
Network Working Group E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Standards Track J. Uberti
Expires: April 13, 2013 Google
 E. Ivov
 Jitsi
 October 10, 2012

Trickle ICE: Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol

draft-rescorla-mmusic-ice-trickle-00

Abstract

 This document describes an extension to the Interactive Connectivity
 Establishment (ICE) protocol that allows ICE agents to send and
 receive candidates incrementally rather than exchanging complete
 lists. With such incremental provisioning, ICE agents can begin
 connectivity checks while they are still gathering candidates and
 considerably shorten the time necessary for ICE processing to
 complete.

 The above mechanism is also referred to as "trickle ICE".

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 13, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

Rescorla, et al. Expires April 13, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/draft-rescorla-mmusic-ice-trickle-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Trickle ICE October 2012

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Incompatibility with Standard ICE 4
4. Detecting Support for Trickle ICE 5
5. Sending the Initial Offer 6
6. Receiving the Initial Offer 7
6.1. Sending an answer . 7
6.2. Forming check lists and beginning connectivity checks . . 8

7. Receipt of the Initial Answer 8
8. Performing Connectivity Checks 8
8.1. Check List and Timer State Updates 8

9. Learning and Sending Additional Local Candidates 9
9.1. Announcing End of Candidates 11

10. Receiving Additional Remote Candidates 11
11. Concluding ICE Processing with Trickle ICE 11
12. Interaction with non-Trickle ICE implementations 12
13. Security Considerations 12
14. Open Issues . 12
15. References . 12
15.1. Normative References 12
15.2. Informative References 12

 Authors' Addresses . 13

http://trustee.ietf.org/license-info

Rescorla, et al. Expires April 13, 2013 [Page 2]

Internet-Draft Trickle ICE October 2012

1. Introduction

 The Interactive Connectivity Establishment (ICE) protocol [RFC5245]
 describes mechanisms for gathering, candidates, prioritizing them,
 choosing default ones, exchanging them with the remote party, pairing
 them and ordering them into check lists. Once all of the above have
 been completed, and only then, the participating agents can begin a
 phase of connectivity checks and eventually select the pair of
 candidates that will be used in the following session.

 While the above sequence has the advantage of being relatively
 straightforward to implement and debug once deployed, it may also
 prove to be rather lengthy. Gathering candidates or candidate
 harvesting would often involve things like querying STUN [RFC5389]
 servers, discovering UPnP devices, and allocating relayed candidates
 at TURN [RFC5766] servers. All of these can be delayed for a
 noticeable amount of time and while they can be run in parallel, they
 still need to respect the pacing requirements from [RFC5245], which
 is likely to delay them even further. Some or all of the above would
 also have to be completed by the remote agent. Both agents would
 next perform connectivity checks and only then would they be ready to
 begin streaming media.

 All of the above could lead to relatively lengthy session
 establishment times and degraded user experience.

 The purpose of this document is to define an alternative mode of
 operation for ICE implementations, also known as "trickle ICE", where
 candidates can be exchanged incrementally. This would allow ICE
 agents to exchange host candidates as soon as a session has been
 initiated. Connectivity checks for a media stream would also start
 as soon as the first candidates for that stream have become
 available.

 Trickle ICE allows reducing session establishment times in cases
 where connectivity is confirmed for the first exchanged candidates
 (e.g. where the host candidates for one of the agents are directly
 reachable from the second agent). Even when this is not the case,
 running candidate harvesting for both agents and connectivity checks
 all in parallel allows to considerably reduce ICE processing times.

 It is worth pointing out that before being introduced to the IETF,
 trickle ICE had already been included in specifications such as XMPP
 Jingle [XEP-0176] and it has been in use in various implementations
 and deployments.

 In addition to the basics of trickle ICE, this document also
 describes how support for trickle ICE needs to be discovered, how

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc5245

Rescorla, et al. Expires April 13, 2013 [Page 3]

Internet-Draft Trickle ICE October 2012

 regular ICE processing needs to be modified when building and
 updating check lists, and how trickle ICE implementations should
 interoperate with agents that only implement [RFC5245] processing.

 This specification does not define usage of trickle ICE with any
 specific signalling or media description protocol, contrary to
 [RFC5245] which defined a usage for ICE wht SIP and SDP. Such usages
 would have to be specified in separate documents.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification makes use of all terminology defined by the
 protocol for Interactive Connectivity Establishment in [RFC5245].

