
RTCWEB E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Standards Track March 12, 2012
Expires: September 13, 2012

RTCWEB Generic Identity Provider Interface
draft-rescorla-rtcweb-generic-idp-01

Abstract

 Security for RTCWEB communications requires that the communicating
 endpoints be able to authenticate each other. While authentication
 may be mediated by the calling service, there are settings in which
 this is undesirable. This document describes a generic mechanism for
 leveraging existing identity providers (IdPs) such as BrowserID or
 OAuth to provide this authentication service.

Legal

 THIS DOCUMENT AND THE INFORMATION CONTAINED THEREIN ARE PROVIDED ON
 AN "AS IS" BASIS AND THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST, AND THE INTERNET ENGINEERING TASK FORCE, DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 13, 2012.

Copyright Notice

Rescorla Expires September 13, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft RTCWEB IdP March 2012

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Rescorla Expires September 13, 2012 [Page 2]

Internet-Draft RTCWEB IdP March 2012

Table of Contents

1. Introduction . 4
2. Terminology . 6
3. Trust Relationships: IdPs, APs, and RPs 6
4. Overview of Operation . 7
5. Protocol Details . 9
5.1. General Message Structure 9
5.1.1. Errors . 9

5.2. IdP Proxy Setup . 10
5.2.1. Determining the IdP URI 10
5.2.1.1. Authenticating Party 11
5.2.1.2. Relying Party 11

5.3. Requesting Assertions 11
5.4. Verifying Assertions 12
5.4.1. Identity Formats 13
5.4.2. PostMessage Checks 14
5.4.3. PeerConnection API Extensions 14
5.4.3.1. Authenticating Party 14
5.4.3.2. Relying Party 15

5.5. Example Bindings to Specific Protocols 16
5.5.1. BrowserID . 16
5.5.2. OAuth . 19

5.6. Security Considerations 20
5.6.1. PeerConnection Origin Check 20
5.6.2. IdP Well-known URI 20
5.6.3. Security of Third-Party IdPs 21

5.7. Web Security Feature Interactions 21
5.7.1. Popup Blocking . 21
5.7.2. Third Party Cookies 21

6. References . 22
6.1. Normative References 22
6.2. Informative References 22

 Author's Address . 22

Rescorla Expires September 13, 2012 [Page 3]

Internet-Draft RTCWEB IdP March 2012

1. Introduction

 Security for RTCWEB communications requires that the communicating
 endpoints be able to authenticate each other. While authentication
 may be mediated by the calling service, there are settings in which
 this is undesirable. This document describes a mechanism for
 leveraging existing identity providers (IdPs) such as BrowserID or
 OAuth to provide this authentication service.

 Specifically, Alice and Bob have relationships with some Identity
 Provider (IdP) that supports a protocol such OpenID or BrowserID)
 that can be used to attest to their identity. While they are making
 calls through the signaling service, their identities (and the
 cryptographic keying material used to make the call) is authenticated
 via the IdP. This separation isn't particularly important in "closed
 world" cases where Alice and Bob are users on the same social
 network, have identities based on that network, and are calling using
 that network's signaling service. However, there are important
 settings where that is not the case, such as federation (calls from
 one network to another) and calling on untrusted sites, such as where
 two users who have a relationship via a given social network want to
 call each other on another, untrusted, site, such as a poker site.

Rescorla Expires September 13, 2012 [Page 4]

Internet-Draft RTCWEB IdP March 2012

 +----------------+
 | |
 | Signaling |
 | Server |
 | |
 +----------------+
 ^ ^
 / \
 HTTPS / \ HTTPS
 / \
 / \
 v v
 JS API JS API
 +-----------+ +-----------+
 | | Media | |
 Alice | Browser |<---------->| Browser | Bob
 | | (DTLS-SRTP)| |
 +-----------+ +-----------+
 ^ ^--+ +--^ ^
 | | | |
 v | | v
 +-----------+ | | +-----------+
 | |<--------+ | | |
 | IdP A | | | IdP B |
 | | +------->| |
 +-----------+ +-----------+

 Figure 1: A call with IdP-based identity

 Figure 1 shows the basic topology. Alice and Bob are on the same
 signaling server, but they additionally have relationships with their
 own IdPs. Alice has registered with IdP A and Bob has registered
 with IdP B. Note that nothing stops these IdPs from being the same,
 or indeed from being the same as the signaling server, but they can
 also be totally distinct. In particular, Alice and Bob need not have
 identities from the same IdP.

