
TLS Working Group E. Rescorla
Internet-Draft Mozilla
Intended status: Informational March 11, 2019
Expires: September 12, 2019

Compact TLS 1.3
draft-rescorla-tls-ctls-00

Abstract

 This document specifies a "compact" version of TLS 1.3. It is
 isomorphic to TLS 1.3 but saves space by aggressive use of defaults
 and tighter encodings. CTLS is not interoperable with TLS 1.3, but
 it should eventually be possible for the server to distinguish TLS
 1.3 and CTLS handshakes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Rescorla Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft CTLS 1.3 March 2019

Table of Contents

1. Introduction . 2
2. Conventions and Definitions 3
3. Common Primitives . 3
3.1. Varints . 3
3.2. Record Layer . 4
3.3. Handshake Layer . 4
3.4. Extensions . 5

4. Handshake Messages . 5
4.1. ClientHello . 5
4.1.1. KeyShare . 6

4.2. ServerHello . 7
4.2.1. KeyShare . 7
4.2.2. PreSharedKeys . 8

4.3. EncryptedExtensions 8
4.4. CertificateRequest 8
4.5. Certificate . 8
4.5.1. Key IDs . 9
4.5.2. CertificateVerify 9
4.5.3. Finished . 9
4.5.4. HelloRetryRequest 10

5. Handshake Size Calculations 10
5.1. ECDHE w/ Signatures 10
5.1.1. Flight 1 (ClientHello) *** 10
5.1.2. Flight 2 (ServerHello..Finished) 10
5.1.3. Flight 3 (Client Certificate..Finished) 11

5.2. ECDHE w/ PSK . 12
6. Security Considerations 12
7. IANA Considerations . 12
8. Normative References . 13

 Acknowledgments . 13
 Author's Address . 13

1. Introduction

 DDISCLAIMER: This is a work-in-progress draft of MLS and has not yet
 seen significant security analysis, so could contain major errors.
 It should not be used as a basis for building production systems.

 This document specifies a "compact" version of TLS 1.3 [RFC8446]. It
 is isomorphic to TLS 1.3 but designed to take up minimal bandwidth.
 The space reduction is achieved by two basic techniques:

 o Default values for common configurations, thus avoiding the need
 to take up space on the wire.

 o More compact encodings, omitting unnecessary values.

https://datatracker.ietf.org/doc/html/rfc8446

Rescorla Expires September 12, 2019 [Page 2]

Internet-Draft CTLS 1.3 March 2019

 For the common (EC)DHE handshake with (EC)DHE and pre-established
 public keys, CTLS achieves an overhead of [TODO] bytes over the
 minimum required by the cryptovariables.

 Although isomorphic, CTLS implementations cannot interoperate with
 TLS 1.3 implementations because the packet formats are non-
 interoperable. It is probably possible to make a TLS 1.3 server
 switch-hit between CTLS and TLS 1.3 but this specification does not
 define how.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Structure definitions listed below override TLS 1.3 definitions; any
 PDU not internally defined is taken from TLS 1.3.

3. Common Primitives

3.1. Varints

 CTLS makes use of variable-length integers in order to allow a wide
 integer range while still providing for a minimal encoding. The
 width of the integer is encoded in the first two bits of the field as
 follows, with xs indicating bits that form part of the integer.

 +----------------------------+----------------+
 | Bit pattern | Length (bytes) |
 +----------------------------+----------------+
 | 0xxxxxxx | 1 |
 | | |
 | | |
 | | |
 | 10xxxxxx xxxxxxxx | 2 |
 | | |
 | | |
 | | |
 | 11xxxxxx xxxxxxxx xxxxxxxx | 3 |
 +----------------------------+----------------+

 Thus, one byte can be used to carry values up to 127.

 In the TLS syntax variable integers are denoted as "varint" and a
 vector with a top range of a varint is denoted as:

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Rescorla Expires September 12, 2019 [Page 3]

Internet-Draft CTLS 1.3 March 2019

 opaque foo<1..V>;

 [[OPEN ISSUE: Should we just re-encode this directly in CBOR?. That
 might be easier for people, but I ran out of time.]]

3.2. Record Layer

 The CTLS Record Layer assumes that records are externally framed
 (i.e., that the length is already known because it is carried in a
 UDP datagram or the like). Depending on how this was carried, you
 might need another byte or two for that framing. Thus, only the type
 byte need be carried. Thus, TLSPlaintext becomes:

 struct {
 ContentType type;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 In addition, because the epoch is known in advance, the dummy content
 type is not needed for the ciphertext, so TLSCiphertext becomes:

 struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } TLSInnerPlaintext;

 struct {
 opaque encrypted_record[TLSCiphertext.length];
 } TLSCiphertext;

 Note: The user is responsible for ensuring that the sequence numbers/
 nonces are handled in the usual fashion.

 Overhead: 1 byte per record.