 Vanilla ICE: The Interactive Connectivity Establishment protocol as
 defined in [RFC5245].
 Candidate Harvester: A module used by an ICE agent to obtain local
 candidates. Candidate harvesters use different mechanisms for
 discovering local candidates. Some of them would typically make
 use of protocols such as STUN or TURN. Others may also employ
 techniques that are not referenced within [RFC5245]. UPnP based
 port allocation and XMPP Jingle Relay Nodes [XEP-0278] are among
 the possible examples.

3. Incompatibility with Standard ICE

 The ICE protocol was designed to be fairly flexible so that it would
 work in and adapt to as many network environments as possible. It is
 hence important to point out at least some of the reasons why,
 despite its flexibility, the specification in [RFC5245] would not
 support trickle-ICE.

 [RFC5245] describes the conditions required to update check lists and
 timer states while an ICE agent is in the Running state. These
 conditions are verified upon transaction completion and one of them
 stipulates that:
 If there is not a pair in the valid list for each component of the
 media stream, the state of the check list is set to Failed.
 This could be a problem and cause ICE processing to fail prematurely
 in a number of scenarios. Consider the following case:

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5245

Rescorla, et al. Expires April 13, 2013 [Page 4]

Internet-Draft Trickle ICE October 2012

 o Alice and Bob are both located in different networks with Network
 Address Translation (NAT). Alice and Bob themselves have
 different address but both networks use the same [RFC1918] block.
 o Alice sends Bob the candidate 10.0.0.10 which also happens to
 correspond to an existing host on Bob's network.
 o Bob creates a check list consisting solely of 10.0.0.10 and starts
 checks.
 o These checks reach the host at 10.0.0.10 in Bob's network, which
 responds with an ICMP "port unreachable" error and per [RFC5245]
 Bob marks the transaction as Failed.
 At this point the check list only contains Failed candidates and the
 valid list is empty. This causes the media stream and potentially
 all ICE processing to Fail.

 A similar race condition would occur if the initial offer from Alice
 only contains candidates that can be determined as unreachable (per
 [I-D.keranen-mmusic-ice-address-selection]) from any of the
 candidates that Bob has gathered. This would be the case if Bob's
 candidates only contain IPv4 addresses and the first candidate that
 he receives from Alice is an IPv6 one.

 Another potential problem could arise when a non-trickle ICE
 implementation sends an offer to a trickle one. Consider the
 following case:
 o Alice's client has a non-trickle ICE implementation
 o Bob's client has support for trickle ICE.
 o Alice and Bob are behind NATs with address-dependent filtering
 [RFC4787].
 o Bob has two STUN servers but one of them is currently unreachable
 After Bob's agent receives Alice's offer it would immediately start
 connectivity checks. It would also start gathering candidates, which
 would take long because of the unreachable STUN server. By the time
 Bob's answer is ready and sent to Alice, Bob's connectivity checks
 may well have failed: until Alice gets Bob's answer, she won't be
 able to start connectivity checks and punch holes in her NAT. The
 NAT would hence be filtering Bob's checks as originating from an
 unknown endpoint.

4. Detecting Support for Trickle ICE

 In order to avoid interoperability problems such as those described
 in Section 3, it is important that, before generating an offer and
 sending its first candidates an agent SHOULD first verify whether its
 correspondent also supports trickle ICE.

 The exact mechanisms that would allow for such verifications are
 outside the scope of this document and should be handled by the

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc4787

Rescorla, et al. Expires April 13, 2013 [Page 5]

Internet-Draft Trickle ICE October 2012

 signalling protocol that is employing ICE.

 Examples of how some signalling protocols already handle service and
 capabilities discovery include:
 o Service discovery [XEP-0030] and Entity capabilities [XEP-0115]
 for XMPP
 o Indicating User Agent Capabilities [RFC3840] for SIP

 Usages of trickle ICE SHOULD make use of these mechanisms where they
 exist.

 Also, in some cases it would be possible for an application to just
 "know" that support would be present. One example for this would be
 a WebRTC application that does not need to interoperate with
 applications from other web sites. Such applications can just enable
 trickle ICE without performing any additional checks.

 In other cases yet, agents may choose to just send an offer that the
 remote party would reject as invalid unless it supports trickling.
 One such example would be an offer with no ICE candidates and an
 invalid default address (e.g. 0.0.0.0).