 Starting from this point, the mechanisms described in this document
 allow Alice and Bob to establish a mutually authenticated phone call.
 In the interest of clarity the remainder of this section provides a
 brief overview of how these mechanisms fit into the bigger RTCWEB
 calling picture. For a detailed description of the relevant protocol
 elements and their interaction with the larger signaling protocol see
 [I-D.ietf-rtcweb-security]. When Alice goes to call Bob, her browser
 (specifically her PeerConnection object) contacts her IdP on her
 behalf and obtains an assertion of her identity bound to her
 certificate fingerprint. This assertion is carried with her
 signaling messages to the signaling server and then down to Bob.

Rescorla Expires September 13, 2012 [Page 5]

Internet-Draft RTCWEB IdP March 2012

 Bob's browser verifies the assertion, possibly with the cooperation
 of the IdP, and can then display Alice's identity to Bob in a trusted
 user interface element. If Alice is in Bob's address book, then this
 interface might also include her real name, a picture, etc.

 When/If Bob agrees to answer the call, his browser contacts his IdP
 and gets a similar assertion. This assertion is sent to the
 signaling server as part of Bob's answer which is then forwarded to
 Alice. Alice's browser verifies Bob's identity and can display the
 result in a trusted UI element. At this point Alice and Bob know
 each other's fingerprints and so they can transitively verify the
 keys used to authenticate the DTLS-SRTP handshake and hence the
 security of the media.

 The mechanisms in this document do not require the browser to
 implement any particular identity protocol or to support any
 particular IdP. Instead, this document provides a generic interface
 which any IdP can implement. Thus, new IdPs and protocols can be
 introduced without change to either the browser or the calling
 service. This avoids the need to make a commitment to any particular
 identity protocol, although browsers may opt to directly implement
 some identity protocols in order to provide superior performance or
 UI properties.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Trust Relationships: IdPs, APs, and RPs

 Any authentication protocol has three major participants:

 Authenticating Party (AP): The entity which is trying to establish
 its identity.

 Identity Provider (IdP): The entity which is vouching for the AP's
 identity.

 Relying Party (RP): The entity which is trying to verify the AP's
 identity.

 The AP and the IdP have an account relationship of some kind: the AP
 registers with the IdP and is able to subsequently authenticate
 directly to the IdP (e.g., with a password). This means that the

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Rescorla Expires September 13, 2012 [Page 6]

Internet-Draft RTCWEB IdP March 2012

 browser must somehow know which IdP(s) the user has an account
 relationship with. This can either be something that the user
 configures into the browser or that is configured at the calling site
 and then provided to the PeerConnection by the calling site.

 At a high level there are two kinds of IdPs:

 Authoritative: IdPs which have verifiable control of some section
 of the identity space. For instance, in the realm of e-mail, the
 operator of "example.com" has complete control of the namespace
 ending in "@example.com". Thus, "alice@example.com" is whoever
 the operator says it is. Examples of systems with authoritative
 identity providers include DNSSEC, RFC 4474, and Facebook Connect
 (Facebook identities only make sense within the context of the
 Facebook system).

 Third-Party: IdPs which don't have control of their section of the
 identity space but instead verify user's identities via some
 unspecified mechanism and then attest to it. Because the IdP
 doesn't actually control the namespace, RPs need to trust that the
 IdP is correctly verifying AP identities, and there can
 potentially be multiple IdPs attesting to the same section of the
 identity space. Probably the best-known example of a third-party
 identity provider is SSL certificates, where there are a large
 number of CAs all of whom can attest to any domain name.

 If an AP is authenticating via an authoritative IdP, then the RP does
 not need to explicitly trust the IdP at all: as long as the RP knows
 how to verify that the IdP indeed made the relevant identity
 assertion (a function provided by the mechanisms in this document),
 then any assertion it makes about an identity for which it is
 authoritative is directly verifiable.

 By contrast, if an AP is authenticating via a third-party IdP, the RP
 needs to explicitly trust that IdP (hence the need for an explicit
 trust anchor list in PKI-based SSL/TLS clients). The list of
 trustable IdPs needs to be configured directly into the browser,
 either by the user or potentially by the browser manufacturer. This
 is a significant advantage of authoritative IdPs and implies that if
 third-party IdPs are to be supported, the potential number needs to
 be fairly small.

