
INTERNET DRAFT EXPIRES APR 1999 INTERNET DRAFT
 R. Nelson
 12 October 1998
Category: EXPERIMENTAL

HTML REFRESH LANGUAGE (HTMLR/1.0)
<draft-rfced-exp-nelson-00.txt>

Status of This Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its
areas, and its working groups. Note that other groups may also
distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as
"work in progress."

To view the entire list of current Internet-Drafts, please check
the "1id-abstracts.txt" listing contained in the Internet-Drafts
Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
(Northern Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au
(Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu
(US West Coast).

Distribution of this document is unlimited.

Copyright Notice

 Copyright (C) Ross Nelson (1998). All Rights Reserved.

Abstract

 This document describes HTML REFRESH, an EXPERIMENTAL language
 and protocol for refreshing HTML pages and allowing serious
 thin-client/server applications via HTTP [RFC2068].

1. Rationale and Scope

 HTML forms have changed little in functionality or feature since
 the inception of the HTML standard. Whilst HTML forms allow the
 submission of form data from visible and hidden fields up to a
 server side CGI program (or some derivative thereof), the results
 must come back as a complete HTML page, either in the existing
 window/frame or in another browser window or frame.

 This is particularly tedious as the entire target page needs to

https://datatracker.ietf.org/doc/html/draft-rfced-exp-nelson-00.txt
https://datatracker.ietf.org/doc/html/rfc2068

 be redrawn, even if only certain data elements have been changed.
 This has two very negative affects. Firstly, the bandwidth
 requirements are increased as the entire page format must be sent
 down to the browser again and not just the "field" data which has
 changed. Secondly, the affect of redrawing the entire screen does
 not allow the development of user friendly thin-client/server
 applications (where the client is the web browser)and currently
 leads to user disorientation.

 Various browser "add-ins", such as "Java" have been developed
 whilst HTML forms have largely been allowed to languish. This is
 extremely unfortunate as by far the largest number of transactions
 over the Internet occur via HTML forms.

 This document specifies a HTML REFRESH language, which permits
 the refreshing of the form data elements and images on a HTML
 browser page without the redrawing of the entire page. This
 allows serious user interfaces to be developed whilst using
 less bandwidth to do so.

 Future versions of this protocol may include extensions for
 refreshing non-form elements of a web page, in-line with DHTML
 standards.

2. HTML REFRESH LANGUAGE
 The HTMLR language is built using the concepts of the HTML
 language and is to be used in web browsers in conjuction
 with HTML. Needless to say the main delivery method for
 HTMLR is HTTP, with the use of a new mime-type.

2.1 HTTP Added mime-type
 The HTTP would allow the following mime-type through to the
 browser and the web server and browser would comprehend it.
 The mime-type is :

 text/htmlr

 which would denote the content which followed as a HTML refresh.
 A HTML REFRESH aware browser would acknowledge the mime-type
 and note not to redraw the target page from scratch but instead
 integrate the results with it.

2.2 HTMLR Language

 The HTMLR Language uses HTML like syntax to denote the refreshes
 that are to be made to a HTML page. The following tags and
 attributes are used to specify these refreshes. Each tag is
 covered below with accompanying description and example.

 It is anticipated that HTMLR response pages would be generated by
 existing CGI (or like) capable programming languages, for example
 PERL, ASP, COLD FUSION, etc. Such languages should be easily

 capable of generating HTMLR and also changing the response
 mime-type.

2.3 HTMLR TAGS

2.3.1 HTMLR

 Syntax:
 <HTMLR> ... </HTMLR>

 Description:
 The HTMLR tag denotes that the all tags and text until the /HTMLR
 tag comprise a refresh of the existing HTML page/frame as
 displayed by the browser. This tag is equivalent in import to the
 <HTML></HTML> tags. Upon encountering a HTMLR tag, a browser
 should not clear the existing HTML display page/frame, but rather
 interpret the contents of the HTMLR tag and apply the relevant
 processing to the current page.

 Valid tags within HTMLR tags are specified in the rest of this
 section.

