
Network Working Group R. Housley
Internet-Draft Vigil Security
Intended status: Standards Track R. Droms
Expires: September 3, 2018 Google
 March 2, 2018

 TLS 1.3 Option for Negotiation of Visibility in the Datacenter
 draft-rhrd-tls-tls13-visibility-01

Abstract

 Current drafts of TLS 1.3 do not include the use of the RSA
 handshake. While (EC) Diffie-Hellman is in nearly all ways an
 improvement over the TLS RSA handshake, the use of (EC)DH has impacts
 certain enterprise network operational requirements. The TLS
 Visibility Extension addresses one of the impacts of (EC)DH through
 an opt-in mechanism that allows a TLS client and server to explicitly
 grant access to the TLS session plaintext.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 3, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/pdf/bcp78
https://trustee.ietf.org/license-info

Housley & Droms Expires September 3, 2018 [Page 1]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 Unlike earlier versions of TLS, current drafts of TLS 1.3
 [I-D.ietf-tls-tls13] do not provide support for the RSA handshake --
 and have instead adopted ephemeral-mode Diffie-Hellman (DHE) and
 elliptic-curve Diffie-Hellman (ECDHE) as the primary cryptographic
 key exchange mechanism used in TLS.

 While ephemeral (EC) Diffie-Hellman is in nearly all ways an
 improvement over the TLS RSA handshake, the use of these mechanisms
 has impacts on certain enterprise operational requirements.
 Specifically, the use of ephemeral ciphersuites prevents the use of
 current enterprise network monitoring tools such as Intrusion
 Detection Systems (IDS) and application monitoring systems, which
 leverage the current TLS RSA handshake to passively decrypt and
 monitor intranet TLS connections made between endpoints under the
 enterprise's control. This traffic includes TLS connections made
 from enterprise network security devices (firewalls) and load
 balancers at the edge of the enterprise network to internal
 enterprise TLS servers. It does not include TLS connections
 traveling over the external Internet.

 Such monitoring of the enterprise network is ubiquitous and
 indispensable in some industries, and is required for effective and
 safe operation of their enterprise networks. Loss of this capability
 may slow adoption of TLS 1.3 or force enterprises to continue to use
 outdated and potentially vulnerable technology.

 The TLS Visibility Extension provides an option to enable visibility
 into a TLS 1.3 session by an authorized third party. Use of the
 extension requires opt-in by the TLS client when it initiates a TLS
 1.3 session. The TLS server then opts-in by including keying
 material that will enable decryption in the TLS Visibility Extension.
 The presence of the TLS Visibility Extension provides a clear
 indication that other parties have been granted access to the TLS
 session plaintext. The keying material in the TLS Visibility
 Extension is encrypted and can only be decrypted by authorized
 parties that have been given the private key from a managed Diffie-
 Hellman key pair.

Housley & Droms Expires September 3, 2018 [Page 2]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

2. Terminology

 Two key pairs are used with the TLS Visibility Extension for
 encryption of the session secrets:

 SSWrapDH1: generated externally and the public key is provided to
 the TLS 1.3 server prior to use of the TLS Visibility Extension;
 the corresponding private key is provided to the parties that are
 authorized to access the TLS session plaintext.

 SSWrapDH2: an ephemeral key pair that is generated by the TLS 1.3
 server for each TLS 1.3 session that uses the TLS Visibility
 Extension; the server keeps the private key confidential, and
 passes the public key to the other parties in the TLS Visibility
 session.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Extension Overview

 Prior to the use of the TLS Visibility Extension, the SSWrapDH1 key
 pair is generated, possibly by an enterprise key manager. The
 private key is passed to the parties that are authorized to access
 the TLS session plaintext. The server is provisioned with the public
 key. When a new TLS 1.3 session is initiated, the client includes an
 empty TLS Visibility Extension in the ClientHello. The server then
 generates a SSWrapDH2 ephemeral key pair. The server will then:

 o Generate a key, Ke, from the SSWrapDH1 public key and the
 SSWrapDH2 private key.

 o Encrypt the TLS 1.3 session Early Secret (if one exists) and
 Handshake Secret (session secret) using Ke.

https://datatracker.ietf.org/doc/pdf/rfc2119

 o Send an identifier for the SSWrapDH1 public key (called the
 fingerprint), the SSWrapDH2 public key, and the encrypted session
 secrets in the TLS Visibility Extension in the ServerHello
 message.

