
TLS Working Group E. Rescorla
Internet-Draft Mozilla
Intended status: Standards Track N. Sullivan
Expires: May 7, 2020 Cloudflare
 C. Wood
 Apple Inc.
 November 04, 2019

Semi-Static Diffie-Hellman Key Establishment for TLS 1.3
draft-rescorla-tls-semistatic-dh-02

Abstract

 TLS 1.3 [I-D.ietf-tls-tls13] specifies a signed Diffie-Hellman
 exchange modelled after SIGMA [SIGMA]. This design is suitable for
 endpoints whose certified credential is a signing key, which is the
 common situation for current TLS servers. This document describes a
 mode of TLS 1.3 in which one or both endpoints have a certified DH
 key which is used to authenticate the exchange.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Rescorla, et al. Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TLS 1.3 Semi-Static KX November 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Protocol Overview . 3
3. Negotiation . 5
4. Certificate Format . 5
5. Cryptographic Details . 5
5.1. Certificate Verify Computation 5
5.2. Key Schedule . 6

6. Client Authentication . 6
7. Security Considerations 6
8. IANA Considerations . 7
9. References . 7
9.1. Normative References 7
9.2. Informative References 8

 Authors' Addresses . 8

1. Introduction

 DISCLAIMER: This is a work-in-progress draft and has not yet seen
 significant security analysis. Thus, this draft should not be used
 as a basis for building production systems.

 TLS 1.3 [I-D.ietf-tls-tls13] specifies a signed Diffie-Hellman
 exchange modeled after SIGMA [SIGMA]. This design is suitable for
 endpoints whose certified credential is a signing key, which is the
 common situation for current TLS servers, which is why it was
 selected for TLS 1.3.

 However, it is also possible - although currently rare - for
 endpoints to have a credential which is an (EC)DH key. This can
 happen in one of two ways:

 o They may be issued a certificate with an (EC)DH key, as specified
 for instance in [I-D.ietf-curdle-pkix]

 o They may have a signing key which they use to generate a delegated
 credential [I-D.ietf-tls-subcerts] containing an (EC)DH key.

 In these situations, a signed DH exchange is not appropriate, and
 instead a design in which the server authenticates via its long-term
 (EC)DH key is suitable. This document describes such a design
 modeled on that described in OPTLS [KW16].

Rescorla, et al. Expires May 7, 2020 [Page 2]

Internet-Draft TLS 1.3 Semi-Static KX November 2019

 This design has a number of potential advantages over the signed
 exchange in TLS 1.3, specifically:

 o If the end-entity certificate contains an (EC)DH key, TLS can
 operate with a single asymmetric primitive (Diffie-Hellman). The
 PKI component will still need signatures, but the TLS stack need
 not have one. Note that this advantage is somewhat limited if the
 (EC)DH key is in a delegated credential, but that allows for a
 clean transition to (EC)DH certificates.

 o It is more resistant to random number generation failures on the
 server because the attacker needs to have both the server's long-
 term (EC)DH key and the ephemeral (EC)DH key in order to compute
 the traffic secrets. [Note:
 [I-D.irtf-cfrg-randomness-improvements] describes a technique for
 accomplishing this with a signed exchange.]

 o If the server has a comparatively slow signing cert (e.g., P-256)
 it can amortize that signature over a large number of connections
 by creating a delegated credential with an (EC)DH key from a
 faster group (e.g., X25519).

 o Because there is no signature, the server has deniability for the
 existence of the communication. Note that it could always have
 denied the contents of the communication.

 This exchange is not generally faster than a signed exchange if
 comparable groups are used. In fact, if delegated credentials are
 used, it may be slower on the client as it has to validate the
 delegated credential, though the result may be cached.

