Network Working Group I. Rhee TOC

Internet-Draft NCSU
Intended status: Experimental L. Xu
Expires: February 9, 2009 UNL
S. Ha
NCSU
August 08, 2008

CUBIC for Fast Long-Distance Networks
draft-rhee-tcpm-cubic-01. txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on February 9, 2009.

Abstract

CUBIC is an extension to the current TCP standards. The protocol
differs from the current TCP standards only in the congestion window
adjustment function in the sender side. In particular, it uses a cubic
function instead of a linear window increase of the current TCP
standards to improve scalability and stability under fast and long
distance networks. BIC-TCP, a predecessor of CUBIC, has been a default
TCP adopted by Linux since year 2005 and has already been deployed
globally and in use for several years by the Internet community at
large. CUBIC is using a similar window growth function as BIC-TCP and
is designed to be less aggressive and fairer to TCP in bandwidth usage
than BIC-TCP while maintaining the strengths of BIC- TCP such as
stability, window scalability and RTT fairness. Through extensive

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

testing in various Internet scenarios, we believe that CUBIC is safe
for deployment and testing in the global Internet. The intent of this
document is to provide the protocol specification of CUBIC for a third
party implementation and solicit the community feedback through
experimentation on the performance of CUBIC. We expect this document to
be eventually published as an experimental RFC.

Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

Table of Contents

1. Introduction

2. CUBIC Congestion Control
2.1. Window growth function
2.2. TCP-friendly region
2.3. Concave region
2.4. Convex region
2.5. Multiplicative decrease
2.6. Fast convergence

3. Discussion
3.1. Fairness to standard TCP
3.2. Using Spare Capacity
3.3. Difficult Environments
3.4. Investigating a Range of Environments
3.5. Protection against Congestion Collapse
3.6. Fairness within the Alternative Congestion Control Algorithm.
3.7. Performance with Misbehaving Nodes and Outside Attackers
3.8. Responses to Sudden or Transient Events
3.9. Incremental Deployment

4. Security Considerations

5. TIANA Considerations

6. References

6.1. Normative References
6.2. Informative References
§ Authors' Addresses
§ Intellectual Property and Copyright Statements

T0C

1. Introduction

The low utilization problem of TCP in fast long-distance networks is
well documented in [KO3] (Kelly, T., “Scalable TCP: Improving
Performance in HighSpeed Wide Area Networks,” April 2003.)[RFC3649]
(Floyd, S., “HighSpeed TCP for Large Congestion Windows,"”

December 2003.). This problem arises from a slow increase of congestion
window following a congestion event in a network with a large bandwidth
delay product (BDP). Our experience [H+06] (Ha, S., Kim, Y., Le, L.,
Rhee, I., and L. Xu, “A Step toward Realistic Performance Evaluation of
High-Speed TCP Variants,” February 2006.) indicates that this problem
is frequently observed even in the range of congestion window sizes
over several hundreds of packets (each packet is sized around 1000
bytes) especially under a network path with over 100ms round-trip times
(RTTs). This problem is equally applicable to all Reno style TCP
standards and their variants, including TCP-RENO [RFC2581] (Allman, M.,
Paxson, V., and W. Stevens, “TCP Congestion Control,” April 1999.),
TCP-NewReno [RFC3782] (Floyd, S., Henderson, T., and A. Gurtov, “The
NewReno Modification to TCP's Fast Recovery Algorithm,” April 2004.),
TCP-SACK [RFC2018] (Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow,
“TCP Selective Acknowledgment Options,” October 1996.), SCTP [RFC4960
(Stewart, R., “Stream Control Transmission Protocol,” September 2007.),
TFRC [RFC3448] (Handley, M., Floyd, S., Padhye, J., and J. Widmer, “TCP
Friendly Rate Control (TFRC): Protocol Specification,” January 2003.)
that use the same linear increase function for window growth, which we
refer to collectively as Standard TCP below.