4. Overview of Operation

 In order to provide security without trusting the calling site, the
 PeerConnection component of the browser must interact directly with
 the IdP. In this section, we describe a standalone mechanism based

https://datatracker.ietf.org/doc/html/rfc4474

Rescorla Expires September 13, 2012 [Page 7]

Internet-Draft RTCWEB IdP March 2012

 on IFRAMEs and postMessage(), however, most likely this will
 eventually be superceded by WebIntents <http://www.webintents.com/>.
 [[OPEN ISSUE: I've been looking at WebIntents and I believe that it
 can be made to work but may require some modifications. I am
 currently studying the problem. More analysis to come.]]]].

 +------------------------------------+
 | https://calling-site.example.com |
 | |
 | |
 | |
 | Calling JS Code |
 | ^ |
 | | API Calls |
 | v |
 | PeerConnection |
 | ^ |
 | | postMessage() |
 | v |
 | +-------------------------+ | +---------------+
 | | https://idp.example.org | | | |
 | | |<--------->| Identity |
 | | IdP JS | | | Provider |
 | | | | | |
 | +-------------------------+ | +---------------+
 | |
 +------------------------------------+

 When the PeerConnection object wants to interact with the IdP, the
 sequence of events is as follows:

 1. The browser (the PeerConnection component) instantiates an IdP
 proxy (typically a hidden IFRAME) with its source at the IdP.
 This allows the IdP to load whatever JS is necessary into the
 proxy, which runs in the IdP's security context.
 2. If the user is not already logged in, the IdP does whatever is
 required to log them in, such as soliciting a username and
 password.
 3. Once the user is logged in, the IdP proxy notifies the browser
 (via postMessage()) that it is ready.
 4. The browser and the IdP proxy communicate via a standardized
 series of messages delivered via postMessage. For instance, the
 browser might request the IdP proxy to sign or verify a given
 identity assertion.

 This approach allows us to decouple the browser from any particular
 identity provider; the browser need only know how to load the IdP's
 JavaScript--which is deterministic from the IdP's identity--and the

http://www.webintents.com/

Rescorla Expires September 13, 2012 [Page 8]

Internet-Draft RTCWEB IdP March 2012

 generic protocol for requesting and verifying assertions. The IdP
 provides whatever logic is necessary to bridge the generic protocol
 to the IdP's specific requirements. Thus, a single browser can
 support any number of identity protocols, including being forward
 compatible with IdPs which did not exist at the time the browser was
 written.

5. Protocol Details

5.1. General Message Structure

 Messages between the PeerConnection object and the IdP proxy are
 formatted using JSON [RFC4627]. For instance, the PeerConnection
 would request a signature with the following "SIGN" message:

 {
 "type":"SIGN",
 "id": "1",
 "message":"012345678abcdefghijkl"
 }

 All messages MUST contain a "type" field which indicates the general
 meaning of the message.

 All requests from the PeerConnection object MUST contain an "id"
 field which MUST be unique for that PeerConnection object. Any
 responses from the IdP proxy MUST contain the same id in response,
 which allows the PeerConnection to correlate requests and responses.

 Any message-specific data is carried in a "message" field. Depending
 on the message type, this may either be a string or a richer JSON
 object.

5.1.1. Errors

 If an error occurs, the IdP sends a message of type "ERROR". The
 message MAY have an "error" field containing freeform text data which
 containing additional information about what happened. For instance:

 {
 "type":"ERROR",
 "error":"Signature verification failed"
 }

 Figure 2: Example error

https://datatracker.ietf.org/doc/html/rfc4627

Rescorla Expires September 13, 2012 [Page 9]

Internet-Draft RTCWEB IdP March 2012

5.2. IdP Proxy Setup

 In order to perform an identity transaction, the PeerConnection must
 first create the IdP proxy. While the specific technical mechanism
 used is left up to the implementation, the following requirements
 MUST be met for security and interoperability.

