INTERNET DRAFT EXPIRES AUGUST 1998 INTERNET DRAFT

American University in Bulgaria
Peter Lazarov Lakov

The Keyword Protocol (KP)
<draft-rfced-exp-lakov-00.txt>

Status of This Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its
areas, and its working groups. Note that other groups may also
distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as
"work in progress."

To learn the current status of any Internet-Draft, please check
the "1id-abstracts.txt" listing contained in the Internet-
Drafts Shadow Directories on ftp.is.co.za (Africa),
ftp.nordu.net (Europe), munnari.oz.au (Pacific Rim),
ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Distribution of this document is unlimited.

i) Summary

ii) Introduction

iii) Overview of the job done by the KP server
iv) Communication with the server.

iv.i) Communication with remote computers (wanders, robots)
iv.ii) Communication with local computers (users updating the
information about their pages)

V) Actions taken for each command

vi) Messages

1) Summary

This document provides a proposal for a new Internet protocol,
which should improve the relevance of results of search requests
for information in the WwWW. It contains a description of the
basic model and the minimum set of commands necessary to run
properly. It is neither meant to nor should be regarded as a
definitive version, but rather as a suggestion to a new way of


https://datatracker.ietf.org/doc/html/draft-rfced-exp-lakov-00.txt

looking at the relations between the search engines on one hand
and hosts running WEB servers on the other.

ii) Introduction

The purpose of this protocol is to improve the results of search
requests sent to search engines like Alta-Vista, Lycos, Infoseek,
etc.

Whenever a user browsing the WEB sends a search request to any of
the search engines, there is a high probability that the result
will contain many irrelevant entries. This happens because of the
way WEB wanderers, robots and spiders fill in and update their
databases. Currently their algorithms for finding information is
visiting different sites, browsing the file and taking out
keywords which will be used in subsequent queries. The keywords
taken out will depend on the algorithms of the robots, but
generally they will be either too few, or too many. If robots
parse only the title of a file, then surely many keywords, useful
for finding the file, will not be available, for it is not
possible to include them all in the title. 1If, on the other hand,
the whole file is parsed, surely many keywords, which have nothing
to do with the topic of the file, will be included, thus enabling
this file to appear in search results for completely different
topics. 1In any case, the owner of the file (or the WEB server
supervisor) - the main person interested in assuring that the
information will reach the target audience - has no power in
assisting this process. His/her actions are reduced to the very
passive role of only providing access to the data.

The HTML tags contents and keywords can only partially
alleviate this problem, because many of the HTML files, linked in
a document already parsed by a robot, do not contain those tags.
In this case the robot should decide whether keywords should be
extracted from those files, or they should be disregarded. A
search engine may extracts keywords from a file which was not
intended to provide such - in this case it will fill its database
with worthless data. Similarly, it may neglect files with some
important data. In either cases, the owner of the files has very
little power in communicating the precise information to the
robots.

The KP protocol will give the WEB server supervisor and each
single user an opportunity for very close control of the
information they provide for public access. Each user will be
able to edit the exact keywords necessary to describe his/her
files. The cornerstone of the suggestion is that all descriptions
of the files will be handled by a central and well-known server,
which will both increase accuracy and decrease the time necessary
to browse a WEB server.



iii) Overview of the job done by the KP server.

The KP server operates on the client-server paradigm through a
reliable TCP/IP byte stream using the ASCII character set. The
server performs a listen on a well-known port and when a client
requests a connection to that port, the server accepts the
connection. Once it is created, the client starts sending
commands to the server, which performs the action and returns a
response and (when applicable) data. The response of the server
may be of either predictable, or unpredictable line length. 1In
case the an unpredictable line length answer, the last line
contains only a full stop. Commands and replies are terminated by
a new line character (more on the command syntax in part 4.)

>From the point of view of the server, there are two types of
objects which can contact the server - users and robots (from now
on, till the end of the document, I shall refer to a robot as
program written only to contact the KP server and update the
databases of search engines. Do not confuse with previously
mentioned robots, web wanders, crawlers.) The difference between
the two is that first, users need to supply password, while the
robot does not. Actually, the robot does not present any
identification whatsoever, so any person without a user permission
could login as a robot. There is no harm taken in this, because
the information is meant for public use anyway. Second, users
have permission to edit some of the information, while robots have
only read only permissions.

The KP server needs to handle a single copy of each of following
files with the following proposed fields:

File: DATA

Fields: <id>, <user>, <file>, <keywords>
File: PASSWORD

Fields: <user>, <password>

File: PATCH

Fields: <patch_N>, <patch_N+1 >

File: USED_PATCH

Fields: <patch_file>

and many of the following tables:



File:
Fields:

pP_1, P_2, P_3,

<id>,

<action>,

where the meaning of the fields

DATA

PASSWORD

PATCH

USED

<id>
<user>

<file>
<keywords>

<user>
<password>

<patch_N>
<patch_N+1>

<patch_file>

P_1, P_2, P_N

<jid>
<action>

<file>
<keywords>

same as

, P_N
<file>, <keywords>

for each table is as follows:

a unique record identifier (same for the

other tables)

the name of the user, to whom the file belongs
the actual name of the file

a string with keywords, separated by comma

same as in table DATA
the password for <user>, used at login time.

the name of the previous to last patch file
the name of the last patch file

the name of the patch files, already sent
to robots.

<id> in DATA

action to be taken when the patch file is

merged into the database. N is for new (add

new record with <id>, <file> and <keywords>

like those in the current table), D is for delete

(Delete
current
same as
same as

the records with <id> equal to <id> of the
table)

<file> in DATA

<keywords> in DATA

File DATA contains information concerning all available files and

their respective keywords.

