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1.  Introduction

   SM4 [GBT.32907-2016] [ISO.IEC.18033-3.AMD2] is a cryptographic
   standard issued by the State Cryptography Administration (SCA) of
   China [SCA] (formerly the Office of State Commercial Cryptography
   Administration, OSCCA) as an authorized cryptographic algorithm for
   the use within China.  The algorithm is published in public.

   SM4 is a symmetric encryption algorithm, specifically a blockcipher,
   designed for data encryption.

1.1.  Purpose

   This document does not aim to introduce a new algorithm, but to
   provide a clear and open description of the SM4 algorithm in English,
   and also to serve as a stable reference for IETF documents that
   utilize this algorithm.

   While this document is similar to [SM4-En] in nature, [SM4-En] is a
   textual translation of the "SMS4" algorithm [SM4] published in 2006.
   Instead, this document follows the updated description and structure
   of [GBT.32907-2016] published in 2016.  Sections 1 to 7 of this
   document directly map to the corresponding sections numbers of the
   [GBT.32907-2016] standard for convenience of the reader.

   This document also provides additional information on the design
   considerations of the SM4 algorithm [SM4-Details], its modes of
   operations that are currently being used (see Section 8), and the
   offical SM4 OIDs (see Section 9).

1.2.  History

   The "SMS4" algorithm (the former name of SM4) was invented by Shu-
   Wang Lu [LSW-Bio].  It was first published in 2003 as part of
   [GB.15629.11-2003], then published independently in 2006 by SCA
   (OSCCA at that time) [SM4], published as an industry cryptographic
   standard and renamed to "SM4" in 2012 by SCA (OSCCA at that time)
   [GMT-0002-2012], and finally formalized in 2016 as a Chinese National
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   Standard (GB Standard) [GBT.32907-2016].  SM4 has also been
   standardized in [ISO.IEC.18033-3.AMD2] by the International
   Organization for Standardization in 2017.

   SMS4 was originally created for use in protecting wireless networks
   [SM4], and is mandated in the Chinese National Standard for Wireless
   LAN WAPI (Wired Authentication and Privacy Infrastructure)
   [GB.15629.11-2003].  A proposal was made to adopt SMS4 into the IEEE
   802.11i standard, but the algorithm was eventually not included due
   to concerns of introducing inoperability with existing ciphers.

   The latest SM4 standard [GBT.32907-2016] was proposed by the SCA
   (OSCCA at that time), standardized through TC 260 of the
   Standardization Administration of the People's Republic of China
   (SAC), and was drafted by the following individuals at the Data
   Assurance and Communication Security Research Center (DAS Center) of
   the Chinese Academy of Sciences, the China Commercial Cryptography
   Testing Center and the Beijing Academy of Information Science &
   Technology (BAIST):

   o  Shu-Wang Lu

   o  Dai-Wai Li

   o  Kai-Yong Deng

   o  Chao Zhang

   o  Peng Luo

   o  Zhong Zhang

   o  Fang Dong

   o  Ying-Ying Mao

   o  Zhen-Hua Liu

2.  Terms and Definitions

   The key words "*MUST*", "*MUST NOT*", "*REQUIRED*", "*SHALL*",
   "*SHALL NOT*", "*SHOULD*", "*SHOULD NOT*", "*RECOMMENDED*", "*MAY*",
   and "*OPTIONAL*" in this document are to be interpreted as described
   in [RFC2119].

   The following terms and definitions apply to this document.

   block length

https://datatracker.ietf.org/doc/html/rfc2119
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      Bit-length of a message block.

   key length
      Bit-length of a key.

   key expansion algorithm
      An operation that converts a key into a round key.

   rounds
      The number of iterations that the round function is run.

   round key
      A key used in each round on the blockcipher, derived from the
      input key, also called a subkey.

   word
      a 32-bit quantity

   S-box
      The S (substitution) box function produces 8-bit output from 8-bit
      input, represented as S(.)

3.  Symbols And Abbreviations

   S xor T
      bitwise exclusive-or of two 32-bit vectors S and T.  S and T will
      always have the same length.

   a <<< i
      32-bit bitwise cyclic shift on a with i bits shifted left.

4.  Compute Structure

   The SM4 algorithm is a blockcipher, with block size of 128 bits and a
   key length of 128 bits.

   Both encryption and key expansion use 32 rounds of a nonlinear key
   schedule per block.  Each round processes one of the four 32-bit
   words that constitute the block.

   The structure of encryption and decryption are identical, except that
   the round key schedule has its order reversed during decryption.

   Using a 8-bit S-box, it only uses exclusive-or, cyclic bit shifts and
   S-box lookups to execute.
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5.  Key And Key Parameters

   The SM4 encryption key is 128 bits long and represented below, where
   each MK_i, (i = 0, 1, 2, 3) is 32 bits long.

   MK = (MK_0, MK_1, MK_2, MK_3)

   The round key schedule is derived from the encryption key,
   represented as below where each rk_i (i = 0, ..., 31) is 32 bits
   long:

   (rk_0, rk_1, ... , rk_31)

   The family key used for key expansion is represented as FK, where
   each FK_i (i = 0, ..., 3) is 32 bits long:

   FK = (FK_0, FK_1, FK_2, FK_3)

   The constant key used for key expansion is represented as CK, where
   each CK_i (i = 0, ..., 31) is 32 bits long:

   CK = (CK_0, CK_1, ... , CK_31)

6.  Functions

6.1.  Round Function F

   The round function F is defined as:

   F(X_0, X_1, X_2, X_3, rk) = X_0 xor T(X_1 xor X_2 xor X_3 xor rk)

   Where:

   o  Each $$X_i$ is 32-bit wide.

   o  The round key rk is 32-bit wide.

6.2.  Permutations T and T'

   T is a reversible permutation that outputs 32 bits from a 32-bit
   input.

   It consists of a nonlinear transform tau and linear transform L.

   T(.) = L(tau(.))

   The permutation T' is created from T by replacing the linear
   transform function L with L'.
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   T'(.) = L'(tau(.))

6.2.1.  Nonlinear Transformation tau

   tau is composed of four parallel S-boxes.

   Given a 32-bit input A, where each a_i is a 8-bit string:

   A = (a_0, a_1, a_2, a_3)

   The output is a 32-bit B, where each b_i is a 8-bit string:

   B = (b_0, b_1, b_2, b_3)

   B is calculated as follows:

   (b_0, b_1, b_2, b_3) = tau(A)

   tau(A) = (S(a_0), S(a_1), S(a_2), S(a_3))

6.2.2.  Linear Transformations L and L'

   The output of nonlinear transformation function tau is used as input
   to linear transformation function L.