3.3. Handshake Layer

 The CTLS handshake layer is the same as the TLS 1.3 handshake layer
 except that the length is a varint.

Rescorla Expires September 12, 2019 [Page 4]

Internet-Draft CTLS 1.3 March 2019

 struct {
 HandshakeType msg_type; /* handshake type */
 varint length; // CHANGED
 select (Handshake.msg_type) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 };
 } Handshake;

 Overhead: 2 bytes per handshake message (min).

 [OPEN ISSUE: This can be shrunk to 1 byte in some cases if we are
 willing to use a custom encoding. There are 11 handshake types, so
 we can use the first 4 bits for the type and then the bottom 4 bits
 for an encoding of the length, but we would have to offset that by 16
 or so to be able to have a meaningful impact.]]

3.4. Extensions

 CTLS Extensions are the same as TLS 1.3 extensions, except varint
 length coded:

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..V>;
 } Extension;

4. Handshake Messages

 In general, we retain the basic structure of each individual TLS
 handshake message. However, the following handshake messages are
 slightly modified for space reduction.

4.1. ClientHello

 The CTLS ClientHello is as follows.

Rescorla Expires September 12, 2019 [Page 5]

Internet-Draft CTLS 1.3 March 2019

 uint8 ProtocolVersion; // 1 byte
 opaque Random[16]; // shortened
 uint8 CipherSuite; // 1 byte

 struct {
 ProtocolVersion versions<0..255>;
 Random random;
 CipherSuite cipher_suites<1..V>;
 Extension extensions[remainder_of_message];
 } ClientHello;

 [[TODO: Define single-byte mappings of the cipher suites and protocol
 version.]]

 The versions list from "supported_versions" has moved into
 ClientHello.versions with versions being one byte, but with the
 modern semantics of the client offering N versions and the server
 picking one.

 In order to conserve space, the following extensions have default
 values which apply if they are not present:

 o SignatureAlgorithms: ed25519

 o SupportedGroups: the list of groups present in the KeyShare
 extension.

 o Pre-Shared Key Exchange Modes: psk_dhe_ke

 o Certificate Type: A new TBD value indicating a key index.

 As a practical matter, the only extension needed is the KeyShare
 extension, as defined below.

 Overhead: 8 bytes (min)

 o Versions: 1 + # Versions

 o CipherSuites: 1 + # Suites

 o Key shares: 2 + 2 * # shares

4.1.1. KeyShare

 The KeyShare extension is redefined as:

Rescorla Expires September 12, 2019 [Page 6]

Internet-Draft CTLS 1.3 March 2019

 uint8 NamedGroup;
 struct {
 NamedGroup group;
 opaque key_exchange<1..V>;
 } KeyShareEntry;

 struct {
 KeyShareEntry client_shares[length of extension];
 } KeyShareClientHello;

 [[TODO: Need a mapping for 8-bit group ids]]

4.2. ServerHello

 We redefine ServerHello in a similar way:

 struct {
 ProtocolVersion version;
 Random random;
 CipherSuite cipher_suite;
 Extension extensions[remainder_of_message];
 } ServerHello;

 The extensions have the same default values as in ClientHello, so as
 a practical matter only KeyShare is needed.

 Overhead: 6 bytes

 o Version: 1

 o Cipher Suite: 1

 o KeyShare: 4 bytes

4.2.1. KeyShare

 struct {
 KeyShareEntry server_share;
 } KeyShareServerHello;

 [[OPEN ISSUE: We could save one byte here by removing the length of
 the key share and another byte by only allowing the client to send
 one key share (so group wasn't needed)..]]

 [[TODO: Need to define a single-byte list of NamedGroups]].

Rescorla Expires September 12, 2019 [Page 7]

Internet-Draft CTLS 1.3 March 2019

4.2.2. PreSharedKeys

 [[TODO]]

4.3. EncryptedExtensions

 Unchanged.

 [[OPEN ISSUE: We could save 2 bytes in handshake header by omitting
 this value when it's unneeded.]]

4.4. CertificateRequest

 This message removes the certificate_request_context and re-encodes
 the extensions.

 struct {
 Extension extensions[remainder of message];
 } CertificateRequest;

4.5. Certificate

 We can slim down the Certficate message somewhat.

 enum {
 X509(0),
 RawPublicKey(2),
 (255)
 } CertificateType;

 struct {
 select (certificate_type) {
 case RawPublicKey:
 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */
 opaque ASN1_subjectPublicKeyInfo<1..V>;

 case X509:
 opaque cert_data<1..V>;
 };
 Extension extensions<0..V>;
 } CertificateEntry;

 struct {
 CertificateEntry certificate_list[rest of extension];
 } Certificate;

 For a single certificate, this message will have a minumum of 2 bytes
 of overhead for the two length bytes.

https://datatracker.ietf.org/doc/html/rfc7250

Rescorla Expires September 12, 2019 [Page 8]

Internet-Draft CTLS 1.3 March 2019

 [[OPEN ISSUE: What should the default type be?]]