 Usages of trickle ICE MUST define a way for offers or answers
 transporting the initial list of ICE candidates to indicate support
 for trickling. Note that an offer or an answer may indicate lack of
 support for trickle ICE even if other mechanisms have allowed to
 confirm that the remote agent does support it. In such cases agents
 should act as if trickle ICE is not supported for this particular
 session.

5. Sending the Initial Offer

 An agent starts gathering candidates as soon as it has an indication
 that communication is imminent (e.g. a user interface cue or an
 explicit request to initiate a session). However, contrary to
 vanilla ICE, implementations of trickle ICE do not need to gather
 candidates in a blocking manner, strictly preceding the generation
 and transmission of their initial offer.

 Trickle ICE agents MAY include any set of candidates in their initial
 offer. This includes the possibility of generating an offer with no
 candidates, or one that contains all the candidates that the agent is
 planning on using in the following session.

 For optimal performance, it is RECOMMENDED that an initial offer
 contains host candidates only. This would allow both agents to start
 gathering server reflexive, relayed and other non-host candidates

https://datatracker.ietf.org/doc/html/rfc3840

Rescorla, et al. Expires April 13, 2013 [Page 6]

Internet-Draft Trickle ICE October 2012

 simultaneously, and it would also enable them to begin connectivity
 checks.

 If the privacy implications of revealing host addresses are a
 concern, agents MAY generate an initial offer that contains no
 candidates and then only trickle candidates that do not reveal host
 addresses (e.g. relayed candidates).

 Prior to actually sending an offer, agents SHOULD verify if the
 remote party supports trickle ICE. If absence of such support is
 confirmed agents SHOULD fall back to using vanilla ICE or abandon the
 entire session.

 All trickle ICE offers MUST indicate support of this specification.
 The exact means of providing this indication is left to the usages
 that define how signalling protocols employ trickle ICE.

 Calculating priorities and foundations, as well as determining
 redundancy of candidates work the same way they do with vanilla ICE.

6. Receiving the Initial Offer

 When an agent receives an initial ICE-enabled offer, it will check if
 the offerer supports trickle ICE as explained in Section 4. If this
 is not the case, the agent MUST process this offer according to the
 [RFC5245] procedures or standard [RFC3264] processing in case no ICE
 support is detected at all.

 If, the offer does indicate support for trickle ICE, the agent will
 determine its role, start gathering and prioritizing candidates and,
 while doing so it will also send an answer, in order to start forming
 check lists and begin connectivity checks.

6.1. Sending an answer

 The agent can create and send an answer at any point while gathering
 candidates. Just as with offers, answers can contain no or all
 candidates an agent is planning on using. Again, as with offers, it
 is RECOMMENDED that answers contain host candidates so that the
 remote party can also start forming checklists and performing
 connectivity checks.

 The answer MUST indicate support for trickle ICE as described by
 usage specifications.

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc3264

Rescorla, et al. Expires April 13, 2013 [Page 7]

Internet-Draft Trickle ICE October 2012

6.2. Forming check lists and beginning connectivity checks

 After sending an answer, and as soon as they have gathered any
 candidates, agents will begin forming candidate pairs, computing
 their priorities and creating check lists according to the vanilla
 ICE procedures described in [RFC5245]. Obviously in order for
 candidate pairing to be possible, it would be necessary that both the
 offer and the ensuing answer contained candidates. If this was not
 the case agents will still create the check lists (so that their
 Active/Frozen state could be monitored and updated) but they will
 only populate them once they have learned any local and remote
 candidates.

 Initially, all check lists will have their Active/Frozen state set to
 Frozen.

 Trickle ICE agents will then also attempt to unfreeze the check list
 for the first media stream (i.e. the first media stream that was
 reported to the ICE implementation from the using application). If
 this checklist is still empty however, agents will continue examining
 media streams in the order they were reported and will unfreeze the
 first non-empty checklist.

 Respecting the order in which lists have been reported to an ICE
 implementation, or in other words, the order in which streams had
 been described by the signalling protocol (e.g. SDP), is necessary
 so that checks for the same media stream would be performed
 simultaneously by both agents.

7. Receipt of the Initial Answer

 When receiving an answer, agents will follow vanilla ICE procedures
 to determine their role and they would then form check lists and
 begin connectivity checks as described in Section 6.2.