   Given B, a 32-bit input.

   The linear transformation L' is defined as follows.

   L(B) = B xor (B <<< 2) xor (B <<< 10) xor (B <<< 18) xor (B <<< 24)

   The linear transformation L' is defined as follows.

   L'(B) = B xor (B <<< 13) xor (B <<< 23)

6.2.3.  S-box S

   The S-box S used in nonlinear transformation tau is given in the
   lookup table shown in Figure 1 with hexadecimal values.
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              |  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
           ---|-------------------------------------------------
            0 | D6 90 E9 FE CC E1 3D B7 16 B6 14 C2 28 FB 2C 05
            1 | 2B 67 9A 76 2A BE 04 C3 AA 44 13 26 49 86 06 99
            2 | 9C 42 50 F4 91 EF 98 7A 33 54 0B 43 ED CF AC 62
            3 | E4 B3 1C A9 C9 08 E8 95 80 DF 94 FA 75 8F 3F A6
            4 | 47 07 A7 FC F3 73 17 BA 83 59 3C 19 E6 85 4F A8
            5 | 68 6B 81 B2 71 64 DA 8B F8 EB 0F 4B 70 56 9D 35
            6 | 1E 24 0E 5E 63 58 D1 A2 25 22 7C 3B 01 21 78 87
            7 | D4 00 46 57 9F D3 27 52 4C 36 02 E7 A0 C4 C8 9E
            8 | EA BF 8A D2 40 C7 38 B5 A3 F7 F2 CE F9 61 15 A1
            9 | E0 AE 5D A4 9B 34 1A 55 AD 93 32 30 F5 8C B1 E3
            A | 1D F6 E2 2E 82 66 CA 60 C0 29 23 AB 0D 53 4E 6F
            B | D5 DB 37 45 DE FD 8E 2F 03 FF 6A 72 6D 6C 5B 51
            C | 8D 1B AF 92 BB DD BC 7F 11 D9 5C 41 1F 10 5A D8
            D | 0A C1 31 88 A5 CD 7B BD 2D 74 D0 12 B8 E5 B4 B0
            E | 89 69 97 4A 0C 96 77 7E 65 B9 F1 09 C5 6E C6 84
            F | 18 F0 7D EC 3A DC 4D 20 79 EE 5F 3E D7 CB 39 48

                        Figure 1: SM4 S-box Values

   For example, input "EF" will produce an output read from the S-box
   table row E and column F, giving the result S(EF) = 84.

7.  Algorithm

7.1.  Encryption

   The encryption algorithm consists of 32 rounds and 1 reverse
   transform R.

   Given a 128-bit plaintext input, where each X_i is 32-bit wide:

   (X_0, X_1, X_2, X_3)

   The output is a 128-bit ciphertext, where each Y_i is 32-bit wide:

   (Y_0, Y_1, Y_2, Y_3)

   Each round key is designated as rk_i, where each rk_i is 32-bit wide
   and i = 0, 1, 2, ..., 31.

   a.  32 rounds of calculation

   i = 0, 1, ..., 31

   X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i)
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   b.  reverse transformation

   (Y_0, Y_1, Y_2, Y_3) = R(X_32, X_33, X_34, X_35)

   R(X_32, X_33, X_34, X_35) = (X_35, X_34, X_33, X_32)

   Please refer to Appendix A for sample calculations.

   A flow of the calculation is given in Figure 2.
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                              128-bits plaintext
                         \___________________________/
                                       |
                                       v
                          X_0     X_1     X_2     X_3
                           |       |       |       |
                           v       v       v       v
                         +---------------------------+
             Round 1     |      Round Function       | <--rk_0
                         +---------------------------+
                           |       |       |       |
                          X_1     X_2     X_3     X_4
                           |       |       |       |
                           v       v       v       v
                         +---------------------------+
             Round 2     |      Round Function       | <--rk_1
                         +---------------------------+
                           |       |       |       |
                          X_2     X_3     X_4     X_5
                           |       |       |       |
                           v       v       v       v
                                      ...

                          X_31    X_32    X_33    X_34
                           |       |       |       |
                           v       v       v       v
                         +---------------------------+
             Round 32    |      Round Function       | <--rk_31
                         +---------------------------+
                           |       |       |       |
                          X_32    X_33    X_34    X_35
                           |       |       |       |
                           v       v       v       v
                         +---------------------------+
                         | Reverse Transformation R  |
                         +---------------------------+
                           |       |       |       |
                          Y_0     Y_1     Y_2     Y_3

                         \___________________________/
                                       |
                                       v
                              128-bits ciphertext

                       Figure 2: SM4 Encryption Flow
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7.2.  Decryption

   Decryption takes an identical process as encryption, with the only
   difference the order of the round key sequence.

   During decryption, the round key sequence is:

   (rk_31, rk_30, ..., rk_0)

7.3.  Key Schedule

   Round keys used during encryption are derived from the encryption
   key.

   Specifically, given the encryption key MK, where each MK_i is 32-bit
   wide:

   MK = (MK_0, MK_1, MK_2, MK_3)

   Each round key rk_i is created as follows, where i = 0, 1, ..., 31.

   (K_0, K_1, K_2, K_3) =
       (MK_0 xor FK_0, MK_1 xor FK_1, MK_2 xor FK_2, MK_3 xor FK_3)

   rk_i = K_{i + 4}

   K_{i + 4} =
       K_i xor T' (K_{i + 1} xor K_{i + 2} xor K_{i + 3} xor CK_i)

   Since the decryption key is identical to the encryption key, the
   round keys used in the decryption process are derived from the
   decryption key through the identical process to that of during
   encryption.

   Figure 3 depicts the i-th round of SM4.
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               X_i               rk_i  X_{i+1} X_{i+2} X_{i+3}
                |                 |      |       |       |
                |                 |      |       |       |
                |                 v      |       |       |
              +---+    +---+    +---+    |       |       |
              | X |    |   |    | X | <--+       |       |
              | O | <- | T | <- | O | <----------+       |
              | R |    |   |    | R | <------------------+
              +---+    +---+    +---+    |       |       |
                |                       /       /       /
                |                      /       /       /
                |                     /       /       /
                 \--------------------------------------=
                                    /       /       /    \
                                   /       /       /     |
                  /---------------/       /       /      |
                 |                       |       |       |
              X_{i+1}                 X_{i+2} X_{i+3} X_{i+4}

              Figure 3: SM4 Round Function For the i-th Round

7.3.1.  Family Key FK

   Family key FK given in hexadecimal notation, is:

                              FK_0 = A3B1BAC6
                              FK_1 = 56AA3350
                              FK_2 = 677D9197
                              FK_3 = B27022DC

7.3.2.  Constant Key CK

   The method to retrieve values from the constant key CK is as follows.