 o Any JS MUST run in the IdP's security context.
 o The usual browser sandbox isolation mechanisms MUST be enforced
 with respect to the IdP proxy.
 o JS running in the IdP proxy MUST be able to send and receive
 messages to the PeerConnection object using postMessage.
 o Either window.parent or window.opener MUST be set such that
 messages sent with postMessage() arrive at the PeerConnection
 object. If both variables are set, they MUST be the same.
 o Messages sent by the PeerConnection object MUST have their .origin
 value set to "rtcweb:://idp-interface". [TBD]

 One mechanism for implementing the IdP proxy is as a hidden (CSS
 "display=none") IFRAME with a URI as determined in Section 5.2.1.
 The PeerConnection component will of course need to specially arrange
 for the origin value to be set correctly; as dicussed in Section 5.6,
 the fact that ordinary Web pages cannot set their origins to
 "rtcweb://..." is an essential security feature.

 Initially the IdP proxy is in an unready state; the IdP JS must be
 loaded and there may be several round trips to the IdP server, for
 instance to log the user in. Thus, the IFRAME's "onready" property
 is not a reliable indicator of when the IdP IFRAME is ready to
 receive commands. Instead, when the IdP proxy is ready to receive
 commands, it delivers a "ready" message via postMessage(). As this
 message is unsolicited, it simply contains:

 { "type":"READY" }

 Once the PeerConnection object receives the ready message, it can
 send commands to the IdP proxy.

5.2.1. Determining the IdP URI

 Each IdP proxy instance is associated with two values:

 domain name: The IdP's domain name
 protocol: The specific IdP protocol which the IdP is using. This is
 a completely IdP-specific string, but allows an IdP to implement
 two protocols in parallel. This value may be the empty string.

 Each IdP MUST serve its initial entry page (i.e., the one loaded by

Rescorla Expires September 13, 2012 [Page 10]

Internet-Draft RTCWEB IdP March 2012

 the IdP proxy) from the well-known URI specified in "/.well-known/
 idp-proxy/<protocol>" on the IdP's web site. This URI MUST be loaded
 via HTTPS [RFC2818]. For example, for the IdP "identity.example.com"
 and the protocol "example", the URL would be:

 https://example.com/.well-known/idp-proxy/example

5.2.1.1. Authenticating Party

 How an AP determines the appropriate IdP domain is out of scope of
 this specification. In general, however, the AP has some actual
 account relationship with the IdP, as this identity is what the IdP
 is attesting to. Thus, the AP somehow supplies the IdP information
 to the browser. Some potential mechanisms include:

 o Provided by the user directly.
 o Selected from some set of IdPs known to the calling site. E.g., a
 button that shows "Authenticate via Facebook Connect"

5.2.1.2. Relying Party

 Unlike the AP, the RP need not have any particular relationship with
 the IdP. Rather, it needs to be able to process whatever assertion
 is provided by the AP. As the assertion contains the IdP's identity,
 the URI can be constructed directly from the assertion, and thus the
 RP can directly verify the technical validity of the assertion with
 no user interaction. Authoritative assertions need only be
 verifiable. Third-party assertions also MUST be verified against
 local policy, as described in Section 5.4.1.

5.3. Requesting Assertions

 In order to request an assertion, the PeerConnection sends a "SIGN"
 message. Aside from the mandatory fields, this message has a
 "message" field containing a string. The contents of this string are
 defined in [I-D.ietf-rtcweb-security], but are opaque from the
 perspective of this protocol.

 A successful response to a "SIGN" message contains a message field
 which is a JS dictionary dictionary consisting of two fields:

 idp: A dictionary containing the domain name of the provider and the
 protocol string
 assertion: An opaque field containing the assertion itself. This is
 only interpretable by the idp or its proxy.

 Figure 3 shows an example transaction, with the message "abcde..."
 being signed and bound to identity "ekr@example.org". In this case,

https://datatracker.ietf.org/doc/html/rfc2818

Rescorla Expires September 13, 2012 [Page 11]

Internet-Draft RTCWEB IdP March 2012

 the message has presumably been digitally signed/MACed in some way
 that the IdP can later verify it, but this is an implementation
 detail and out of scope of this document. Line breaks are inserted
 solely for readability.