 To decrypt the TLS 1.3 session, a party that is authorized to access
 the TLS session plaintext must be given the SSWrapDH1 private key.
 The party then:

 o Obtains the SSWrapDH1 public key from the TLS Visibility extension

Housley & Droms Expires September 3, 2018 [Page 3]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

 o Uses the SSHWrapDH1 private key and the SSWrapDH2 public key to
 generate Ke

 o Uses Ke to decrypt the session secrets carried in the TLS
 Visibility extension

 o Uses the session secrets to derive the keying material needed
 decrypt the TLS 1.3 session

4. TLS Visibility Extension

 This section specifies the "tls_visibility" extension, which is
 carried in the ClientHello message and the ServerHello message.

 The general extension mechanisms enable clients and servers to
 negotiate the use of specific extensions. As specified in
 [I-D.ietf-tls-tls13], clients request extended functionality from
 servers with the extensions field in the ClientHello message. If the
 server responds HelloRetryRequest, then the client sends another
 ClientHello message that includes the same extensions field as the
 original ClientHello message.

 Most server extensions are carried in the EncryptedExtensions
 message; however, the "tls_visibility" extension is carried in the
 ServerHello message in a manner similar to the "key_share" and
 "pre_shared_key" extensions. It is only present in the ServerHello
 message if the server wants to enable TLS Visibility for some other
 parties and the client has offered the "tls_visibility" extension in
 the ClientHello message.

 The "tls_visibility" extension MAY appear in the CH (ClientHello
 message) and SH (ServerHello message). It MUST NOT appear in any
 other messages. The "tls_visibility" extension MUST NOT appear in
 the ServerHello message unless "tls_visibility" extension appeared in
 the preceding ClientHello message. If an implementation recognizes
 the "tls_visibility" extension and receives it in any other message,
 then the implementation MUST abort the handshake with an
 "illegal_parameter" alert.

 The Extension structure is defined in [I-D.ietf-tls-tls13]; it is
 repeated here for convenience.

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

Housley & Droms Expires September 3, 2018 [Page 4]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

 The "extension_type" identifies the particular extension type, and
 the "extension_data" contains information specific to the particular
 extension type.

 This document specifies the "tls_visibility" extension type, adding
 one new type to ExtensionType:

 enum {
 tls_visibility(TBD), (65535)
 } ExtensionType;

 The "tls_visibility" extension is relevant when the client and server
 choose to enable one or more other parties to decrypt the TLS
 session.

 Clients MUST include the "tls_visibility" extension in the
 ClientHello message to indicate their willingness for other parties
 to decrypt the TLS session. The server responds with data that
 enables the other parties to derive the keying material needed to
 decrypt the session if they are in possession of the indicated ECDH

 private key.

 struct {
 select (Handshake.msg_type) {
 case client_hello: Empty;
 case server_hello: WrappedSessionSecrets visibility_data;
 };
 } TLSVisibilityExtension;

 struct {
 opaque early_secret<1..255>;
 opaque hs_secret<1..255>;
 } SessionSecrets;

 struct {
 opaque fingerprint<20>;
 opaque key_exchange<1..2^16-1>;
 opaque wrapped_secrets<1..2^16-1>;
 } WrappedSessionSecrets;

 The fields in WrappedSessionSecrets are used as follows:

 o "fingerprint" contains the leftmost 20 octets of the SHA-256 hash
 of SSWrapDH1 public key that was used by the server to compute the

Housley & Droms Expires September 3, 2018 [Page 5]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

 session secret wrapping key. The public key is DER-encoded in the
 SubjectPublicKeyInfo [RFC5280] for the SHA-256 hash computation.
 The key manager tells the server which AEAD algorithm to use with
 this SSWrapDH1 public key at the time it is distributed.

 o "key_exchange" contains the SSWrapDH2 ephemeral public key
 generated by the server on the same elliptic curve as the
 SSWrapDH1 public key identified by the "fingerprint". The server
 uses the SSWrapDH2 ephemeral private key and the SSWrapDH1 public
 key identified by the "fingerprint" to compute a shared secret
 value, called Z, and then uses HKDF [RFC5869] to produce the
 session secret wrapping key, called Ke, and an AEAD nonce, if one
 is needed by the AEAD algorithm [RFC5116]. The details of the key
 agreement process are described in Section 5.

https://datatracker.ietf.org/doc/pdf/rfc5280
https://datatracker.ietf.org/doc/pdf/rfc5869
https://datatracker.ietf.org/doc/pdf/rfc5116

 o "wrapped_secrets" contains the SessionSecrets structure encrypted
 with the AEAD algorithm under Ke. The details of the encryption
 process are described in Section 5.

 The fields in SessionSecrets are used as follows:

 o "early_secret" contains the Early Secret that was derived from the
 pre-shared key. If this session did not use a pre-shared key,
 then the Early Secret is HKDF-Extract(0, 0).

 o "hs_secret" contains the handshake key that was computed using
 (EC)DHE.