2. Protocol Overview

 The overall protocol flow remains the same as that in ordinary TLS
 1.3, as shown below:

Rescorla, et al. Expires May 7, 2020 [Page 3]

Internet-Draft TLS 1.3 Semi-Static KX November 2019

 Client Server

Key ^ ClientHello
Exch | + key_share*
 | + signature_algorithms*
 | + psk_key_exchange_modes*
 v + pre_shared_key* -------->
 ServerHello ^ Key
 + key_share* | Exch
 + pre_shared_key* v
 {EncryptedExtensions} ^ Server
 {CertificateRequest*} v Params
 {Certificate*} ^
 {CertificateVerify*} | Auth
 {Finished} v
 <-------- [Application Data*]
 ^ {Certificate*}
Auth | {CertificateVerify*}
 v {Finished} -------->
 [Application Data] <-------> [Application Data]

 As usual, the client and server each supply an (EC)DH share in their
 "key_share" extensions. However, in addition, the server supplies a
 (signed) static (EC)DH share in its Certificate message, either
 directly in its end-entity certificate or in a delegated credential.
 The client and server then perform two (EC)DH exchanges:

 o Between the client and server "key_share" values to form an
 ephemeral secret (ES). This is the same value as is computed in
 TLS 1.3 currently.

 o Between the client's "key_share" and the server's static share, to
 form a static secret (SS).

 Note that this means that the server's static secret MUST be in the
 same group as selected group for the ephemeral (EC)DH exchange.

 The handshake then proceeds as usual, except that:

 o Instead of containing a signature, the CertificateVerify contains
 a MAC of the handshake transcript, computed based on SS.

 o SS is mixed into the key schedule at the last HKDF-Extract stage
 (where currently a 0 is used as the IKM input).

Rescorla, et al. Expires May 7, 2020 [Page 4]

Internet-Draft TLS 1.3 Semi-Static KX November 2019

3. Negotiation

 In order to negotiate this mode, we treat the (EC)DH MAC as if it
 were a signature and negotiate it with a set of new signature scheme
 values:

 enum {
 sig_p256(0x0901),
 sig_p384(0x0902),
 sig_p521(0x0903),
 sig_x52219(0x0904),
 sig_x448(0x0905),
 } SignatureScheme;

 When present in the "signature_algorithms" extension or
 CertificateVerify.signature_scheme, these values indicate DH MAC with
 the specified key exchange mode. These values MUST NOT appear in
 "signature_algorithms_cert".

 Before sending and upon receipt, endpoints MUST ensure that the
 signature scheme is consistent with the ephemeral (EC)DH group in
 use.

4. Certificate Format

 Like signing keys, static DH keys are carried in the Certificate
 message, either directly in the EE certificate, or in a delegated
 credential. In either case, the OID for the SubjectPublicKeyInfo
 MUST be appropriate for use with (EC)DH key establishment. If in a
 certificate, the key usage and EKU MUST also be set appropriately See
 [I-D.ietf-curdle-pkix] and [[TBD: P-256, etc.]] for specific details
 about these formats.

5. Cryptographic Details

5.1. Certificate Verify Computation

 Instead of a signature, the server proves knowledge of the private
 key associated with its static share by computing a MAC over the
 handshake transcript using SS. The transcript thus far includes all
 messages up to and including Certificate, i.e.:

 Transcript-Hash(Handshake Context, Certificate)

 The MAC key - SS-Base-Key - is derived from SS as follows:

 SS-Base-Key = HKDF-Extract(0, SS)

Rescorla, et al. Expires May 7, 2020 [Page 5]

Internet-Draft TLS 1.3 Semi-Static KX November 2019

 The MAC is then computed using the Finished computation described in
 [I-D.ietf-tls-tls13] Section 4.4, with SS-Base-Key as the Base Key
 value. Receivers MUST validate the MAC and terminate the handshake
 with a "decrypt_error" alert upon failure.

 Note that this means that the server sends two MAC computations in
 the handshake, one in CertificateVerify using SS and the other in
 Finished using the Master Secret. These MACs serve different
 purposes: the first authenticates the handshake and the second proves
 possession of the ephemeral secret.

5.2. Key Schedule

 The final HKDF-Extract stage of the TLS 1.3 key schedule has an HKDF-
 Extract with the IKM of 0. When static key exchange is negotiated,
 that 0 is replaced with SS, as shown below.