 PeerConnection -> IdP proxy:
 {
 "type":"SIGN",
 "id":1,
 "message":"abcdefghijklmnopqrstuvwyz"
 }

 IdPProxy -> PeerConnection:
 {
 "type":"SUCCESS",
 "id":1,
 "message": {
 "idp":{
 "domain": "example.org"
 "protocol": "bogus"
 },
 "assertion":\"{\"identity\":\"bob@example.org\",
 \"contents\":\"abcdefghijklmnopqrstuvwyz\",
 \"signature\":\"010203040506\"}"
 }
 }

 Figure 3: Example assertion request

5.4. Verifying Assertions

 In order to verify an assertion, an RP sends a "VERIFY" message to
 the IdP proxy containing the assertion supplied by the AP in the
 "message" field.

 The IdP proxy verifies the assertion. Depending on the identity
 protocol, this may require one or more round trips to the IdP. For
 instance, an OAuth-based protocol will likely require using the IdP
 as an oracle, whereas with BrowserID the IdP proxy can likely verify
 the signature on the assertion without contacting the IdP, provided
 that it has cached the IdP's public key.

 Regardless of the mechanism, if verification succeeds, a successful
 response from the IdP proxy MUST contain a message field consisting
 of a dictionary/hash with the following fields:

Rescorla Expires September 13, 2012 [Page 12]

Internet-Draft RTCWEB IdP March 2012

 identity The identity of the AP from the IdP's perspective. Details
 of this are provided in Section 5.4.1
 contents The original unmodified string provided by the AP in the
 original SIGN request.

 Figure 4 shows an example transaction. Line breaks are inserted
 solely for readability.

 PeerConnection -> IdP Proxy:
 {
 "type":"VERIFY",
 "id":2,
 "message":\"{\"identity\":\"bob@example.org\",
 \"contents\":\"abcdefghijklmnopqrstuvwyz\",
 \"signature\":\"010203040506\"}"
 }

 IdP Proxy -> PeerConnection:
 {
 "type":"SUCCESS",
 "id":2,
 "message": {
 "identity" : {
 "name" : "bob@example.org",
 "displayname" : "Bob"
 },
 "contents":"abcdefghijklmnopqrstuvwyz"
 }
 }

 Figure 4: Example assertion request

5.4.1. Identity Formats

 Identities passed from the IdP proxy to the PeerConnection are
 structured as JSON dictionaries with one mandatory field: "name".
 This field MUST consist of an RFC822-formatted string representing
 the user's identity. [[OPEN ISSUE: Would it be better to have a
 typed field?]] The PeerConnection API MUST check this string as
 follows:

 1. If the RHS of the string is equal to the domain name of the IdP
 proxy, then the assertion is valid, as the IdP is authoritative
 for this domain.
 2. If the RHS of the string is not equal to the domain name of the
 IdP proxy, then the PeerConnection object MUST reject the
 assertion unless (a) the IdP domain is listed as an acceptable

https://datatracker.ietf.org/doc/html/rfc822

Rescorla Expires September 13, 2012 [Page 13]

Internet-Draft RTCWEB IdP March 2012

 third-party IdP and (b) local policy is configured to trust this
 IdP domain for the RHS of the identity string.

 Sites which have identities that do not fit into the RFC822 style
 (for instance, Facebook ids are simple numeric values) SHOULD convert
 them to this form by appending their IdP domain (e.g.,
 12345@identity.facebook.com), thus ensuring that they are
 authoritative for the identity.

 The IdP proxy MAY also include a "displayname" field which contains a
 more user-friendly identity assertion. Browsers SHOULD take care in
 the UI to distinguish the "name" assertion which is verifiable
 directly from the "displayname" which cannot be verified and thus
 relies on trust in the IdP. In future, we may define other fields to
 allow the IdP to provide more information to the browser.

5.4.2. PostMessage Checks

 Because the PeerConnect object and the IdP proxy communicate via
 postMessage(), it is essential to verify that the origin of any
 message (contained in the event.origin property) and source
 (contained in the event.source) property are as expected:

 o For messages from the PeerConnection object, the IdP proxy MUST
 verify that the origin is "rtcweb://idp-interface" and that the
 source matches either window.opener or window.parent. If both are
 non-falsey, they MUST be equal. If any of these checks fail, the
 message MUST be rejected. [[OPEN ISSUE: An alternate (more
 generic) design would be to not check the origin here but rather
 to include the origin in the assertion and have it checked at the
 RP. Comments?]]
 o For messages from the IdP proxy, the PeerConnection object MUST
 verify that the origin matches the IdP's origin and that the
 source matches the window/IFRAME opened for the IdP proxy.