When a robot contacts KP server for

the first time, it should first download the file DATA using the
GETALL command (which sends back all the records of file DATA.



Then, the robot can send the command NEXTPATCH a number of times
until it records all the changes done to file DATA. The rule for
generating a new patch file is simple: whenever a robot visits the
last patch file, create a new patch file and use it to store all
changes thereafter.

Changes are made only by users (see above,) only with the commands
ADDFILE and DELETEFILE. Whenever one of these two commands is
used, the action taken is stored to the last, unvisited by robots,
patch file. Each user can change only the files, which are
referred to by DATA<user> as his/her username.

iv) Communication with the server.

Each command should be terminated with CRLF characters. The space left
blank between the commands and the parameters should be considered as
white space. CRLF characters and white spaces are not shown explicitely
in the description of the commands lest they become too overburdened.

iv.i) Communication with remote computers (wanders, robots.)

GETALL the server sends to the client all the
records with the files and keywords.
ACTION is N for all the records.

GETPATCH <patchname> the server sends to the client only
the records from the file <patchname>.

NEXTPATCH <patchname> the server sends to the client only the
name of the next patch file. No records
from the patch are actually transferred.
If <patchname> is empty, then the return
value is the first patch of the whole
database.

iv.ii) Communication with local computers (those updating the files.)

USER <username> the client sends to the server the
username of the person who wants to
update the database. Username robot is
reserved for robots, WEB wanderers and
staff.

PASS <password> the client sends to the server the
password of the user.

ADDFILE <filename, info> the client sends to the server



DELETEFILE <filename>

LISTLIKE <pattern>

LISTMINE

EXACT

HELP <command>

QUIT

a line containing a filename (possibly
the URL) and the keywords which should
get in the search engines databases for
that file. In case there is already an
entry in the server s database for that
file the keywords should be replaced with
the new ones.

the server deletes the entry for

this file from its database. A user would
typically want to do this operation if
the file is deleted or moved to a new
position. If the last patch file has been
sent to at least one robot/wander (or
there are no patch files yet), the server
should create a new patch file and add
the entry in it.

the server sends to the client a

list of files matching the specified
condition. If the <pattern> is empty, the
server sends all the files

the server sends to the client only the
files belonging to the user currently
logged in.

switch exact string comparison ON/OFF.
When exact mode is ON, a string is equal
to another only when they have the same
sequence of characters. When exact is
OFF, a string is equal to another when it
is a sub-string of the second. All
comparison is case-sensitive. When exact
mode is OFF,

the server sends a short help message to
the client about the command specified.
If no command is specified, the server
sends the list of all the commands.

request that the connection with the
server be terminated.

v) Actions taken for each command.

USER <username>



1) Check if username is robot . If yes, then this is a robot.
Let it in without asking for password and apply only the commands
for robots. If it enters other commands, then send a message 205.

2) If the name is not "robot", check for it in the table
password. If the name is not found, send a message 210. Else
send message 101.

PASS <password>

1) Check whether user has already logged in. If yes, send a
message 204.

2) If the user hasn t logged in yet, check the password sent
against the one stored in file password for that user. If
different, send 207. Else send 102.

ADDFILE <filename, info>

1) Add the record to table DATA.
2) Send message 103.
3) Check if there is already a patch file.
* If no patch file exists yet,
* add field to table PATCH with fields: DATA, P_1.
* Create patch file P_1 and add the field to it.
* If a patch file exists,
*locate the last patch
*If it has been sent to robots,
* Add field to table PATCH with: P<prev>, P<prev + 1>
*Create patch file P<prev+1l> and add the field to it.
*If it hasn t been sent to robots:
* Add the field to the last patch file.
4) Send confirmation message 103

DELETEFILE <filename>

1) Locate the file and check that it belongs to the user. If the
file is not present in the database, send message 208. If the
file does not belong to the user, send message 209. 1In either of
the two cases, goto step 6)

2) Delete the record from table DATA.

3) Send message 104.

4) Follow the same steps, as for ADDFILE step 3.

5) Send confirmation message.

6) End of DELETEFILE command.

LISTLIKE <pattern>

1) Send the user the files matching the pattern.



LISTMINE

1) Send the user only the files belonging to him/her.

EXACT

1) Change the comparison mode.
2) Send the user the message 105 or 106.

HELP <command>

1) Send to the user a help for the command.
send a list of all available commands.

GETALL

1) Send all records of file DATA.

GETPATCH <patchname>

1) Send all records of file <patchname>.

NEXTPATCH <patchname>

If <command> is empty,

2) Locate for next patch file in PATCH table.

3) Send message 107.
4) Send name of next patch file.

101 +0K Enter password.

102 +0K Welcome to KP version 1.0.

103 +0K Your file has been added to the database.
104 +0K The file has been deleted from the database.
105 +0K Exact mode is ON.

106 +0K Exact mode is OFF.

107 +0K The next patch file is:

201 -ERR Unknown command.

202 -ERR Command USER expected.



203 -ERR Command PASS expected.

204 -ERR You have already logged in.

205 -ERR Command not allowed for your class.

206 -ERR No patch file with this name.

207 -ERR Password incorrect. Try again.

208 -ERR File ID not found.

209 -ERR You have no write permission for this file.
210 -ERR User unknown.

Author's Contact Informationa

Peter Lakov
lakov@wizcom.bg

INTERNET DRAFT EXPIRES AUGUST 1998 INTERNET DRAFT