8. Performing Connectivity Checks

 For the most part, trickle ICE agents perform connectivity checks
 following vanilla ICE procedures. Of course, the asynchronous nature
 of candidate harvesting in trickle ICE would impose a number of
 changes:

8.1. Check List and Timer State Updates

 The vanilla ICE specification requires that agents update check lists
 and timer states upon completing a connectivity check transaction.

https://datatracker.ietf.org/doc/html/rfc5245

Rescorla, et al. Expires April 13, 2013 [Page 8]

Internet-Draft Trickle ICE October 2012

 During such an update vanilla ICE agents would set the state of a
 check list to Failed if the following two conditions are satisfied:
 o all of the pairs in the check list are either in the Failed or
 Succeeded state;
 o if at least one of the components of the media stream has no pairs
 in its valid list.

 With trickle ICE, the above situation would often occur when
 candidate harvesting and trickling are still in progress and it is
 perfectly possible that future checks will succeed. For this reason
 trickle ICE agents add the following conditions to the above list:

 o all candidate harvesters have completed and the agent is not
 expecting to learn any new candidates;
 o the remote agent has sent an end-of-candidates message for that
 check list as described in Section 9.1.

 Vanilla ICE requires that agents then update all other check lists,
 placing one pair in each of them into the Waiting state, effectively
 unfreezing the check list. Given that with trickle ICE, other check
 lists may still be empty at that point, a trickle ICE agent SHOULD
 also maintain an explicit Active/Frozen state for every check list,
 rather than deducing it from the state of the pairs it contains.
 This state should be set to Active when unfreezing the first pair in
 a list or when that couldn't happen because a list was empty.

9. Learning and Sending Additional Local Candidates

 After an initial offer has been sent or received, agents will most
 likely continue discovering new local candidates as STUN, TURN and
 other non-host candidate harvesting mechanisms begin to yield
 results. Whenever such a new candidate is learned agents will
 compute its priority, type, foundation and component id according to
 normal vanilla ICE procedures.

 The new candidate is then checked for redundancy against the existing
 list of local candidates. If its transport address and base match
 those of an existing candidate, it will be considered redundant and
 will be ignored. This would often happen for server reflexive
 candidates that match the host addresses they were obtained from
 (e.g. when the latter are public IPv4 addresses). Contrary to
 vanilla ICE, trickle ICE agents will consider the new candidate
 redundant regardless of its priority. [TODO: is this OK? if not we
 need to check if the existing candidate was already used in conn
 checks, cancel them, and then restart them with the new candidate ...
 and in this specific case there's probably no point to do that].

Rescorla, et al. Expires April 13, 2013 [Page 9]

Internet-Draft Trickle ICE October 2012

 Then, if no remote candidates are currently known for this same
 stream, the new candidate will simply be added to the list of local
 candidates.

 Otherwise, if the agent has already learned of one or more remote
 candidates for this stream and component, it will begin pairing the
 new local candidates with them and adding the pairs to the existing
 check lists according to their priority. Forming candidate pairs
 will work the way it is described by the vanilla ICE specification.
 Actually adding the new pair to a check list however, will happen
 according to the rules described below.

 If the new pair's local candidate is server reflexive, the server
 reflexive candidate MUST be replaced by its base before adding the
 pair to the list. Once this is done, the agent examines the check
 list looking for another pair that would be redundant with the new
 one. If such a pair exists and its state is:

 Succeeded: the newly formed pair is ignored.
 Frozen or Waiting: the agent chooses the pair with the higher
 priority local candidate, places it in the state that the old pair
 was in (i.e. Frozen or Waiting) and removes the other one as
 redundant.
 Failed: the agent chooses the pair with the higher priority local
 candidate, places it in the Waiting state and removes the other
 one as redundant.
 In-Progress: The agent cancels the in-progress transaction (where
 cancellation happens as explained in Section 7.2.1.4 of
 [RFC5245]), then it chooses the pair with the higher priority
 local candidate, places it in the Waiting state and removes the
 other one as redundant.

 For all other pairs, including those with a server reflexive local
 candidate that were not found to be redundant:
 o if this check list is Frozen then the new pair will also be
 assigned a Frozen state.
 o else if the check list is Active and it is either empty or
 contains only candidates in the Succeeded and Failed states, then
 the new pair's state is set to Waiting.
 o else if the check list is non-empty and Active, then the new pair
 state will be set to
 Frozen: if there is at least one pair in the list whose
 foundation matches the one in the new pair and whose state is
 neither Succeeded nor Failed (eventually the new pair will get
 unfrozen after the the on-going check for the existing pair
 concludes);

https://datatracker.ietf.org/doc/html/rfc5245#section-7.2.1.4
https://datatracker.ietf.org/doc/html/rfc5245#section-7.2.1.4

Rescorla, et al. Expires April 13, 2013 [Page 10]

Internet-Draft Trickle ICE October 2012

 Waiting: if the list contains no pairs with the same foundation
 as the new one, or, in case such pairs exist, they are all in
 either the Succeeded or Failed states.