4.5.1. Key IDs

 WARNING: This is a new feature which has not seen any analysis and so
 may have real problems.

 [[OPEN ISSUE: Do we want this at all?]]

 It may also be possible to slim down the Certificate message further,
 by adding a KeyID-based mode, in which they keys were just a table
 index. This would redefines Certificate as:

 struct {
 varint key_id;
 } KeyIdCertificate;

 struct {
 select (certiticate_type):
 case RawPublicKey, x509:
 CertificateEntry certificate_list<0..2^24-1>;

 case key_id:
 KeyIdCertificate;
 }
 } Certificate;

 This allows the use of a short key id. Note that this is orthogonal
 to the rest of the changes.

 IMPORTANT: You really want to include the certificate in the
 handshake transcript somehow, but this isn't specified for how.

4.5.2. CertificateVerify

 Remove the signature algorithm and assume it's tied to the key. Note
 that this does not work for RSA keys, but if we just decide to be EC
 only, it works fine.

 struct {
 opaque signature[rest of message];
 } CertificateVerify;

4.5.3. Finished

 Unchanged.

Rescorla Expires September 12, 2019 [Page 9]

Internet-Draft CTLS 1.3 March 2019

4.5.4. HelloRetryRequest

 [[TODO]]

5. Handshake Size Calculations

5.1. ECDHE w/ Signatures

 We compute the total flight size with X25519 and P-256 signatures,
 thus the keys are 32-bytes long and the signatures 64 bytes, with a
 cipher with an 8 byte auth tag, as in AEAD_AES_128_CCM_8. [Note: GCM
 should not be used with a shortened tag.] Overhead estimates marked
 with *** have been verified with Mint. Others are hand calculations
 and so may prove to be approximate.

5.1.1. Flight 1 (ClientHello) ***

 o Random: 16

 o KeyShare: 32

 o Message Overhead: 8

 o Handshake Overhead: 2

 o Record Overhead: 1

 o Total: 59

5.1.2. Flight 2 (ServerHello..Finished)

 ServerHello ***

 o Random: 16

 o KeyShare: 32

 o Message Overhead: 6

 o Handshake Overhead: 2

 o Total: 56

 EncryptedExtensions ***

 o Handshake Overhead: 2

 o Total: 2

Rescorla Expires September 12, 2019 [Page 10]

Internet-Draft CTLS 1.3 March 2019

 CertificateRequest ***

 o Handshake Overhead: 2

 o Total: 2

 Certificate

 o Certificate: X

 o Length bytes: 2

 o Handshake Overhead: 2

 o Total: 4 + X

 CertificateVerify

 o Signature: 64

 o Handshake Overhead: 2

 o Total: 66

 Finished

 o MAC: 32

 o Overhead: 2

 o Total: 34

 Record Overhead: 2 bytes (2 records) + 8 bytes (auth tag).

 [[OPEN ISSUE: We'll actually need a length field for the ServerHello,
 to separate it from the ciphertext.]]

 Total Size: 175 + X bytes.

5.1.3. Flight 3 (Client Certificate..Finished)

 Certificate

 o Certificate: X

 o Length bytes: 2

 o Handshake Overhead: 2

Rescorla Expires September 12, 2019 [Page 11]

Internet-Draft CTLS 1.3 March 2019

 o Total: 4 + X

 CertificateVerify

 o Signature: 64

 o Handshake Overhead: 2

 o Total: 66

 Finished

 o MAC: 32

 o Handshake Overhead: 2

 o Total: 34

 Record Overhead: 1 byte + 8 bytes (auth tag)

 Total: 113 + X bytes

5.2. ECDHE w/ PSK

 [TODO]

6. Security Considerations

 WARNING: This document is effectively brand new and has seen no
 analysis. The idea here is that CTLS is isomorphic to TLS 1.3, and
 therefore should provide equivalent security guarantees, modulo use
 of new features such as KeyID certificate messages.

 One piece that is a new TLS 1.3 feature is the addition of the
 key_id, which definitely requires some analysis, especially as it
 looks like a potential source of identity misbinding. This is
 entirely separable from the rest of the specification.

 [[OPEN ISSUE: One could imagine internally translating CTLS to TLS
 1.3 so that the transcript, etc. were the same, but I doubt it's
 worth it, and then you might need to worry about cross-protocol
 attacks.]]

7. IANA Considerations

 This document has no IANA actions.

Rescorla Expires September 12, 2019 [Page 12]

Internet-Draft CTLS 1.3 March 2019

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Acknowledgments

 TODO acknowledge.

Author's Address

 Eric Rescorla
 Mozilla

 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446

Rescorla Expires September 12, 2019 [Page 13]