   Let ck_{i, j} be the j-th byte (i = 0, 1, ..., 31; j = 0, 1, 2, 3) of
   CK_i.

   Therefore, each ck_{i, j} is a 8-bit string, and each CK_i a 32-bit
   word.

   CK_i = (ck_{i, 0}, ck_{i, 1}, ck_{i, 2}, ck_{i, 3})

   ck_{i, j} = (4i + j) x 7 (mod 256)

   The values of the constant key CK_i, where (i = 0, 1, ..., 31), in
   hexadecimal, are:
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                    CK_0  = 00070E15   CK_16 = C0C7CED5
                    CK_1  = 1C232A31   CK_17 = DCE3EAF1
                    CK_2  = 383F464D   CK_18 = F8FF060D
                    CK_3  = 545B6269   CK_19 = 141B2229
                    CK_4  = 70777E85   CK_20 = 30373E45
                    CK_5  = 8C939AA1   CK_21 = 4C535A61
                    CK_6  = A8AFB6BD   CK_22 = 686F767D
                    CK_7  = C4CBD2D9   CK_23 = 848B9299
                    CK_8  = E0E7EEF5   CK_24 = A0A7AEB5
                    CK_9  = FC030A11   CK_25 = BCC3CAD1
                    CK_10 = 181F262D   CK_26 = D8DFE6ED
                    CK_11 = 343B4249   CK_27 = F4FB0209
                    CK_12 = 50575E65   CK_28 = 10171E25
                    CK_13 = 6C737A81   CK_29 = 2C333A41
                    CK_14 = 888F969D   CK_30 = 484F565D
                    CK_15 = A4ABB2B9   CK_31 = 646B7279

8.  Modes of Operation

   This document defines multiple modes of operation for the SM4
   blockcipher algorithm.

   The CBC (Cipher Block Chaining), ECB (Electronic CodeBook), CFB
   (Cipher FeedBack), OFB (Output FeedBack) and CTR (Counter) modes are
   defined in [NIST.SP.800-38A] and utilized with the SM4 algorithm in
   the following sections.

8.1.  Variables And Primitives

   Hereinafter we define:

   SM4Encrypt(P, K)
      The SM4 algorithm that encrypts plaintext P with key K, described
      in Section 7.1

   SM4Decrypt(C, K)
      The SM4 algorithm that decrypts ciphertext C with key K, described
      in Section 7.2

   b
      block size in bits, defined as 128 for SM4

   P_j
      block j of ciphertext bitstring P

   C_j
      block j of ciphertext bitstring C
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   NBlocks(B, b)
      Number of blocks of size b-bit in bitstring B

   IV
      Initialization vector

   LSB(b, S)
      Least significant b bits of the bitstring S

   MSB(b, S)
      Most significant b bits of the bitstring S

8.2.  Initialization Vectors

   The CBC, CFB and OFB modes require an additional input to the
   encryption process, called the initialization vector (IV).  The
   identical IV is used in the input of encryption as well as the
   decryption of the corresponding ciphertext.

   Generation of IV values *MUST* take into account of the
   considerations in Section 12 recommended by [BC-EVAL].

8.3.  SM4-ECB

   In SM4-ECB, the same key is utilized to create a fixed assignment for
   a plaintext block with a ciphertext block, meaning that a given
   plaintext block always gets encrypted to the same ciphertext block.
   As described in [NIST.SP.800-38A], this mode should be avoided if
   this property is undesirable.

   This mode requires input plaintext to be a multiple of the block
   size, which in this case of SM4 it is 128-bit.  It also allows
   multiple blocks to be computed in parallel.

8.3.1.  SM4-ECB Encryption

   Inputs:

   o  P, plaintext, length *MUST* be multiple of b

   o  K, SM4 128-bit encryption key

   Output:

   o  C, ciphertext, length is a multiple of b

   C is defined as follows.
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   _____________________________________________________________________

   n = NBlocks(P, b)

   for i = 1 to n
     C_i = SM4Encrypt(P_i, K)
   end for

   C = C_1 || ... || C_n
   _____________________________________________________________________

8.3.2.  SM4-ECB Decryption

   Inputs:

   o  C, ciphertext, length *MUST* be multiple of b

   o  K, SM4 128-bit encryption key

   Output:

   o  P, plaintext, length is a multiple of b

   P is defined as follows.

   _____________________________________________________________________

   n = NBlocks(C, b)

   for i = 1 to n
     P_i = SM4Decrypt(C_i, K)
   end for

   P = P_1 || ... || P_n
   _____________________________________________________________________

8.4.  SM4-CBC

   SM4-CBC is similar to SM4-ECB that the input plaintext *MUST* be a
   multiple of the block size, which is 128-bit in SM4.  SM4-CBC
   requires an additional input, the IV, that is unpredictable for a
   particular execution of the encryption process.

   Since CBC encryption relies on a forward cipher operation that depend
   on results of the previous operation, it cannot be parallelized.
   However, for decryption, since ciphertext blocks are already
   available, CBC parallel decryption is possible.
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8.4.1.  SM4-CBC Encryption

   Inputs:

   o  P, plaintext, length *MUST* be multiple of b

   o  K, SM4 128-bit encryption key

   o  IV, 128-bit, unpredictable, initialization vector

   Output:

   o  C, ciphertext, length is a multiple of b

   C is defined as follows.

   _____________________________________________________________________

   n = NBlocks(P, b)

   C_1 = SM4Encrypt(P_1 xor IV, K)

   for i = 2 to n
     C_i = SM4Encrypt(P_i xor C_{i - 1}, K)
   end for

   C = C_1 || ... || C_n
   _____________________________________________________________________

8.4.2.  SM4-CBC Decryption

   Inputs:

   o  C, ciphertext, length *MUST* be a multiple of b

   o  K, SM4 128-bit encryption key

   o  IV, 128-bit, unpredictable, initialization vector

   Output:

   o  P, plaintext, length is multiple of b

   P is defined as follows.
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   _____________________________________________________________________

   n = NBlocks(C, b)

   P_1 = SM4Decrypt(C_1, K) xor IV

   for i = 2 to n
     P_i = SM4Decrypt(C_i, K) xor C_{i - 1}
   end for

   P = P_1 || ... || P_n
   _____________________________________________________________________

8.5.  SM4-CFB

   SM4-CFB relies on feedback provided by successive ciphertext segments
   to generate output blocks.  The plaintext given must be a multiple of
   the block size.