CUBIC [H+08] (Ha, S., Rhee, I., and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” 2008.) is a modification to the congestion
control mechanism of Standard TCP, in particular, to the window
increase function of Standard TCP senders, to remedy this problem. It
uses a cubic increase function in terms of the elapsed time from the
last congestion event. While most alternative algorithms to Standard
TCP uses a convex increase function where after a loss event, the
window increment is always increasing, CUBIC uses both the concave and
convex profiles of a cubic function for window increase. After a window
reduction following a loss event, it registers the window size where it
got the loss event as W_max and performs a multiplicative decrease of
congestion window and the regular fast recovery and retransmit of
Standard TCP. After it enters into congestion avoidance from fast
recovery, it starts to increase the window using the concave profile of
the cubic function. The cubic function is set to have its plateau at
W_max so the concave growth continues until the window size becomes
W_max. After that, the cubic function turns into a convex profile and
the convex window growth begins. This style of window adjustment
(concave and then convex) improves protocol and network stability while
maintaining high network utilization [C+07] (Cai, H., Eun, D., Ha, S.,
Rhee, T., and L. Xu, “Stochastic Ordering for Internet Congestion
Control and its Applications,” May 2007.). This is because the window
size remains almost constant, forming a plateau around W_max where

network utilization is deemed highest and under steady state, most
window size samples of CUBIC are close to W_max, thus promoting high
network utilization and protocol stability. Note that protocols with
convex increase functions have the maximum increments around W_max and
introduces a large number of packet bursts around the saturation point
of the network, likely causing frequent global loss synchronizations.
Another notable feature of CUBIC is that its window increase rate is
mostly independent of RTT, and follows a (cubic) function of the
elapsed time since the last loss event. This feature promotes per-flow
fairness to Standard TCP as well as RTT-fairness. Note that Standard
TCP performs well under short RTT and small bandwidth (or small BDP)
networks. Only in a large long RTT and large bandwidth (or large BDP)
networks, it has the scalability problem. An alternative protocol to
Standard TCP designed to be friendly to Standard TCP at a per-flow
basis must operate must increase its window much less aggressively in
small BDP networks than in large BDP networks. In CUBIC, its window
growth rate is slowest around the inflection point of the cubic
function and this function does not depend on RTT. In a smaller BDP
network where Standard TCP flows are working well, the absolute amount
of the window decrease at a loss event is always smaller because of the
multiplicative decrease. Therefore, in CUBIC, the starting window size
after a loss event from which the window starts to increase, is smaller
in a smaller BDP network, thus falling nearer to the plateau of the
cubic function where the growth rate is slowest. By setting appropriate
values of the cubic function parameters, CUBIC sets its growth rate
always no faster than Standard TCP around its inflection point. When
the cubic function grows slower than the window of Standard TCP, CUBIC
simply follows the window size of Standard TCP to ensure fairness to
Standard TCP in a small BDP network. We call this region where CUBIC
behaves like Standard TCP, the TCP-friendly region.

CUBIC maintains the same window growth rate independent of RTTs outside
of the TCP-friendly region, and flows with different RTTs have the
similar window sizes under steady state when they operate outside the
TCP-friendly region. This ensures CUBIC flows with different RTTs to
have their bandwidth shares linearly proportional to the inverse of
their RTT ratio (the longer RTT, the smaller the share). This behavior
is the same as that of Standard TCP under high statistical multiplexing
environments where packet losses are independent of individual flow
rates. However, under low statistical multiplexing environments, the
bandwidth share ratio of Standard TCP flows with different RTTs is
squarely proportional to the inverse of their RTT ratio [XHRG4] (Xu,
L., Harfoush, K., and I. Rhee, “Binary Increase Congestion Control for
Fast, Long Distance Networks,” March 2004.). CUBIC always ensures the
linear ratio independent of the levels of statistical multiplexing.
This is an improvement over Standard TCP. While there is no consensus
on a particular bandwidth share ratios of different RTT flows, we
believe that under wired Internet, use of the linear share notion seems
more reasonable than equal share or a higher order shares. HTCP [LSG8
(Leith, D. and R. Shorten, “H-TCP: TCP Congestion Control for High

Bandwidth-Delay Product Paths,” April 2008.) currently uses the equal
share.

CUBIC sets the multiplicative window decrease factor to 0.2 while
Standard TCP uses 0.5. While this improves the scalability of the
protocol, a side effect of this decision is slower convergence
especially under low statistical multiplexing environments. This design
choice is following the observation that the author of HSTCP [RFC3649
(Floyd, S., “HighSpeed TCP for Large Congestion Windows,”

December 2003.) has made along with other researchers (e.g., [GVO2
(Gorinsky, S. and H. Vin, “Extended Analysis of Binary Adjustment
Algorithms,” August 2002.)): the current Internet becomes more
asynchronous with less frequent loss synchronizations with high
statistical multiplexing. Under this environment, even strict MIMD can
converge. CUBIC flows with the same RTT always converge to the same
share of bandwidth independent of statistical multiplexing, thus
achieving intra-protocol fairness. We also find that under the
environments with sufficient statistical multiplexing, the convergence
speed of CUBIC flows is reasonable.

