required":true

 },

 "ID":{

 "description":"(optional) unique ID for this message",

 "type":"string"

 },

 "Created":{

 "description":"(optional) time the message was created",

 "type":"string",

 "format":"date-time"

 }

 }

}

Appendix A.2. Common Elements Schema

{

 "description":"The basic schema for a JSMS message",

 "type":"object",

 "properties":{

 "Type":{

 "description":"Message type",

 "type":"string",

 "enum":["signed", "encrypted"]

 },

 "Version":{

 "description":"Version number for the message",

 "type":"string",

 "enum":["1.0"]

 }

 }

}

Appendix A.3. Signed Message Schema

{

 "description":"A signed message",

 "type":"object",

 "extends":message_schema,

 "properties":{

 "Signature":{

 "description":"The signature over the SignedData",

 "type":"object",

 "properties":{

 "SignedData":{

 "description":"content to be signed, Base64",

 "type":"string",

 "required":true

 },

 "DigestAlgorithm":{

 "description":"",

 "type":"string",

 "enum":["SHA-256"]

 },

 "SignatureAlgorithm":{

 "description":"",

 "type":"string",

 "enum":["RSA-PKCS1-1.5"]

 },

 "Signer":{

 "description":"",

 "type":"string",

 "format":"uri",

 "required":true

 },

 "CertChain": {

 "description":"the signer's cert chain",

 "type":"PKIXcertchain"

 },

 "Signature":{

 "description":"the signature",

 "type":"string",

 "required":true

 }

 }

 }

 }

}

Appendix A.4. PKIX Certificate Chain Schema

{

 "description":"A chain of PKIX certificates",

 "id":"PKIXcertchain",

 "properties":{

 "Type":{

 "description":"The type of certificate chain",

 "type":"string",

 "enum":["PKIX"] },

 "Chain":{

 "description":"PKIX certs ordered from root to end",

 "type":"array",

 "items":{

 "description":"A base64-encoded BER certificate",

 "type":"string"

 }

 }

 }

}

Appendix A.5. Encrypted Message Schema

{

 "description":"An encrypted object",

 "type":"object",

 "extends":message_schema,

 "properties":{

 "Recipients":{

 "description":"The list of recipient blocks",

 "type":"array",

 "required":true,

 "items":{

 "description":"A single recipient block",

 "type":"Recipient"

 }

 },

 "KDF":{

 "description":

 "The KDF used to derive the MAC and encryption keys",

 "type":"string",

 "enum":["P_SHA256"]

 },

 "Encryption":{

 "description":"Encryption control information",

 "type":"object",

 "required":true,

 "properties":{

 "Algorithm":{

 "description":"The algorithm used to encrypt",

 "type":"string",

 "enum":["AES-256-CBC"]

 },

 "IV":{

 "description":"Initialization vector (base64)",

 "type":"string"

 }

 }

 },

 "Integrity":{

 "description":"The integrity control information",

 "type":"object",

 "properties":{

 "Algorithm":{

 "description":"The MAC algorithm",

 "type":"string",

 "enum":["HMAC-SHA-256"]

 },

 "Value":{

 "description":"The MAC value (base64-encoded)",

 "type":"string",

 "required":true

 }

 }

 },

 "Data":{

 "description":"The ciphertext (Base64-encoded)",

 "type":"string",

 "required":true

 }

 }

}

Appendix A.6. Recipient Schema

{

 "description":"The recipient of an encrypted object",

 "type":"object",

 "id":"Recipient",

 "properties":{

 "KEKidentifier":{

 "type":"object",

 "description":"Identifies the key encrypting key",

 "properties":{

 "RecipientName":{

 "type":"string",

 "description":"The recipient's name",

 "format":"uri"

 },

 "CertificateDigest":{

 "type":"string",

 "description":"Recipient's cert fingerprint"

 },

 "KeyIdentifier":{

 "type":"string",

 "description": "Shared symmetric key (opaque)"

 }

 }

 },

 "Algorithm":{

 "description":"The algorithm used to protect the CMK",

 "type":"string",

 "enum":["RSA-PKCS1-1.5", "AES-256-CBC"]

 },

 "Value":{

 "description": "Base64 of the encrypted CMK",

 "type":"string"

 }

 }

}

Appendix B. Acknowledgments

[TODO]

Authors' Addresses

Eric Rescorla Rescorla RTFM, Inc. 2064 Edgewood Drive Palo Alto, CA

94303 USA EMail: ekr@rtfm.com

Joe Hildebrand Hildebrand Cisco Systems, Inc. 1899 Wyknoop Street,

Suite 600 Denver, CO 80202 USA EMail: jhildebr@cisco.com

mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used In This Document
	3. Overview
	3.1. Operational Modes
	3.2. Conventions
	3.3. Certificate Processing
	3.4. Certificate Discovery
	4. Message Format
	4.1. Base64 Handling
	4.2. Content Object
	4.3. Common Elements
	4.4. Signed Data
	4.4.1. Signature Computation
	4.4.2. Signature Verification
	4.4.2.1. Certificate Processing
	4.5. Encrypted Data
	4.5.1. Message Encryption
	4.5.2. Message Decryption
	4.5.3. Key Derivation
	4.5.4. CMK Encryption
	4.5.4.1. Asymmetric Encryption
	4.5.4.2. Symmetric Encryption
	4.6. Composition
	5. Version Processing
	6. IANA Considerations
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. JSON Schema
	Appendix A.1. Message Contents Schema
	Appendix A.2. Common Elements Schema
	Appendix A.3. Signed Message Schema
	Appendix A.4. PKIX Certificate Chain Schema
	Appendix A.5. Encrypted Message Schema
	Appendix A.6. Recipient Schema
	Appendix B. Acknowledgments
	Authors' Addresses