   Similar to SM4-CBC, SM4-CFB requires an IV that is unpredictable for
   a particular execution of the encryption process.

   SM4-CFB further allows setting a positive integer parameter s, that
   is less than or equal to the block size, to specify the size of each
   data segment.  The same segment size must be used in encryption and
   decryption.

   In SM4-CFB, since the input block to each forward cipher function
   depends on the output of the previous block (except the first that
   depends on the IV), encryption is not parallelizable.  Decryption,
   however, can be parallelized.

8.5.1.  SM4-CFB Variants

   SM4-CFB takes an integer s to determine segment size in its
   encryption and decryption routines.  We define the following variants
   of SM4-CFB for various s:

   o  SM4-CFB-1, the 1-bit SM4-CFB mode, where s is set to 1.

   o  SM4-CFB-8, the 8-bit SM4-CFB mode, where s is set to 8.

   o  SM4-CFB-64, the 64-bit SM4-CFB mode, where s is set to 64.

   o  SM4-CFB-128, the 128-bit SM4-CFB mode, where s is set to 128.
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8.5.2.  SM4-CFB Encryption

   Inputs:

   o  P#, plaintext, length *MUST* be multiple of s

   o  K, SM4 128-bit encryption key

   o  IV, 128-bit, unpredictable, initialization vector

   o  s, an integer 1 <= s <= b that defines segment size

   Output:

   o  C#, ciphertext, length is a multiple of s

   C# is defined as follows.

   _____________________________________________________________________

   n = NBlocks(P#, s)

   I_1 = IV
   for i = 2 to n
     I_i = LSB(b - s, I_{i - 1}) || C#_{j - 1}
   end for

   for i = 1 to n
     O_j = SM4Encrypt(I_i, K)
   end for

   for i = 1 to n
     C#_i = P#_1 xor MSB(s, O_j)
   end for

   C# = C#_1 || ... || C#_n
   _____________________________________________________________________

8.5.3.  SM4-CFB Decryption

   Inputs:

   o  C#, ciphertext, length *MUST* be a multiple of s

   o  K, SM4 128-bit encryption key

   o  IV, 128-bit, unpredictable, initialization vector
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   o  s, an integer 1 <== s <== b that defines segment size

   Output:

   o  P#, plaintext, length is multiple of s

   P# is defined as follows.

   _____________________________________________________________________

   n = NBlocks(P#, s)

   I_1 = IV
   for i = 2 to n
     I_i = LSB(b - s, I_{i - 1}) || C#_{j - 1}
   end for

   for i = 1 to n
     O_j = SM4Encrypt(I_i, K)
   end for

   for i = 1 to n
     P#_i = C#_1 xor MSB(s, O_j)
   end for

   P# = P#_1 || ... || P#_n
   _____________________________________________________________________

8.6.  SM4-OFB

   SM4-OFB is the application of SM4 through the Output Feedback mode.
   This mode requires that the IV is a nonce, meaning that the IV *MUST*
   be unique for each execution for an input key.  OFB does not require
   the input plaintext to be a multiple of the block size.

   In OFB, the routines for encryption and decryption are identical.  As
   each forward cipher function (except the first) depends on previous
   results, both routines cannot be parallelized.  However given a known
   IV, output blocks could be generated prior to the input of plaintext
   (encryption) or ciphertext (decryption).

8.6.1.  SM4-OFB Encryption

   Inputs:

   o  P, plaintext, composed of (n - 1) blocks of size b, with the last
      block P_n of size 1 <== u <== b
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   o  K, SM4 128-bit encryption key

   o  IV, a nonce (a unique value for each execution per given key)

   Output:

   o  C, ciphertext, composed of (n - 1) blocks of size b, with the last
      block C_n of size 1 <== u <== b

   C is defined as follows.

   _____________________________________________________________________

   n = NBlocks(P, b)

   I_1 = IV
   for i = 1 to (n - 1)
     O_i = SM4Encrypt(I_i)
     I_{i + 1} = O_i
   end for

   for i = 1 to (n - 1)
     C_i = P_i xor O_i
   end for

   C_n = P_n xor MSB(u, O_n)

   C = C_1 || ... || C_n
   _____________________________________________________________________

8.6.2.  SM4-OFB Decryption

   Inputs:

   o  C, ciphertext, composed of (n - 1) blocks of size b, with the last
      block C_n of size 1 <== u <== b

   o  K, SM4 128-bit encryption key

   o  IV, the nonce used during encryption

   Output:

   o  P, plaintext, composed of (n - 1) blocks of size b, with the last
      block P_n of size 1 <== u <== b

   C is defined as follows.
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   _____________________________________________________________________

   n = NBlocks(C, b)

   I_1 = IV
   for i = 1 to (n - 1)
     O_i = SM4Encrypt(I_i)
     I_{i + 1} = O_i
   end for

   for i = 1 to (n - 1)
     P_i = C_i xor O_i
   end for

   P_n = C_n xor MSB(u, O_n)

   P = P_1 || ... || P_n
   _____________________________________________________________________

8.7.  SM4-CTR

   SM4-CTR is an implementation of a stream cipher through a blockcipher
   primitive.  It generates a "keystream" of keys that are used to
   encrypt successive blocks, with the keystream created from the input
   key, a nonce (the IV) and an incremental counter.  The counter could
   be any sequence that does not repeat within the block size.

   Both SM4-CTR encryption and decryption routines could be
   parallelized, and random access is also possible.

8.7.1.  SM4-CTR Encryption

   Inputs:

   o  P, plaintext, composed of (n - 1) blocks of size b, with the last
      block P_n of size 1 <== u <== b

   o  K, SM4 128-bit encryption key

   o  IV, a nonce (a unique value for each execution per given key)

   o  T, a sequence of counters from T_1 to T_n

   Output:

   o  C, ciphertext, composed of (n - 1) blocks of size b, with the last
      block C_n of size 1 <== u <== b



Tse & Wong                Expires June 18, 2018                [Page 22]



Internet-Draft          SM4 Blockcipher Algorithm          December 2017

   C is defined as follows.