 If any of these checks fail, the message MUST be rejected. In
 general, mismatches SHOULD NOT cause transaction failure, since
 malicious JS might use bogus messages as a form of DoS attack.

5.4.3. PeerConnection API Extensions

5.4.3.1. Authenticating Party

 As discussed in Section 3, the AP's IdP can either be configured
 directly into the browser or selected from a list known to the
 calling site. We anticipate that some browsers will allow
 configuration of IdPs in the browser UI but allow the calling
 application to provide new candidate IdPs or to direct the selection

https://datatracker.ietf.org/doc/html/rfc822

Rescorla Expires September 13, 2012 [Page 14]

Internet-Draft RTCWEB IdP March 2012

 of a known one. Thus, one model would be:

 o If a IdP is provided by the calling application use that.
 o If no IdP is provided, and one is configured, use that.
 o If no IdP is provided or configured, do nothing.

 Implementations MAY also wish to have configuration settings override
 the calling application's preferences.

 APIs for PeerConnection configuration are as-yet unsettled, but it
 MUST be possible to specify the following parameters to the
 PeerConnection.

 o The IdP domain.
 o The users expected identity (if known) [this allows selection
 between multiple candidate identities with the same IdP.]

5.4.3.2. Relying Party

 Because the browser UI must be responsible for displaying the user's
 identity, it isn't strictly necessary to have new JS interfaces on
 the relying party side. However, two new interfaces are RECOMMENDED.

 When a message is provided to the PeerConnection API with
 processSignalingMessage() with an assertion that cannot be verified,
 there is a need for some sort of error indicating verification
 failure. [Note: I don't see an interface for any other kind of
 parse error, so I'm not sure what to imitate here.]

 A new attribute should be added to indicate the verification status.
 For instance:

 readonly attribute DOMString verifiedIdentity;

 The attribute value should be a JS dictionary indicating the identity
 and the domain name of the IdP, such as:

 {
 "identity" : "ekr@example.org",
 "idp": "example.org"
 }

Rescorla Expires September 13, 2012 [Page 15]

Internet-Draft RTCWEB IdP March 2012

5.5. Example Bindings to Specific Protocols

 This section provides some examples of how the mechanisms described
 in this document could be used with existing authentication protocols
 such as BrowserID or OAuth. Note that this does not require browser-
 level support for either protocol. Rather, the protocols can be fit
 into the generic framework. (Though BrowserID in particular works
 better with some client side support).

5.5.1. BrowserID

 BrowserID [https://browserid.org/] is a technology which allows a
 user with a verified email address to generate an assertion
 (authenticated by their identity provider) attesting to their
 identity (phrased as an email address). The way that this is used in
 practice is that the relying party embeds JS in their site which
 talks to the BrowserID code (either hosted on a trusted intermediary
 or embedded in the browser). That code generates the assertion which
 is passed back to the relying party for verification. The assertion
 can be verified directly or with a Web service provided by the
 identity provider. It's relatively easy to extend this functionality
 to authenticate RTCWEB calls, as shown below.

Rescorla Expires September 13, 2012 [Page 16]

Internet-Draft RTCWEB IdP March 2012

 +----------------------+ +----------------------+
Alice's Browser		Bob's Browser				
	OFFER ------------>					
Calling JS Code		Calling JS Code				
^		^				
v		v				
PeerConnection		PeerConnection				
	^			^		
Finger		Signed		Signed		
print		Finger		Finger		"Alice"
		print		print		
v			v			
+--------------+		+---------------+				
	IdP Proxy				IdP Proxy	
	to				to	
	BrowserID				BrowserID	
	Signer				Verifier	
+--------------+		+---------------+				
^		^				
 +-----------|----------+ +----------|-----------+
 | |
 | Get certificate |
 v | Check
 +----------------------+ | certificate
 | | |
 | Identity |/-------------------------------+
 | Provider |
 | |
 +----------------------+

 The way this mechanism works is as follows. On Alice's side, Alice
 goes to initiate a call.