 Example:
 <HTMLR>
 refresh tags
 </HTMLR>

2.3.2 WITHFORM

 Syntax:
 <WITHFORM NAME="form-name">....</WITHFORM>

 Description:
 The WITHFORM tag denotes which form the tags within it apply to.
 The form-name specified with the NAME parameter must match the
 name of an existing form on the currently displayed page. The
 browser should treat all tags encountered within the WITHFORM
 screen as dealing with the specified form where applicable.

 Tags which are affected by the WITHFORM tag are SETINPUT,
 SETTEXTAREA,CLEARINPUT,WITHSELECT.

 If WITHFORM does not enclose these tags, they are deemed to be
 relating to the first form on the current page.

 Example:
 <HTMLR>
 <WITHFORM NAME="Person">
 refresh tags for person form
 </WITHFORM>
 </HTMLR>

2.3.3 CLEARINPUT
 Syntax:
 <CLEARINPUT {EMPTY|DEFAULT}>

 Description:
 The CLEARINPUT tag clears all fields/checkboxes/radiobuttons/
 textareas/buttons in the currently targeted form and resets them
 to either empty or their default values. The targeted form is the
 one specified in the enclosing WITHFORM tag, or in the absence
 of this, the first form on the page. This should be processed in
 sequence by the browser, thus any subsequent SETINPUT tags would
 set the fields away from their default or empty values.

 The EMPTY attribute sets the fields to empty whilst the DEFAULT
 attribute set the fields to the original default value as
 specified in the original HTML page.

 Example:
 <HTMLR>
 <WITHFORM NAME="PERSON">
 <CLEARINPUT EMPTY>
 </WITHFORM>
 <STATUS VALUE="Person Record Added">
 </HTMLR>

2.3.4 SETINPUT

 Syntax:
 <SETINPUT NAME="field-name" VALUE="new-value" {CHECKED|UNCHECKED}
 {DISABLED|ENABLED}>

 Description:
 The SETINPUT tag sets the input-field to the new-value specified
 in the VALUE parameter. For radio button and checkbox fields, the
 CHECKED/UNCHECKED parameter can be specified to alter the field
 appearance. The field-name, specified in the NAME parameter must
 match the name of a field (hidden/text/radio/checkbox/button) in
 the targeted form on the current page. The targeted form is the
 one specified in the enclosing WITHFORM tag, or in the absence
 of this, the first form on the page. For radio button fields,
 the new-value must also match the existing value of the named
 field in the current form.

 The HTML 3.0 proposed (but not widely implemented) DISABLED
 parameter could also be used in SETINPUT, along with ENABLED to
 dynamically enable/disable the input field.

 Example:
 <HTMLR>
 <WITHFORM NAME="Person">

 <SETINPUT NAME="Name" VALUE="Fred Jones">
 <SETINPUT NAME="Dob" VALUE="26/Jan/1971">
 <SETINPUT NAME="Address" VALUE="35 Fred Street, Springfield">
 <SETINPUT NAME="Sex" Value="MALE" CHECKED>
 </WITHFORM>
 </HTMLR>

2.3.5 SETTEXTAREA
 Syntax:
 <SETTEXTAREA NAME="field-name" {ENABLED|DISABLED}
 >new-value</SETTEXTAREA>

 Description:
 The SETTEXTAREA tag sets the input-field to the new-value
 specified before the closing /TEXTAREA tag. The field-name,
 specified in the NAME parameter must match the name
 of a textarea field in the targeted form on the current page.
 The targeted form is the one specified in the enclosing WITHFORM
 tag, or in the absence of this, the first form on the page.

 The HTML 3.0 proposed (but not implemented) DISABLED parameter
 could also be used in SETTEXTAREA, along with ENABLED to
 dynamically enable/disable the textarea.

 Example:
 <HTMLR>
 <WITHFORM NAME="Person">
 <SETTEXTAREA NAME="Comments">
 The comments for this record are these
 </SETTEXTAREA>
 </WITHFORM>
 </HTMLR>

2.3.6 SETFOCUS
 Syntax:
 <SETFOCUS FORM="form-name" FIELD="field-name">

 Description:
 The SETFOCUS tag set the input focus the field/textarea/selectlist
 /checkbox/radiobutton-set/button with the name specified by the FIELD
 parameter. The form the field is in is specified by the FORM
 parameter. This tag is not affected by the WITHFORM tag as it
 must set a definitive focus for the entire page, regardless of
 how many forms are present.