   _____________________________________________________________________

   n = NBlocks(P, b)

   for i = 1 to n
     O_i = SM4Encrypt(T_i)
   end for

   for i = 1 to (n - 1)
     C_i = P_i xor O_i
   end for

   C_n = P_n xor MSB(u, O_n)

   C = C_1 || ... || C_n
   _____________________________________________________________________

8.7.2.  SM4-CTR Decryption

   Inputs:

   o  C, ciphertext, composed of (n - 1) blocks of size b, with the last
      block C_n of size 1 <= u <= b

   o  K, SM4 128-bit encryption key

   o  IV, a nonce (a unique value for each execution per given key)

   o  T, a sequence of counters from T_1 to T_n

   Output:

   o  P, plaintext, composed of (n - 1) blocks of size b, with the last
      block P_n of size 1 <= u <= b

   P is defined as follows.
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   _____________________________________________________________________

   n = NBlocks(C, b)

   for i = 1 to n
     O_i = SM4Encrypt(T_i)
   end for

   for i = 1 to (n - 1)
     P_i = C_i xor O_i
   end for

   P_n = C_n xor MSB(u, O_n)

   C = C_1 || ... || C_n
   _____________________________________________________________________

9.  Object Identifier

   The Object Identifier for SM4 is identified through these OIDs.

9.1.  GM/T OID

   "1.2.156.10197.1.104" for "SM4 Algorithm" [GMT-0006-2012].

9.2.  ISO OID

   "1.0.18033.3.2.4" for "id-bc128-sm4" [ISO.IEC.18033-3.AMD2],
   described below.

   o  "is18033-3" {iso(1) standard(0) is18033(18033) part3(3)}

   o  "id-bc128" {is18033-3 block-cipher-128-bit(2)}

   o  "id-bc128-sm4" {id-bc128 sm4(4)}

10.  Design Considerations

10.1.  Basic Transformation

   The chaos principle and the diffusion principle are two basic
   principles of block cipher design.  A well-designed blockcipher
   algorithm should be based on a cryptographically sound basic
   transformation structure, with its round calculation based on a
   cryptographically sound basic transformation.

   The cryptographic properties of the basic transformation determines
   the efficiency of the resulting encryption transformation.
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   The SM4 algorithm is structured on orthomorphic permutation.  Its
   round transformation is an orthomorphic permutation, and its
   cryptographic properties can be deduced from the characteristics of
   orthomorphic permutations.

   Let the single round of the SM4 block cipher algorithm be P, for any
   given plaintext X, P (X, K ')! = P (X, K) if the key K'! = K.

   The conclusion shows that if X is a row variable and K is a column
   variable, the square P(X, K) forms a Latin square.  There are two
   conclusions about the nature of cryptography:

   1.  The SM4 blockcipher algorithm will produce different round
       transformations given different keys.

   2.  The SM4 blockcipher algorithm, within a single round, will
       produce a different output given the same input with different
       keys.

10.2.  Nonlinear Transformation

   An S-box can be viewed as a bijection:

   S(X) = (f_1(X), f_2(X), ... , f_m(X)) : F_2^n -> F_2^m.

   S(x): F_2^n -> F_2^m can be represented as a multi-output boolean
   function with n-bit input and m-bit output, or a n x m S-box (an
   S-box with n inputs and m outputs), usually realized as a
   substitution that takes an n-bit input and produces a m-bit output.
   In SM4, the S-box takes n = m = 8.

   In many blockciphers, the S-box is the sole element providing
   nonlinearity, for the purpose of mixing, in order to reduce linearity
   and to hide its variable structure.

   The cryptographic properties of the S-box directly affects the
   resulting cryptographic strength of the blockcipher.  When designing
   a blockcipher, the cryptographic strength of the S-box must be taken
   into account.  The cryptographic strength of an S-box can be
   generally measured by factors such as its nonlinearity and
   differential distribution.

10.2.1.  S-box Algebraic Expression

   In order to prevent insertion attacks, the algebraic formula used for
   cryptographic substitution should be a high degree polynomial and
   contain a large number of terms.
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   The algebraic expression of the SM4 S-box [SM4-Sbox] is determined
   through Lagrange's interpolation to be a polynomial of the 254th
   degree with 255 terms, providing the highest level of complexity
   based on its size:

   f(x) : sum_{i=0}^{255} y_i
                   PI_{j!=i, j=0}^255 ((x - x_j) / (x_i - x_j))

10.2.2.  Algebraic Degree And Distribution Of Terms

   Any n boolean function f(x): F_2^n -> F_2 can be represented uniquely
   in its algebraic normal form shown below:

   f(X) = a_0 + sum_{1<=i_i<...<i_k<=n, 1<=k<=n}
                         a_{i_1 i_2 ... i_k} x_{i_1} x_{i_2} ... x_{i_k}

   X = (x_1, x_2, ..., x_n)

   a_0, a_{i_1, i_2, ... i_k} element-of F_2

   The "algebraic degree" of the n-boolean function f(X) is defined to
   be the algebraic degree of the highest algebraic degree of its terms
   with a nonzero coefficient in its ANF representation.  The constant
   of the i-th term of f(x) in ANF representation is called the i-th
   term of f(X), the total number of all i-th (0<=i<=n) terms is called
   the "number of terms" of f(X).

   S(X) can be represented as a m-component function S(X) = (f_1(X),
   f_2(X), ... f_m(X)): F_2^n -> F_2^m.  Consider S(X) to be a random
   substitution, each of its component functions would be best to have
   algebraic degree of n-1, each component function i-th coefficient
   should be near C_n^i/2.  If the algebraic degree is too low, for
   example, each component function has a degree of 2, then the
   algorithm can be easily attacked by advanced differential
   cryptanalysis.  If the number of terms are insufficient, then it may
   improve the success probability of insert attacks.