9.1. Announcing End of Candidates

 Once all candidate harvesters for a specific media stream complete,
 or expire, the agent MUST generate an "end-of-candidates" event for
 that stream and send it to the remote agent via the signalling
 channel. This would allow the remote agent to begin updating check
 list states and, in case valid pairs do not exist for every component
 in every media stream, determine that ICE processing has failed.

 An agent MAY also choose to generate an "end-of-candidates" event
 before candidate harvesting has actually completed, if the agent
 determines that harvesting has continued for more than an acceptable
 period of time.

 Once the agent sends the end-of-candidates event, it SHOULD update
 the state of the corresponding check list as explained in section

Section 8.1

 [TODO: should we also have an end-of-candidates for the entire
 harvesting process (as opposed to that of a single stream)]

10. Receiving Additional Remote Candidates

 At any point of ICE processing, a trickle ICE agent may receive new
 candidates from the remote agent. When this happens and no local
 candidates are currently known for this same stream, the new remote
 candidates are simply added to the list of remote candidates.

 Otherwise, the new candidates are used for forming candidate pairs
 with the pool of local candidates.

 Once the remote agent has completed candidate harvesting, it will
 send an "end-of-candidates" event. Upon receiving such an event, the
 local agent MUST update check list states as per Section 8.1. This
 may lead to some check lists being marked as Failed.

11. Concluding ICE Processing with Trickle ICE

 Trickle ICE processing SHOULD be concluded as explained in Section 8
 of [RFC5245].

https://datatracker.ietf.org/doc/html/rfc5245#section-8
https://datatracker.ietf.org/doc/html/rfc5245#section-8

Rescorla, et al. Expires April 13, 2013 [Page 11]

Internet-Draft Trickle ICE October 2012

12. Interaction with non-Trickle ICE implementations

 Trickle ICE implementations MUST behave as non-trickle and follow
 [RFC5245] unless they can confirm that the remote party supports this
 specification. [TODO: anything else?]

13. Security Considerations

 [TODO]

14. Open Issues

 At the time of writing of this document the authors have no clear
 view on how and if the following list of issues should be address
 here:
 1. FILL IN

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

15.2. Informative References

 [I-D.keranen-mmusic-ice-address-selection]
 Keranen, A. and J. Arkko, "Update on Candidate Address
 Selection for Interactive Connectivity Establishment
 (ICE)", draft-keranen-mmusic-ice-address-selection-01
 (work in progress), July 2012.

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, February 1996.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/draft-keranen-mmusic-ice-address-selection-01
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc3264

Rescorla, et al. Expires April 13, 2013 [Page 12]

Internet-Draft Trickle ICE October 2012

 [RFC3840] Rosenberg, J., Schulzrinne, H., and P. Kyzivat,
 "Indicating User Agent Capabilities in the Session
 Initiation Protocol (SIP)", RFC 3840, August 2004.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,

RFC 4787, January 2007.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [XEP-0030]
 Hildebrand, J., Millard, P., Eatmon, R., and P. Saint-
 Andre, "XEP-0030: Service Discovery", XEP XEP-0030,
 June 2008.

 [XEP-0115]
 Hildebrand, J., Saint-Andre, P., Troncon, R., and J.
 Konieczny, "XEP-0115: Entity Capabilities", XEP XEP-0115,
 February 2008.

 [XEP-0176]
 Beda, J., Ludwig, S., Saint-Andre, P., Hildebrand, J.,
 Egan, S., and R. McQueen, "XEP-0176: Jingle ICE-UDP
 Transport Method", XEP XEP-0176, June 2009.

 [XEP-0278]
 Camargo, T., "XEP-0278: Jingle Relay Nodes", XEP XEP-0278,
 June 2011.

Authors' Addresses

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/rfc3840
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766

Rescorla, et al. Expires April 13, 2013 [Page 13]

Internet-Draft Trickle ICE October 2012

 Justin Uberti
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Phone: +1 857 288 8888
 Email: justin@uberti.name

 Emil Ivov
 Jitsi
 Strasbourg 67000
 France

 Phone: +33 6 72 81 15 55
 Email: emcho@jitsi.org

Rescorla, et al. Expires April 13, 2013 [Page 14]