In the ensuing sections, we provide the exact specification of CUBIC
and discuss the safety features of CUBIC following the guidelines
specified in [RFC5033] (Floyd, S. and M. Allman, “Specifying New
Congestion Control Algorithms,” August 2007.).

2. CUBIC Congestion Control TOC

2.1. Window growth function TOC

CUBIC maintains the acknowledgment (ACK) clocking of Standard TCP by
increasing congestion window only at the reception of ACK. The protocol
does not make any change to the fast recovery and retransmit of TCP-
NewReno [RFC3782] (Floyd, S., Henderson, T., and A. Gurtov, “The
NewReno Modification to TCP's Fast Recovery Algorithm,” April 2004.)
and TCP-SACK [RFC2018] (Mathis, M., Mahdavi, J., Floyd, S., and A.
Romanow, “TCP Selective Acknowledgment Options,” October 1996.). During
congestion avoidance after fast recovery, CUBIC changes the window
update algorithm of Standard TCP. Suppose that W_max is the window size
before the window is reduced in the last fast retransmit and recovery.
The window growth function of CUBIC uses the following function:

W(t) = C*(t-K)A3 + W_max (Eq. 1)

where C is a CUBIC parameter, t is the elapsed time from the last
window reduction,and K is the time period that the above function takes
to increase W to W_max when there is no further loss event and is
calculated by using the following equation:

K = cubic_root(W_max*beta/C) (Eq. 2)

where beta is the multiplication decrease factor.

Upon receiving an ACK during congestion avoidance, CUBIC computes the
window growth rate during the next RTT period using Eq. 1. It sets
W(t+RTT) as the candidate target value of congestion window. Suppose
that the current window size is cwnd. Depending on the value of cwnd,
CUBIC runs in three different modes. First, if cwnd is less than the
window size that Standard TCP would reach at time t after the last loss
event, then CUBIC is in the TCP friendly region (we describe below how
to determine this window size of Standard TCP in term of time t).
Otherwise, if cwnd is less than W_max, then CUBIC is the concave
region, and if cwnd is larger than W_max, CUBIC is in the convex
region. Below, we describe the exact actions taken by CUBIC in each
region.

2.2. TCP-friendly region _ToC

When receiving an ACK in congestion avoidance, we first check whether
the protocol is in the TCP region or not. This is done as follows. We
can analyze the window size of Standard TCP in terms of the elapsed
time t. Using a simple analysis in [FHPOO] (Floyd, S., Handley, M., and
J. Padhye, “A Comparison of Equation-Based and AIMD Congestion
Control,” May 2000.), we can analyze the average window size of
additive increase and multiplicative decrease (AIMD) with an additive
factor alpha and a multiplicative factor beta to be the following
function:

1/RTT (alpha/2 * (2-beta)/beta * 1/p)70.5 (Eq. 3)

By the same analysis, the average window size of Standard TCP with
alpha 1 and beta 0.5 is 1/RTT (3/2 *1/p)70.5. Thus, for Eq. 3 to be the
same as that of Standard TCP, alpha must be equal to 3*beta/(2-beta).
As Standard TCP increases its window by alpha per RTT, we can get the
window size of Standard TCP in terms of the elapsed time t as follows:
W_tcp(t) = W_max*(1-beta) + 3*beta/(2-beta)* t/RTT (Eq. 4)

If cwnd is less than W_tcp(t), then the protocol is in the TCP friendly
region and cwnd SHOULD be set to W_tcp(t) at each reception of ACK.

2.3. Concave region TOC

When receiving an ACK in congestion avoidance, if the protocol is not
in the TCP-friendly region and cwnd is less than W_max, then the
protocol is in the concave region. In this region, cwnd MUST be
incremented by (W(t+RTT) - cwnd)/cwnd.

2.4. Convex region TOC

When the window size of CUBIC is larger than W_max, it passes the
plateau of the cubic function after which CUBIC follows the convex
profile of the cubic function. Since cwnd is larger than the previous
saturation point W_max, this indicates that the network conditions
might have been perturbed since the last loss event, possibly implying
more available bandwidth after some flow departures. Since the Internet
is highly asynchronous, some amount of perturbation is always possible
without causing a major change in available bandwidth. In this phase,
CUBIC is being very careful by very slowly increasing its window size.
The convex profile ensures that the window increases very slowly at the
beginning and gradually increases its growth rate. We also call this
phase as the maximum probing phase since CUBIC is searching for a new
W_max. In this region, cwnd MUST be incremented by (W(t+RTT) - cwnd)/
cwnd for each received ACK.