 1. The calling JS instantiates a PeerConnection and tells it that it
 is interested in having it authenticated via BrowserID (i.e., it
 provides "browserid.org" as the IdP name.)
 2. The PeerConnection instantiates the BrowserID signer in the IdP
 proxy
 3. The BrowserID signer contacts Alice's identity provider,
 authenticating as Alice (likely via a cookie).
 4. The identity provider returns a short-term certificate attesting
 to Alice's identity and her short-term public key.
 5. The Browser-ID code signs the fingerprint and returns the signed
 assertion + certificate to the PeerConnection.

Rescorla Expires September 13, 2012 [Page 17]

Internet-Draft RTCWEB IdP March 2012

 6. The PeerConnection returns the signed information to the calling
 JS code.
 7. The signed assertion gets sent over the wire to Bob's browser
 (via the signaling service) as part of the call setup.

 Obviously, the format of the signed assertion varies depending on
 what signaling style the WG ultimately adopts. However, for
 concreteness, if something like ROAP were adopted, then the entire
 message might look like:

 {
 "messageType":"OFFER",
 "callerSessionId":"13456789ABCDEF",
 "seq": 1
 "sdp":"
 v=0\n
 o=- 2890844526 2890842807 IN IP4 192.0.2.1\n
 s= \n
 c=IN IP4 192.0.2.1\n
 t=2873397496 2873404696\n
 m=audio 49170 RTP/AVP 0\n
 a=fingerprint: SHA-1 \
 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB\n",
 "identity":{
 "idp":{ // Standardized
 "domain":"browserid.org",
 "method":"default"
 },
 "assertion": // Contents are browserid-specific
 "\"assertion\": {
 \"digest\":\"<hash of the contents from the browser>\",
 \"audience\": \"[TBD]\"
 \"valid-until\": 1308859352261,
 },
 \"certificate\": {
 \"email\": \"rescorla@example.org\",
 \"public-key\": \"<ekrs-public-key>\",
 \"valid-until\": 1308860561861,
 }" // certificate is signed by example.org
 }
 }

 Note that while the IdP here is specified as "browserid.org", the
 actual certificate is signed by example.org. This is because
 BrowserID is a combined authoritative/third-party system in which
 browserid.org delegates the right to be authoritative (what BrowserID
 calls primary) to individual domains.

Rescorla Expires September 13, 2012 [Page 18]

Internet-Draft RTCWEB IdP March 2012

 On Bob's side, he receives the signed assertion as part of the call
 setup message and a similar procedure happens to verify it.

 1. The calling JS instantiates a PeerConnection and provides it the
 relevant signaling information, including the signed assertion.
 2. The PeerConnection instantiates the IdP proxy which examines the
 IdP name and brings up the BrowserID verification code.
 3. The BrowserID verifier contacts the identity provider to verify
 the certificate and then uses the key to verify the signed
 fingerprint.
 4. Alice's verified identity is returned to the PeerConnection (it
 already has the fingerprint).
 5. At this point, Bob's browser can display a trusted UI indication
 that Alice is on the other end of the call.

 When Bob returns his answer, he follows the converse procedure, which
 provides Alice with a signed assertion of Bob's identity and keying
 material.

5.5.2. OAuth

 While OAuth is not directly designed for user-to-user authentication,
 with a little lateral thinking it can be made to serve. We use the
 following mapping of OAuth concepts to RTCWEB concepts:

 +----------------------+----------------------+
 | OAuth | RTCWEB |
 +----------------------+----------------------+
 | Client | Relying party |
 | Resource owner | Authenticating party |
 | Authorization server | Identity service |
 | Resource server | Identity service |
 +----------------------+----------------------+

 Table 1

 The idea here is that when Alice wants to authenticate to Bob (i.e.,
 for Bob to be aware that she is calling). In order to do this, she
 allows Bob to see a resource on the identity provider that is bound
 to the call, her identity, and her public key. Then Bob retrieves
 the resource from the identity provider, thus verifying the binding
 between Alice and the call.

Rescorla Expires September 13, 2012 [Page 19]

Internet-Draft RTCWEB IdP March 2012

 Alice IdP Bob

 Call-Id, Fingerprint ------->
 <------------------- Auth Code
 Auth Code -->
 <----- Get Token + Auth Code
 Token --------------------->
 <------------- Get call-info
 Call-Id, Fingerprint ------>

 This is a modified version of a common OAuth flow, but omits the
 redirects required to have the client point the resource owner to the
 IdP, which is acting as both the resource server and the
 authorization server, since Alice already has a handle to the IdP.