5. Session Secret Wrapping

 The input to the encryption process is the encoded SessionSecrets
 structure, and the ciphertext is carried in the "wrapped_secrets"
 field in the WrappedSessionSecrets structure. The session secret
 wrapping key, called Ke, and an AEAD nonce, if one is needed by the
 AEAD algorithm [RFC5116] are used to perform the encryption. For
 example, AES-KEY-WRAP-256 [RFC5649] does not require a nonce, but
 AES-GCM-128 [GCM] does require a nonce.

 The "key_exchange" field of the WrappedSessionSecrets structure
 contains the SSWrapDH2 ephemeral public key generated by the server
 on the same elliptic curve as the SSWrapDH1 public key identified by
 the "fingerprint" field of the WrappedSessionSecrets structure. The
 server uses the SSWrapDH2 ephemeral private key and the SSWrapDH1
 public key to compute a shared secret value, called Z, and then uses
 HKDF [RFC5869] to produce the Ke and the nonce:

Housley & Droms Expires September 3, 2018 [Page 6]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

 PRK = HKDF-Extract(0x00, Z)
 Ke = HKDF-Expand(PRK, "tls_vis_key", AEAD_key_size)
 nonce = HKDF-Expand(PRK, "tls_vis_nonce", AEAD_nonce_size)

 The length of the ciphertext can be longer than the input plaintext,
 depending on the AEAD algorithm that is used. The AEAD algorithm is
 distributed to the server along with the SSWrapDH1 public key, so

https://datatracker.ietf.org/doc/pdf/rfc5116
https://datatracker.ietf.org/doc/pdf/rfc5649
https://datatracker.ietf.org/doc/pdf/rfc5869

 there is no need to carry an explicit algorithm identifier.

 Encryption is performed as follows:

 wrapped_secrets = AEAD-Encrypt(Ke, nonce, SessionSecrets)

 Other parties use the SSWrapDH2 ephemeral public key from the
 "key_exchange" field of the WrappedSessionSecrets structure and the
 SSWrapDH1 private key that is associated with the "fingerprint" field
 of the WrappedSessionSecrets structure to compute a shared secret
 value, called Z. The SSWrapDH1 private key and the AEAD algorithm
 are obtained in advance. Then, Z is used to produce the Ke and the
 nonce as specified above. To unwrap the session secrets, decryption
 is performed as follows:

 SessionSecrets = AEAD-Encrypt(Ke, nonce, wrapped_secrets)

 The result is either the plaintext of the SessionSecrets structure or
 an error indicating that the decryption failed. An integrity check
 is performed as part of the decrypt operation.

6. Alternative Approaches

 This section captures the rationale for pursuing this approach to TLS
 visibility instead of the various alternative approaches.

 Server uses a static Diffie-Hellman key pair: Instead of generating
 ephemeral Diffie-Hellman key pairs, the server reuses a static
 Diffie-Hellman key pair. The static private Diffie-Hellman key
 gets shared with the points that need visibility. While this
 approach scales, the TLS client is unaware of the sharing. In
 addition, this enables visibility of data of all clients
 communicating with the server, versus only those that opt-in to
 visibility.

Housley & Droms Expires September 3, 2018 [Page 7]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

 Export of ephemeral keys: In large enterprises there will be

 billions of ephemeral keys to export and distribute. Transporting
 these keys to tools for decryption of packets in real time will be
 difficult, adding greatly to the complexity of the solution.

 Export of decrypted traffic from TLS proxy devices: Decrypting
 traffic only at the edge of the enterprise datacenter does not
 meet all of the enterprise requirements, which include
 troubleshooting, fraud detection, and network security monitoring.
 Further, the number of TLS proxies needed are quite costly, add
 latency, and increase production risk.

 Continue to use TLS 1.2 within the enterprise network: TLS 1.2 could
 be used within the enterprise network (with TLS 1.3 outside) to
 enable TLS visibility via RSA key transport. However, TLS 1.3 has
 security improvements over TLS 1.2. At some point in the future,
 TLS 1.2 will not longer be supported and available in enterprise
 applications and protocol implementations. In addition, based on
 experience, standards bodies will deprecate the use of TLS 1.2 and
 require enterprise networks to move to TLS 1.3.

 Reliance on TCP/IP headers: TCP and IP headers are not adequate for
 enterprise requirements. Troubleshooting, fraud detection, and
 network security monitoring need access to the plaintext payload.
 For example, troubleshooters must be able to find specific
 transactions, user identifiers, session identifiers, URLs, and
 time stamps.

 Reliance on application and server logs: Logging is not adequate for
 enterprise requirements. Code developers cannot anticipate every
 possible problem for logging, and system administrators turn much
 of the logging off to conserve system resources.

 Troubleshooting and malware analysis at the endpoint: Endpoints are
 focused on providing a service, and they cannot handle the
 additional burden of the various enterprise monitoring
 requirements.