2.5. Multiplicative decrease TOC

When a packet loss occurs, CUBIC reduces its window size by a factor of
beta. Parameter beta SHOULD be set to 0.2.

W_max = cwnd; // remember the window size before reduction
cwnd = cwnd * (1-beta); // window reduction
Figure 1

A side effect of setting beta to a smaller value than 0.5 is slower
convergence. We believe that while a more adaptive setting of beta
could result in faster convergence, it will make the analysis of the
protocol much harder. This adaptive adjustment of beta is an item for
the next version of CUBIC.

2.6. Fast convergence TOC

To improve the convergence speed of CUBIC, we add a heuristic in the
protocol. When a new flow joins the network, existing flows in the
network need to give up their bandwidth shares to allow the flow soem
room for growth if the existing flows have been using all the bandwidth
of the network. To increase this release of bandwidth by existing

flows, the following mechanism called fast convergence SHOULD be
implemented.

with fast convergence, when a loss event occurs, before a window
reduction of congestion window, a flow remembers the last value of
W_max before it updates W_max for the current loss event. Let us call
the last value of W_max to be W_last_max.

if (W_max < W_last_max){ // check downward trend,
W_last_max = W_max; // remember the last W_max.
W_max = W_max*(2-beta)/2; // further reduce W_max.
} else // check upward trend.
W_last_max = W_max // remember the last W_max.
Figure 2

This allows W_max to be slightly less than the original W_max. Since
flows spend most of time around their W_max, flows with larger
bandwidth shares tend to spend more time around the plateau allowing
more time for flows with smaller shares to increase their windows.

3. Discussion TOC

With a deterministic loss model where the number of packets between two
successive lost events is always 1/p, CUBIC always operates with the
concave window profile which greatly simplifies the performance
analysis of CUBIC. The average window size of CUBIC can be obtained by
the following function:

(C*(4-beta)/4/beta)nr0.25 * RTTAO.75 / pNO.75 (Eq. 5)

To ensure fairness to Standard TCP based on our argument in the
introduction, C SHOULD be set to 0.4. We find that this value of C
allows the size of the TCP friendly region to be large enough to
encompass most of the environments where Standard TCP performs well
while preserving the scalability of the window growth function. With
beta set to 0.2, the above formula is reduced to:

1.17 * RTTA®.75 / prO.75 (Eq. 6)

Eq. 6 is used to argue the fairness of CUBIC to Standard TCP and its
safety for deployment below.

TOC

3.1. Fairness to standard TCP

In environments where standard TCP is able to make reasonable use of
the available bandwidth, CUBIC does not significantly change this
Sstate.

Standard TCP performs well in the following two types of networks:

1. networks with a small bandwidth-delay product (BDP).
2. networks with a short RTT, but not necessarily a small BDP

CUBIC is designed to behave very similarly to standard TCP in the above
two types of networks. The following two tables show the average window
size of standard TCP, HSTCP, and CUBIC. The average window size of
standard TCP and HSTCP is from [RFC3649] (Floyd, S., “HighSpeed TCP for
Large Congestion Windows,” December 2003.). The average window size of
CUBIC is calculated by using Eq. 6 and CUBIC TCP friendly mode.

Loss Rate P Average TCP W Average HSTCP W Average CUBIC W

10A-2 12 12 12
10A-3 38 38 38
10n-4 120 263 209
10A-5 379 1795 1175
10/N-6 1200 12279 6609
10A-7 3795 83981 37165
10/A-8 12000 574356 208058

Response function of standard TCP, HSTCP, and CUBIC in networks with
RTT = 100ms. The average window size W is in MSS-sized segments.

Table 1

Loss Rate P Average TCP W Average HSTCP W Average CUBIC W

10A-2 12 12 12
107-3 38 38 38
10/A-4 120 263 120
10A-5 379 1795 379

107-6 1200 12279 1200

10n-7 3795 83981 6588
10/A-8 12000 574356 36996

Response function of standard TCP, HSTCP, and CUBIC in networks with
RTT = 10ms. The average window size W is in MSS-sized segments.