   The algebraic degrees and number of terms of the SM4 S-box are
   described in Figure 4.
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    +--------------------+--------------------------------------------+
    |                    |              Algebraic Degree              |
    | Component Function +-----+---+----+----+----+----+----+---+-----+
    |                    |  8  | 7 | 6  | 5  | 4  | 3  | 2  | 1 |  0  |
    +--------------------+-----+---+----+----+----+----+----+---+-----+
    |        Y_0         |  0  | 3 | 15 | 31 | 28 | 29 | 14 | 3 |  1  |
    |        Y_1         |  0  | 3 | 12 | 34 | 40 | 33 | 12 | 4 |  1  |
    |        Y_2         |  0  | 5 | 17 | 24 | 40 | 24 | 11 | 3 |  0  |
    |        Y_3         |  0  | 2 | 11 | 31 | 34 | 27 | 15 | 5 |  1  |
    |        Y_4         |  0  | 5 | 15 | 28 | 33 | 24 | 13 | 5 |  0  |
    |        Y_5         |  0  | 5 | 11 | 25 | 41 | 25 | 16 | 4 |  1  |
    |        Y_6         |  0  | 4 | 15 | 29 | 27 | 32 | 18 | 4 |  1  |
    |        Y_7         |  0  | 4 | 14 | 32 | 35 | 30 | 16 | 3 |  0  |
    +--------------------+-----+---+----+----+----+----+----+---+-----+
    | Expected Value     | 1/2 | 4 | 14 | 28 | 35 | 28 | 14 | 4 | 1/2 |
    +--------------------+-----+---+----+----+----+----+----+---+-----+

    Figure 4: SM4 S-box Component Functions Algebraic Degree And Terms

10.2.3.  Differential Distribution

   The definition of differential distribution has been given in
   [BC-Design].

   Differential cryptanalysis is a chosen-plaintext attack, with the
   understanding that analysis of selected plaintexts of differentials
   can retrive the most probable key.  Differential distribution is an
   attribute to measure the resistance of a cryptographic function
   against differential cryptanalysis.

   delta_S = 1/2^n max_{a in F_2^n, a!=0} max_{beta in F_2^m} |
     { X in F_2^n : S(X and alpha) - S(X) = beta } |

   "delta_S" is the differential distribution of the S-box "S".

   According to the definition of differential distribution, 2^{-m} <=
   delta_S <= 2^{m-n}, if there is a delta_S = 2^{m-n} then S is
   considered a fully nonlinear function from F_2^n to F_2^m.  For
   resistance against differential cryptanalysis, the differential
   distribution should be as low as possible.

   The highest differential distribution of the SM4 S-box is 2^{-6},
   meaning it has a good resistance against differential cryptanalysis.
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10.2.4.  Nonlinearity

   The nonlinearity of an S-box is described by [BC-Design].

   Let S(X) = (f_1(X), f_2(X), ... , f_m(X)) : F_2^n -> F_2^m be a
   multi-output function.  The nonlinearity of S(X) is defined as N_S =
   min_{l in L_n, 0 != u in F_2^m} d_H (u . S(X), l(X)).

   L_n is the group of all n-boolean functions, d_H(f, l) is the Hamming
   distance between f and l.  The nonlinearity of the S-box is in fact
   the minimum Hamming distance between all the Boolean functions and
   all affine functions.

   The upper-bound of nonlinearity is known to be 2^{n-1} - 2^{n/2 - 1},
   where a Boolean function that reaches this bound is called a "bent
   function".

   The nonlinearity of a Boolean function is used to measure resistance
   against linear attacks.  The higher the nonlinearity, the higher
   resistance that the Boolean function f(x) has against linear attacks.
   On the contrary, the lower the nonlinearity, the Boolean function
   f(x) has lower resistance against linear attacks.

   The nonlinearity of the SM4 S-box is 112.

10.2.5.  Maximum Linearity Advantage

   Linear approximation of a S-box is defined in [BC-Design].  Given a
   S-box with n inputs and m outputs, any linear approximation can be
   represented as : a . X = b . Y, where a in F_2^n, b in F_2^m.

   The probability p that satisfies a . X = b . Y is

   | p - 1/2 | <= 1/2 - N_S / 2^n

   where | p - 1/2 | is the advantage of the linear approximation
   equation, lambda_S = 1/2 - N_s / 2^n is the maximum advantage of the
   S-box.

   The maximum advantage of the SM4 S-box is 2^{-4}.

10.2.6.  Balance

   A S-box S(X) = (f_1(X), f_2(X), ... , f_m(X)) : F_2^n -> F_2^m is
   considered "balanced" if for any beta in F_2^m, there are 2^{n-m} x
   in F_2^n, such that S(x) = beta.

   The SM4 S-box is balanced.
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10.2.7.  Completness and Avalanche Effect

   A S-box S(X) = (f_1(X), f_2(X), ... , f_m(X)) : F_2^n -> F_2^m is
   considered "complete" if every input bit directly correlates to an
   output bit.

   In algebraic expression, each component function contains the unknown
   variables x_1, x_2, ... x_n, such that for any (s, t) in { (i, j) | 1
   <= i <= n, 1 <= j <= m}, there is an X that S(X) and S(X and e_s)
   would contain a different bit t.

   Avalanche effect refers to a single bit change in the input would
   correspond to a change of half of the output bits.

   The SM4 S-box satisfies completness and the avalanche effect.

10.3.  Linear Transform

   Linear transformation is used to provide diffusion in SM4.  A
   blockcipher algorithm often adopts m x m S-boxes to form an
   obfuscation layer.

   Since the m-bits output by one S-box are only related to the m bits
   of its input and are irrelevant to the input of other S boxes, the
   introduction of a linear transform would disrupt and mix the output
   m-bits so that they seem correlating to the other S-box inputs.

   A sound linear transform design will diffuse the S-box output,
   allowing the blockcipher to resist differential and linear
   cryptanalysis.

   An important measure of the diffusivity of a linear transform is its
   branch number.

   The "branch number" of a linear transform is defined in [BC-Design]:

   B(theta) = min_{x!=0} w_b(x) + w_b(theta(x))

   Where B(theta) is the branch number of transform theta, w_b(x) is a
   non-zero integer x_i (1 <== i <== m), and x_i is called the "bundle
   weight".

   The branch number can be used to quantify the resistance of the block
   cipher algorithm to differential cryptanalysis and linear
   cryptanalysis.
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   Similar to differential cryptanalysis and linear cryptanalysis, the
   differential branch number and linear branch number of theta can be
   defined as follows.

   The differential branch number of theta is:

   B_d(theta) = min_{x, x!= x*}
                  (w_b(x and x*) + w_b(theta(x)) and theta(x*))

   The linear branch number of theta is:

   B_l(theta) = min_{a, b, c (x . alpha^t , theta(x) . beta) != 0}
                  (w_b(alpha) + w_b(beta))

     where,
       c (x . a^t , theta(x) . beta) =
                         2 X Pr(x . alpha^t = theta(x) . beta) - 1
       x . alpha^t  is a matrix multiplication.

   The branch number in a linear transformation reflects its
   diffusivity.  The higher the branch number, the better the diffusion
   effect.