 Adding TCP/UDP extensions: An important part of troubleshooting,
 network security monitoring, etc. is analysis of the application-
 specific payload of the packet. It is not possible to anticipate
 ahead of time, among thousands of unique applications, which
 fields in the application payload will be important.

Housley & Droms Expires September 3, 2018 [Page 8]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

7. IANA Considerations

 IANA is requested to update the TLS ExtensionType Registry to include
 "tls_visibility" with a value of [TBD] and the list of messages "CH,
 SH" in which the "tls_visibility" extension may appear.

8. Security Considerations

 The use of a TLS protocol extension ensures that both the TLS client
 and the TLS server are aware that other parties have visibility into
 the TLS session plaintext. However, the approach used here does not
 allow those parties to masquerade since they do not have the ability
 to sign the Finished message in the TLS handshake.

 Use of the TLS Visibility extension represents a deliberate
 introduction by the client and server of other parties that can
 access the TLS session plaintext. Deployments that choose to make
 use of this extension should carefully consider the risks associated
 with the change to the Forward Secrecy. In particular, Forward
 Secrecy will not begin for sessions where the TLS Visibility
 Extension is used until all of these events take place:

 (1) The server has securely discarded the session secrets.

 (2) The server has securely discarded the session secret wrapping
 key.

 (3) The client has securely discarded the session secrets.

 (4) The other parties have securely discarded the session secrets.

 (5) The other parties have securely discarded the session secret
 wrapping key.

 (6) The other parties have securely discarded the ECDHE private key
 that was used to derive the session secret wrapping key.

 By agreeing to the use of the TLS Visibility extension, the client is
 aware that the TLS session plaintext will be accessible to any other
 party that has access to the ECDHE private key that was used to
 derive the session secret wrapping key. It is envisioned that the
 server and other parties will all be under a single administrative
 control; however, the TLS Visibility extension does not guarantee any
 particular scope for the distribution of the ECDHE private keys.

 The SSWrapDH1 and SSWrapDH2 key size and parameters MUST be selected

 to provide the same level (or more) of security as the (EC)DHE key
 used in the TLS Handshake. Similarly, the Sessions Secret Wrapping

Housley & Droms Expires September 3, 2018 [Page 9]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

 key size and algorithm MUST be selected to provide the same level (or
 more) of security as the AEAD cipher used with the TLS Record
 protocol. If weaker key sizes, parameters or algorithms are used,
 the attacker will find it easier to obtain the session secrets from
 the TLS Visibility extension.

9. Acknowledgments

 Matthew Green was the primary author of
 [I-D.green-tls-static-dh-in-tls13], which describes an earlier
 solution to the TLS 1.3 session visibility problem. Nick Sullivan
 and Richard Barnes suggested the use of client and server opt-in.
 Peter Wu suggested the use of HKDF-Expand to get a nonce. Nalini
 Elkins, Steven Fenter, Sinok Lao, Andrew Kennedy, Darin Pettis, Tim
 Polk, Andrew Regenscheid, Murugiah Souppaya, and Paul Turner
 contributed through discussion to the development of this document.

10. References

10.1. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-24 (work in progress),
 February 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,

https://datatracker.ietf.org/doc/pdf/draft-ietf-tls-tls13-24
https://datatracker.ietf.org/doc/pdf/bcp14
https://datatracker.ietf.org/doc/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/pdf/rfc5869

 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

10.2. Informative References

 [GCM] Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC", NIST
 Special Publication 800-38D, November 2007.

Housley & Droms Expires September 3, 2018 [Page 10]

Internet-Draft Option for TLS 1.3 in Datacenter March 2018

 <http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
 nistspecialpublication800-38d.pdf>

 [I-D.green-tls-static-dh-in-tls13]
 Green, M., Droms, R., Housley, R., Turner, P., and S.
 Fenter, "Data Center use of Static Diffie-Hellman in TLS
 1.3", draft-green-tls-static-dh-in-tls13-01 (work in
 progress), July 2017.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 DOI 10.17487/RFC5649, September 2009,
 <https://www.rfc-editor.org/info/rfc5649>.

Authors' Addresses

 Russ Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA

 Email: housley@vigilsec.com

 Ralph Droms
 Google
 355 Main Street

https://www.rfc-editor.org/info/rfc5869
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://datatracker.ietf.org/doc/pdf/draft-green-tls-static-dh-in-tls13-01
https://datatracker.ietf.org/doc/pdf/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/pdf/rfc5649
https://www.rfc-editor.org/info/rfc5649

 Cambridge, MA 02142
 USA

 Email: rdroms.ietf@gmail.com

Housley & Droms Expires September 3, 2018 [Page 11]