Table 2

Both tables show that CUBIC is more friendly to TCP than HSTCP,
especially in networks with a short RTT where TCP performs reasonably
well. For example, in a network with RTT = 10ms and p=107-6, TCP has an
average window of 1200 packets. If the packet size is 1500 bytes, then
TCP can achieve an average rate of 1.44 Gbps. In this case, CUBIC
achieves exactly the same rate as Standard TCP, whereas HSTCP is about
ten times more aggressive than Standard TCP.

3.2. Using Spare Capacity TOC

CUBIC uses a more aggressive window growth function than Standard TCP
under long RTT and high bandwidth networks.

The following table shows that to achieve 10Gbps rate, standard TCP
requires a packet loss rate of 2.0e-10, while CUBIC requires a packet
loss rate of 3.4e-8.

Throughput (Mbps) Average W TCP P HSTCP P CUBIC P

1 8.32.0e-2 2.0e-2 2.0e-2

10 83.3 2.0e-4 3.9e-4 3.3e-4
100 833.3 2.0e-6 2.5e-5 1.6e-5
1000 8333.3 2.0e-8 1.5e-6 7.3e-7
10000 83333.3 2.0e-10 1.0e-7 3.4e-8

Required packet loss rate for Standard TCP, HSTCP, and CUBIC to achieve
a certain throughput. We use 1500-Byte Packets and a Round-Trip Time of
0.1 Seconds.

Table 3
Our test results in [H+06] (Ha, S., Kim, Y., Le, L., Rhee, I., and L.

Xu, “A Step toward Realistic Performance Evaluation of High-Speed TCP
Variants,” February 2006.) indicate that CUBIC uses the spare bandwidth

left unused by existing Standard TCP flows in the same bottleneck link
without taking away much bandwidth from the existing flows.

3.3. Difficult Environments TOC

CUBIC is designed to remedy the poor performance of TCP in fast long-
distance networks. It is not designed for wireless networks.

3.4. Investigating a Range of Environments TOC

CUBIC has been extensively studied by using both NS-2 simulation and
test-bed experiments covering a wide range of network environments.
More information can be found in [H+06] (Ha, S., Kim, Y., Le, L., Rhee,

I., and L. Xu, “A Step toward Realistic Performance Evaluation of High-

Speed TCP Variants,” February 2006.).

3.5. Protection against Congestion Collapse TOC

In case that there is congestion collapse, CUBIC behaves likely
standard TCP since CUBIC modifies only the window adjustment algorithm
of TCP. Thus, it does not modify the ACK clocking and Timeout behaviors
of Standard TCP.

3.6. Fairness within the Alternative Congestion Control TOC
Algorithm.

CUBIC ensures convergence of competing CUBIC flows with the same RTT in
the same bottleneck links to an equal bandwidth share. When competing
flows have different RTTs, their bandwidth shares are linearly
proportional to the invese of their RTT ratios. This is true
independent of the level of stastistical multiplexing in the 1link.

3.7. Performance with Misbehaving Nodes and Outside Attackers TOC

This is not considered in the current CUBIC.

3.8. Responses to Sudden or Transient Events TOC

In case that there is a sudden congestion, a routing change, or a
mobility event, CUBIC behaves the same as Standard TCP.

3.9. Incremental Deployment TOC

CUBIC requires only the change of TCP senders, and does not require any
assistant of routers.

4. Security Considerations TOC

This proposal makes no changes to the underlying security of TCP.

5. IANA Considerations TOC

There are no IANA considerations regarding this document.

6. References TOC

6.1. Normative References
TOC

[RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, “TCP
Selective Acknowledgment Options,” RFC 2018, October 1996
(TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” RFC 2119, March 1997 (TXT, HTML,
XML) .

[RFC2581] Allman, M., Paxson, V., and W. Stevens, “TCP Congestion
Control,” RFC 2581, April 1999 (TXT).

[RFC3448] Handley, M., Floyd, S., Padhye, J., and J. Widmer, “TCP
Friendly Rate Control (TFRC): Protocol Specification,”
RFC 3448, January 2003 (TXT).

[RFC3649]

http://tools.ietf.org/html/rfc2018
http://tools.ietf.org/html/rfc2018
ftp://ftp.isi.edu/in-notes/rfc2018.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
ftp://ftp.isi.edu/in-notes/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc2581
http://tools.ietf.org/html/rfc2581
ftp://ftp.isi.edu/in-notes/rfc2581.txt
http://tools.ietf.org/html/rfc3448
http://tools.ietf.org/html/rfc3448
ftp://ftp.isi.edu/in-notes/rfc3448.txt

Floyd, S., “HighSpeed TCP for Large Congestion Windows,”
RFC 3649, December 2003.