 Above, we have referred to "Alice", but really what we mean is the
 PeerConnection. Specifically, the PeerConnection will instantiate an
 IFRAME with JS from the IdP and will use that IFRAME to communicate
 with the IdP, authenticating with Alice's identity (e.g., cookie).
 Similarly, Bob's PeerConnection instantiates an IFRAME to talk to the
 IdP.

5.6. Security Considerations

 This mechanism relies for its security on the IdP and on the
 PeerConnection correctly enforcing the security invariants described
 above. At a high level, the IdP is attesting that the user
 identified in the assertion wishes to be associated with the
 assertion. Thus, it must not be possible for arbitrary third parties
 to get assertions tied to a user or to produce assertions that RPs
 will accept.

5.6.1. PeerConnection Origin Check

 Fundamentally, the IdP proxy is just a piece of HTML and JS loaded by
 the browser, so nothing stops a Web attacker o from creating their
 own IFRAME, loading the IdP proxy HTML/JS, and requesting a
 signature. In order to prevent this attack, we require that all
 signatures be tied to a specific origin ("rtcweb://...") which cannot
 be produced by a page tied to a Web attacker. Thus, while an
 attacker can instantiate the IdP proxy, they cannot send messages
 from an appropriate origin and so cannot create acceptable
 assertions. [[OPEN ISSUE: Where is this enforced?]]

5.6.2. IdP Well-known URI

 As described in Section 5.2.1 the IdP proxy HTML/JS landing page is
 located at a well-known URI based on the IdP's domain name. This

Rescorla Expires September 13, 2012 [Page 20]

Internet-Draft RTCWEB IdP March 2012

 requirement prevents an attacker who can write some resources at the
 IdP (e.g., on one's Facebook wall) from being able to impersonate the
 IdP.

5.6.3. Security of Third-Party IdPs

 As discussed above, each third-party IdP represents a new universal
 trust point and therefore the number of these IdPs needs to be quite
 limited. Most IdPs, even those which issue unqualified identities
 such as Facebook, can be recast as authoritative IdPs (e.g.,
 123456@facebook.com). However, in such cases, the user interface
 implications are not entirely desirable. One intermediate approach
 is to have special (potentially user configurable) UI for large
 authoritative IdPs, thus allowing the user to instantly grasp that
 the call is being authenticated by Facebook, Google, etc.

5.7. Web Security Feature Interactions

 A number of optional Web security features have the potential to
 cause issues for this mechanism, as discussed below.

5.7.1. Popup Blocking

 If the user is not already logged into the IdP, the IdP proxy may
 need to pop up a top level window in order to prompt the user for
 their authentication information (it is bad practice to do this in an
 IFRAME inside the window because then users have no way to determine
 the destination for their password). If the user's browser is
 configured to prevent popups, this may fail (depending on the exact
 algorithm that the popup blocker uses to suppress popups). It may be
 necessary to provide a standardized mechanism to allow the IdP proxy
 to request popping of a login window. Note that care must be taken
 here to avoid PeerConnection becoming a general escape hatch from
 popup blocking. One possibility would be to only allow popups when
 the user has explicitly registered a given IdP as one of theirs (this
 is only relevant at the AP side in any case). This is what
 WebIntents does, and the problem would go away if WebIntents is used.

5.7.2. Third Party Cookies

 Some browsers allow users to block third party cookies (cookies
 associated with origins other than the top level page) for privacy
 reasons. Any IdP which uses cookies to persist logins will be broken
 by third-party cookie blocking. One option is to accept this as a
 limitation; another is to have the PeerConnection object disable
 third-party cookie blocking for the IdP proxy.

Rescorla Expires September 13, 2012 [Page 21]

Internet-Draft RTCWEB IdP March 2012

6. References

6.1. Normative References

 [I-D.ietf-rtcweb-security]
 Rescorla, E., "Security Considerations for RTC-Web",

draft-ietf-rtcweb-security-01 (work in progress),
 October 2011.

 [I-D.ietf-rtcweb-security-arch]
 Rescorla, E., "RTCWEB Security Architecture",

draft-ietf-rtcweb-security-arch-00 (work in progress),
 January 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

6.2. Informative References

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

Author's Address

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-01
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc6454

Rescorla Expires September 13, 2012 [Page 22]