   This means that the larger the differential branch number or linear
   branch number, the more known plaintexts will be required for
   differential or linear cryptanalysis respectively.

   The linear transform differential branch number and linear branch
   number of SM4 are both 5.

10.4.  Key Expansion Algorithm

   The SM4 key schedule is designed to fulfill the security requirements
   of the encryption algorithm and achieve ease of implementation for
   performance reasons.

   All subkeys are derived from the encryption key, and therefore,
   subkeys are always statistically relevant.  In the context of a
   blockcipher, it is not possible to have non-statistical-correlated
   subkeys, but the designer can only aim to have subkeys achieve near
   statistical independence [BC-Design].

   The purpose of the key schedule, generated through the key expansion
   algorithm, is to mask the statistical correlation between subkeys to
   make this relationship difficult to exploit.

   The SM4 key expansion algorithm satisfies the following design
   criteria:
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   1.  There are no obvious statistical correlation between subkeys;

   2.  There are no weak subkeys;

   3.  The speed of key expansion is not slower than the encryption
       algorithm, and uses less resources;

   4.  Every subkey can be directly generated from the encryption key.

11.  Cryptanalysis Results

   SM4 has been heavily cryptanalyzed by international researchers since
   it was first published.  Nearly all currently known cryptanalysis
   techniques have been applied to SM4.

   At the time of publishing this document, there are no known practical
   attacks against the full SM4 blockcipher.  However, there are side-
   channel concerns [SideChannel] when the algorithm is implemented in a
   hardware device.

   A summary of cryptanalysis results are presented in the following
   sections.

11.1.  Differential Cryptanalysis

   In 2008, Zhang et al.  [SM4-DiffZhang1] gave a 21-round differential
   analysis with data complexity 2^188, time complexity 2^126.8
   encryptions.

   In 2008, Kim et al.  [SM4-LDA] gave a 22-round differential attack
   that requires 2^118 chosen plaintexts, 2^123 memory and 2^125.71
   encryptions.

   In 2009, Zhang et al. (differing author but overlapping team)
   [SM4-DiffZhang2] gave a 18-round differential characteristics with an
   attack that reaches the 22nd round, with data complexity 2^117 and
   time complexity 2^112.3.

   In 2010, Zhang et al. (with no relation to above) [SM4-DiffZhang3]
   utilized 18-round differential characteristics for the 22nd round
   with 2^117 chosen plaintexts with time complexity 2^123 encryptions,
   memory complexity of 2^112.

   In 2011, Su et al.  [SM4-DiffSu] gave a 19 round differential
   characteristics and pushed their attack to the 23rd round, with data
   complexity of 2^118 chosen plaintexts, time complexity 2^126.7
   encryptions, and memory complexity 2^120.7.
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11.2.  Linear Cryptanalysis

   In 2008 Etrog et al.  [SM4-LinearEtrog] provided a linear
   cryptanalysis result for 22 rounds of SM4, the data complexity is
   given as 2^188.4 known plaintexts, time complexity 2^117 encrypt
   operations.

   In the same year, Kim et al.  [SM4-LDA] improved on the linear
   cryptanalysis result for 22 rounds of SM4 with data complexity of
   2^117 known plaintexts, memory complexity of 2^109 and time
   complexity of 2^109.86.

   In 2011 Dong [SM4-LinearDong] presented a linear cryptanalysis result
   for 20 rounds, 2^110.4 known ciphertexts, 2^106.8 encryption
   operations, memory complexity 2^90.

   In 2014 Liu et al.  [SM4-LinearLiu] presented their linear
   cryptanalysis for 23-rounds of SM4, time complexity 2^112 encryption
   operations, data complexity 2^126.54 known ciphertexts, memory
   complexity 2^116.

   In 2017 Liu et al.  [SM4-NLC] presented an attack based on linear
   cryptanalysis on 24-rounds of SM4, with time complexity of 2^122.6
   encryptions, data complexity of 2^122.6 known ciphertexts, and memory
   complexity of 2^85.

11.3.  Multi-dimensional Linear Cryptanalysis

   In 2010, Liu et al.  [SM4-MLLiu] constructed a series of 18 rounds of
   linear traces based on a 5-round circular linear trace, capable of
   attacking 22 rounds of SM4.  The required data complexity was 2^112
   known plaintexts, time complexity 2^124.21 encryption operations,
   with memory complexity of 2^118.83.

   In 2010 Cho et al.  [SM4-MLCho] gave a linear analysis of 23 rounds
   of SM4 with a data complexity of 2^126.7 known plaintexts and a time
   complexity of 2^127, memory complexity of 2^120.7.

   In 2014, Liu et al.  [SM4-LinearLiu] gave the results of multi-
   dimensional linear analysis of 23 rounds of SM4 algorithm.  The time
   complexity was 2^122.7, data complexity was 2^122.6 known plaintext
   with memory complexity 2^120.6.

11.4.  Impossible Differential Cryptanalysis

   In 2007 Lu et al.  [SM4-IDCLu] first presented 16 rounds of
   impossible differential analysis of SM4 with the required data
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   complexity 2^105 chosen plaintexts, time complexity 2^107 encryption
   operations.

   In 2008 Toz et al.  [SM4-IDCToz] revised the results of [SM4-IDCLu],
   that the data complexity is actually 2^117.05 chosen plaintexts, time
   complexity 2^132.06 encryptions, but its complexity is already beyond
   the 2^128 limit.

   In 2010 Wang et al.  [SM4-IDCWang] pushed the impossible differential
   cryptanalysis to 17 rounds of SM4, the data complexity is 2^117
   chosen ciphertexts, time complexity 2^132 memory queries.

11.5.  Zero-correlation Linear Cryptanalysis

   In 2015 Ma et al.  [SM4-ZCLC] gives the results of multi-dimensional
   zero-correlation linear cryptanalysis of a 14-round SM4 algorithm.
   The required data complexity is 2^123.5 known plaintexts, time
   complexity is 2^120.7 encryption operations and memory complexity of
   2^73 blocks.

11.6.  Integral Cryptanalysis

   In 2007 Liu et al.  [SM4-ICLiu] first gave a 13-round integral
   analysis of SM4, which required 2^16 chosen plaintexts and time
   complexity of 2^114 encryption operations.

   In 2008 Zhong et al.  [SM4-ICZhong] constructed a 12-round
   distinguisher of SM4 to attack 14-round SM4, with data complexity of
   2^32 chosen plaintexts and time complexity 2^96.5 encryptions.