[RFC3782] Floyd, S., Henderson, T., and A. Gurtov, “The NewReno
Modification to TCP's Fast Recovery Algorithm,” RFC 3782,
April 2004 (TXT).

[RFC4960] Stewart, R., “Stream Control Transmission Protocol,”
RFC 4960, September 2007.

[RFC5033] Floyd, S. and M. Allman, “Specifying New Congestion
Control Algorithms,” RFC 5033, August 2007.

6.2. Informative References
_T0C _

[C+07] Cai, H., Eun, D., Ha, S., Rhee, I., and L. Xu, “Stochastic
Ordering for Internet Congestion Control and its
Applications,” In Proceedings of IEEE INFOCOM , May 2007.

[FHPOO] Floyd, S., Handley, M., and J. Padhye, “A Comparison of
Equation-Based and AIMD Congestion Control,” May 2000.

[Gve2] Gorinsky, S. and H. Vvin, “Extended Analysis of Binary
Adjustment Algorithms,” Technical Report TR2002-29,
Department of Computer Sciences , The University of Texas
at Austin , August 2002.

[H+06] Ha, S., Kim, Y., Le, L., Rhee, I., and L. Xu, “A Step
toward Realistic Performance Evaluation of High-Speed TCP
Variants,” International Workshop on Protocols for Fast
Long-Distance Networks , February 2006.

[H+08] Ha, S., Rhee, I., and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” ACM SIGOPS Operating System
Review , 2008.

[Ke3] Kelly, T., “Scalable TCP: Improving Performance in
HighSpeed Wide Area Networks,” ACM SIGCOMM Computer
Communication Review , April 2003.

[LS08] Leith, D. and R. Shorten, “H-TCP: TCP Congestion Control
for High Bandwidth-Delay Product Paths,” Internet-draft
draft-leith-tcp-htcp-06 , April 2008.

[XHRG4] Xu, L., Harfoush, K., and I. Rhee, “Binary Increase
Congestion Control for Fast, Long Distance Networks,” In
Proceedings of IEEE INFOCOM , March 2004.

Authors' Addresses
TOC

Injong Rhee

North Carolina State University
Department of Computer Science
Raleigh, NC 27695-7534

http://tools.ietf.org/html/rfc3649
http://tools.ietf.org/html/rfc3782
http://tools.ietf.org/html/rfc3782
ftp://ftp.isi.edu/in-notes/rfc3782.txt
http://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc5033
http://tools.ietf.org/html/rfc5033
http://www.icir.org/tfrc/
http://www.icir.org/tfrc/
http://www.cs.utexas.edu/users/gorinsky/pubs.html
http://www.cs.utexas.edu/users/gorinsky/pubs.html

us
Email: rhee@ncsu.edu

Lisong Xu
University of Nebraska-Lincoln
Department of Computer Science and Engineering
Lincoln, NE 68588-0115
us
Email: xu@cse.unl.edu

Sangtae Ha
North Carolina State University
Department of Computer Science
Raleigh, NC 27695-7534
us

Email: sha2@ncsu.edu

Full Copyright Statement
TOC
Copyright © The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

mailto:rhee@ncsu.edu
mailto:xu@cse.unl.edu
mailto:sha2@ncsu.edu
http://www.ietf.org/ipr
http://www.ietf.org/ipr

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	CUBIC for Fast Long-Distance Networksdraft-rhee-tcpm-cubic-01.txt
	Status of this Memo
	Abstract
	Terminology
	Table of Contents
	1. Introduction
	2. CUBIC Congestion Control
	2.1. Window growth function
	2.2. TCP-friendly region
	2.3. Concave region
	2.4. Convex region
	2.5. Multiplicative decrease
	2.6. Fast convergence
	3. Discussion
	3.1. Fairness to standard TCP
	3.2. Using Spare Capacity
	3.3. Difficult Environments
	3.4. Investigating a Range of Environments
	3.5. Protection against Congestion Collapse
	3.6. Fairness within the Alternative Congestion Control Algorithm.
	3.7. Performance with Misbehaving Nodes and Outside Attackers
	3.8. Responses to Sudden or Transient Events
	3.9. Incremental Deployment
	4. Security Considerations
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property