...
 Derive-Secret(., "derived", "")
 |
 v
 SS -> HKDF-Extract = Master Secret
 |
 +-----> Derive-Secret(., "c ap traffic",
 | ClientHello...server Finished)
 | = client_application_traffic_secret_0
 |
...

6. Client Authentication

 [[OPEN ISSUE]] In principle, we can do client authentication the same
 way, with the client's DH key in Certificate and a MAC in
 CertificateVerity. However, it's less good because the client's
 static key doesn't get mixed in at all. Also, client DH keys seem
 even further off.

7. Security Considerations

 [[OPEN ISSUE: This design requires formal analysis.]]

 This is intended to have roughly equivalent security properties to
 current TLS 1.3, except for the points raised in the introduction.

 Open questions:

 o Should semi-static key shares be mixed into the key schedule for
 client authentication?

Rescorla, et al. Expires May 7, 2020 [Page 6]

Internet-Draft TLS 1.3 Semi-Static KX November 2019

 o Should we add support for early data encryption using a semi-
 static key?

8. IANA Considerations

 IANA [SHOULD add/has added] the new code points specified in
Section 3 to the TLS 1.3 signature scheme registry, with a

 "recommended" value of TBD.

9. References

9.1. Normative References

 [I-D.ietf-curdle-pkix]
 Josefsson, S. and J. Schaad, "Algorithm Identifiers for
 Ed25519, Ed448, X25519 and X448 for use in the Internet
 X.509 Public Key Infrastructure", draft-ietf-curdle-

pkix-10 (work in progress), May 2018.

 [I-D.ietf-httpbis-http2-secondary-certs]
 Bishop, M., Sullivan, N., and M. Thomson, "Secondary
 Certificate Authentication in HTTP/2", draft-ietf-httpbis-

http2-secondary-certs-05 (work in progress), November
 2019.

 [I-D.ietf-tls-exported-authenticator]
 Sullivan, N., "Exported Authenticators in TLS", draft-

ietf-tls-exported-authenticator-09 (work in progress), May
 2019.

 [I-D.ietf-tls-subcerts]
 Barnes, R., Iyengar, S., Sullivan, N., and E. Rescorla,
 "Delegated Credentials for TLS", draft-ietf-tls-

subcerts-04 (work in progress), July 2019.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-ietf-curdle-pkix-10
https://datatracker.ietf.org/doc/html/draft-ietf-curdle-pkix-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-05
https://datatracker.ietf.org/doc/html/draft-ietf-tls-exported-authenticator-09
https://datatracker.ietf.org/doc/html/draft-ietf-tls-exported-authenticator-09
https://datatracker.ietf.org/doc/html/draft-ietf-tls-subcerts-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-subcerts-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-28
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Rescorla, et al. Expires May 7, 2020 [Page 7]

Internet-Draft TLS 1.3 Semi-Static KX November 2019

9.2. Informative References

 [I-D.irtf-cfrg-randomness-improvements]
 Cremers, C., Garratt, L., Smyshlyaev, S., Sullivan, N.,
 and C. Wood, "Randomness Improvements for Security
 Protocols", draft-irtf-cfrg-randomness-improvements-08
 (work in progress), November 2019.

 [KW16] Krawczyk, H. and H. Wee, "The OPTLS Protocol and TLS 1.3",
 Proceedings of Euro S"P 2016 , 2016,
 <https://eprint.iacr.org/2015/978>.

 [SIGMA] Krawczyk, H., "SIGMA: the 'SIGn-and-MAc' approach to
 authenticated Diffie-Hellman and its use in the IKE
 protocols", Proceedings of CRYPTO 2003 , 2003.

Authors' Addresses

 Eric Rescorla
 Mozilla

 Email: ekr@rtfm.com

 Nick Sullivan
 Cloudflare

 Email: nick@cloudflare.com

 Christopher A. Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-randomness-improvements-08
https://eprint.iacr.org/2015/978

Rescorla, et al. Expires May 7, 2020 [Page 8]