 Example:
 <HTMLR>
 <MSGBOX>You must enter an Name</MSGBOX>
 <SETFOCUS FORM="Person" FIELD="Name">
 </HTMLR>

2.3.7 WITHSELECT
 Syntax:
 <WITHSELECT NAME="field-name" {DESELECTALL} {REMOVEALL}
 {ENABLED|DISABLED}></WITHSELECT>

 Description:
 The WITHSELECT tag is used to choose and set a select list
 object in the current form. The field-name, specified in the
 NAME parameter must match the name of a select list object
 in the targeted form on the current page. The targeted form is
 the one specified in the enclosing WITHFORM tag, or in the absence
 of this, the first form on the page.

 The DESELECTALL parameter immediately de-selects all existing
 items in the select list. The REMOVEALL parameter immediately
 removes all items from the select list.

 The HTML 3.0 proposed (but seldom implemented) DISABLED parameter
 could also be used in WITHSELECT, along with ENABLED to
 dynamically enable/disable the SELECT list.

 Example:

 <HTMLR>
 <WITHSELECT NAME="Continent" CLEARALL ENABLED>
 <SETOPTION SELECTED>Asia
 </WITHSELECT>
 </HTMLR>

2.3.8 SETOPTION
 Syntax:
 <SETOPTION {ADD|DELETE} SELECTED|DESELECTED
 VALUE="return-value">display-value</OPTION>

 Description:
 The SETOPTION tag is used to add, alter, or delete a select
 list item of the current SELECT list object. The current select
 list is the select list named by the last WITHSELECT within the
 currently targeted form. The SETOPTION tag is invalid outside of a
 WITHSELECT. The targeted form is the one specified in the
 enclosing WITHFORM tag, or in the absence of this, the first form
 on the page.

 The ADD/DELETE parameter is used to add and delete items
 respectively from the SELECT list. The SELECTED/DESELECTED
 parameter is used to select/deselect an item after it has been
 created, or if it already exists, to alter it.

 Example:
 See WITHSELECT tag example

2.3.9 MSGBOX

 Syntax:
 <MSGBOX {TITLE="title"}>message</MSGBOX>

 Description:
 The MSGBOX tag displays a centered message box to the user with
 message supplied before the </MSGBOX> parameter enclosed in it.
 The message box must be modal and have an 'OK' button to allow
 the user to proceed. The browser should process the MSGBOX tag
 immediately before parsing/processing any more of the HTMLREFRESH.
 The optional TITLE parameter specfies a title for the messagebox
 window.

 The text between MSGBOX and /MSGBOX tags should not contain HTML
 formating and browsers may wrap the text as well as obey CRLF
 combinations found in the text.

 The MSGBOX tag allows for easy server generated intrusive messages
 without affecting the browser page display.

 Example:
 <HTMLR>
 <MSGBOX TITLE="Update Successful"
 >The Record has been updated.</MSGBOX>
 </HTMLR>

2.3.10 STATUS
 Syntax:
 <STATUS VALUE="status-line-value">

 Description:
 The STATUS tag is used to place the value specified in the VALUE
 parameter into the status line at the bottom of the browser
 window.

 The STATUS tag allows for another form of easy server generated
 intrusive messages without affecting the browser page display.

 Example:
 <HTMLR>
 <STATUS VALUE="Please correct the value in the Age Field.">
 <BELL>
 </HTMLR>

2.3.11 PRINT and PRINTURL
 Syntax:
 <PRINT {TO=printer-name} {ORIENT=orientation} {TRAY=traynumber}
 {COPIES=copy-count}>....</PRINT>
 <PRINTURL {TO=printer-name} {ORIENT=orientation}
 {TRAY=traynumber} {COPIES=copy-count} SRC="url">

 Description:
 The PRINT tag is used to print HTML to the specified printer.
 The HTML to print is supplied between the PRINT and /PRINT tags.
 The print is sent to the printer specified by the optional TO
 parameter. If no TO parameter is specified, a printer dialog
 should be displayed for the user to select a target printer
 from. Printing should occur in parallel to any other browser
 processing. The TO option is of most value in an intranet
 environment.

 The ORIENT, TRAY and COPIES parameters are all options which
 allow control over the printing process. The ORIENT parameter
 can be used to specify "landscape" or "portrait" printing. The
 TRAY parameter can be used to select a paper source. The COPIES
 parameter can be user specify an number of copies to print. All
 are optional and are most suited to intranet systems.

 The PRINTURL tag functions the same as the PRINT tag in terms of
 parameters, except that the content to print is supplied by the
 url specified in the SRC parameter. The browser should open the
 specified url and print the resultant stream as requested. The
 printing method should be dictated by the mime-type returned.

 Browsers should aim to support multiple PRINT requests in a
 single HTML REFRESH stream.

 The HTML allowable between the PRINT and /PRINT tags should be
 of the same conformance level as the normal HTML supported by
 the browser and print exactly the same as a user activated print
 of a normal web page.

 Example:
 <HTMLR>
 <MSGBOX>The person record will now be printed to your
 "HP" printer.</MSGBOX>
 <PRINT TO="hp01" ORIENT="portrait" TRAY="3" COPIES="1">
 <HTML>
 <HEAD>
 <TITLE>Person Record 123321</TITLE>
 </HEAD>
 <BODY>
 <H2>Person Record 123321</H2>
 Name: John Smith

 DoB: 14/Mar/1969

 Address: 14 James St Smithville

 <HR>
 </BODY>
 </HTML>
 </PRINT>
 </HTMLR>

2.3.12 BELL
 Syntax:
 <BELL>
 Description:
 The BELL tag makes the browser produce an audible or visible bell.

 Example:
 <HTMLR>
 <BELL>
 <MSGBOX>The server has detected an error.</MSGBOX>
 </HTMLR>

2.3.13 SETIMG
 Syntax:
 <SETIMG NAME="image-name" SRC="url">
 Description:
 The SETIMG tag is used to set images to new images based on a new
 URL. The "image-name" given in the NAME parameter must match the
 name of an image on the current HTML page. The new image is loaded
 into the same screen area as specified by the original IMG tag on
 the original HTML page.

 The browser will place the new image on the page in the same
 location as the old image, with the same dimensions to avoid
 page resizing.

 Example:
 <HTMLR>
 <SETIMG NAME="EmployeePic" SRC="/images/employee/002012.jpg">
 </HTMLR>

3. Operational Constraints and Implications

3.1 Web Servers
 Web servers may require configuration to allow the text/htmlr
 mime-type to be transmitted from the CGI program.

3.2 Web Browsers
 Web browsers will naturally be required to support the protocol
 with substantial internal changes. On reciept of a HTML REFRESH
 of a given page, the page will not be redrawn but instead the
 fields altered as required. The refresh should NOT be placed in
 any history or "BACK" button cache as this does not make sense.

3.3 Javascript/VBscript Implications
 Javascript/VBscript browser implementations could possibly be
 extended to support an "OnRefresh" event in a similar manner
 as the existing "OnLoad" event. This event would be triggered
 upon receipt and application of a HTML REFRESH to the page.
 Appropriate extensions to the HTML BODY tag syntax would need to
 be made to support the "OnRefresh".

3.4 CGI Programs
 CGI program authors would gain the freedom to write serious
 thin-client/server applications with HTML REFRESH. For example,
 a HTML page could have buttons to move forward and backward
 though records in a database. Upon pressing either button, a
 submission would be sent to the appropriate Web Server/CGI
 program. It would navigate the the next/previous database row and
 return new data for the HTML form fields using a HTML REFRESH.

 This refresh would only alter the values in the HTML FORM fields
 on the page, thus lessening bandwidth requirents, aiding
 usability and removing redundant page redraws.

3.5 Security
 HTML REFRESH pages would travel under HTTPS the same as HTML and
 therefore enjoy the same security benefits.

4. Acknowledgements

 Thanks in particular to Steve Aldred, Nigel Williams and last but
 not least Joanna Ladon for encouragement and review.

5. References

 [RFC2068] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068,
 January 1997.

6. Author's Address

 Ross Nelson
 Wizard Information Services
 15 Barry Drive
 TURNER ACT 2612
 Australia

 EMail: Ross.Nelson@wizardis.com.au

INTERNET DRAFT EXPIRES APR 1999 INTERNET DRAFT

https://datatracker.ietf.org/doc/html/rfc2068