11.7.  Algebraic Attacks

   In 2009 Ji et al.  [SM4-AAJi] and in 2010 Erickson et al.  [SM4-AAEr]
   utilized algebraic methods such as XL, Groebner base and SAT to
   analyze the resistance of SM4 against algebraic attacks.  The results
   demonstrate that SM4 is safe against algebraic attacks, and
   specifically, has a higher resistance against algebraic attacks than
   AES.

11.8.  Matrix Attacks

   In 2007 Lu et al.  [SM4-IDCLu] provided a matrix attack against
   14-round SM4, with data complexity 2^121.82 chosen plaintexts, time
   complexity 2^116.66 encryptions.

   In 2008 Toz et al.  [SM4-IDCToz] lowered both data and time
   complexity of the aformentioned attack to 2^106.89 chosen ciphertexts
   and time complexity of 2^107.89.
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   In 2008, Zhang et al.  [SM4-DiffZhang1] provided a matrix attack
   against 16-round SM4, which required a data complexity of 2^125
   chosen plaintexts and time complexity of 2^116 encryptions.

   She's Master dissertation [SM4-MatrixShe] provided a SM4 16-round
   matrix distinguisher that can attack 18-round SM4, with data
   complexity of 2^127 chosen plaintexts and time complexity 2^110.77
   encryptions with memory complexity of 2^130.

   In 2012 Wei et al.  [SM4-MatrixWei] applied differential analysis and
   algebraic attack techniques on 20-round SM4 and discovered that the
   combined attack results on 20-round SM4 are superior than using pure
   differential cryptanalysis.

11.9.  Provable Security Against Differential And Linear Cryptanalysis

   SM4 uses a novel structure differing from the general Feistel and SP
   structures.

   [SM4-Random] has proven that the SM4 non-balanced Feistel structure
   is pseudo-random.

   [SM4-SLDC] analyzes the SM4 non-balanced Feistel structure on its
   resistance against differential and linear cryptanalysis techniques.
   Under SP type round functions with branch number 5, it is proven that
   in a 27-round SM4 guarantees at least 22 active S-boxes, therefore
   SM4 is secure against differential attacks.

   [SM4-SLC] has analyzed resistance of SM4 against linear
   cryptanalysis.

11.10.  Provable Security Against Related-Key Differential Cryptanalysis

   Related-key differential cryptanalysis is related to the encryption
   algorithm and key schedule.  When performing a related-key attack,
   the attacker simultaneously insert differences in both the key and
   the message.

   In [AutoDC], Sun et al. proposed an automated differential route
   search method based on MILP (mixed-integer linear programming) that
   can be used to assess the security bounds of a blockcipher under
   (related-key) differential cryptanalysis.

   [SM4-RKDC] describes the lower bounds of active S-boxes within SM4
   and is shown in Table 1.
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                   +-------+------------+-------------+
                   | Round | Single Key | Related Key |
                   +-------+------------+-------------+
                   | 3     | 0          | 0           |
                   | 4     | 1          | 1           |
                   | 5     | 2          | 2           |
                   | 6     | 2          | 4           |
                   | 7     | 5          | 6           |
                   | 8     | 6          | 8           |
                   | 9     | 7          | 9           |
                   | 10    | 8          | 10          |
                   | 11    | 9          | 11          |
                   | 12    | 10         | 13          |
                   | 13    | 10         | 14          |
                   | 14    | 10         | 14          |
                   | 15    | 13         | 16          |
                   | 16    | 14         | 18          |
                   | 17    | 15         | 19          |
                   | 18    | 16         | 20          |
                   | 19    | 18         | 22          |
                   | 20    | 18         | -           |
                   | 21    | 19         | -           |
                   | 22    | 20         | -           |
                   | 23    | 22         | -           |
                   | 24    | 23         | -           |
                   | 25    | 23         | -           |
                   | 26    | 24         | -           |
                   +-------+------------+-------------+

           Table 1: Strongest SM4 Attacks ("-" denotes unknown)

   As the maximal probability of the SM4 S-box is 2^-6, when the minimum
   active S-boxes reach 22 the differential characteristics will have
   probability 2^132, which is higher than enumeration (2^128).

   This indicates that 19 rounds and 23 rounds under related key and
   single key settings will provide a minimum of 22 active S-boxes and
   is able to resist related-key differential attacks.

11.11.  Summary of SM4 Cryptanalytic Attacks

   Table 2 provides a summary on the strongest attacks on SM4 at the
   time of publishing.
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   +-------------------+--------+--------------------+-----------------+
   | Method            | Rounds | Complexity         | Reference       |
   +-------------------+--------+--------------------+-----------------+
   | Linear            | 24     | Time: 2^{122.6},   | [SM4-NLC]       |
   |                   |        | Data: 2^{122.6},   |                 |
   |                   |        | Memory: 2^{85}     |                 |
   +-------------------+--------+--------------------+-----------------+
   | Multi-dimensional | 23     | Time: 2^{122.7},   | [SM4-LinearLiu] |
   | Linear            |        | Data: 2^{122.6},   |                 |
   |                   |        | Memory: 2^{120.6}  |                 |
   +-------------------+--------+--------------------+-----------------+
   | Differential      | 23     | Time: 2^{126.7},   | [SM4-DiffSu]    |
   |                   |        | Data: 2^{117},     |                 |
   |                   |        | Memory: 2^{120.7}  |                 |
   +-------------------+--------+--------------------+-----------------+
   | Matrix            | 18     | Time: 2^{110.77},  | [SM4-MatrixShe] |
   |                   |        | Data: 2^{127},     |                 |
   |                   |        | Memory 2^{130}     |                 |
   +-------------------+--------+--------------------+-----------------+
   | Impossible        | 17     | Time: 2^{132},     | [SM4-IDCWang]   |
   | Differential      |        | Data: 2^{117},     |                 |
   |                   |        | Memory: --         |                 |
   +-------------------+--------+--------------------+-----------------+
   | Zero-correlation  | 14     | Time: 2^{120.7},   | [SM4-ZCLC]      |
   | Linear            |        | Data: 2^{123.5},   |                 |
   |                   |        | Memory: 2^{73}     |                 |
   +-------------------+--------+--------------------+-----------------+
   | Integral          | 14     | Time: 2^{96.5},    | [SM4-ICZhong]   |
   |                   |        | Data: 2^{32},      |                 |
   |                   |        | Memory: --         |                 |
   +-------------------+--------+--------------------+-----------------+

              Table 2: Leading SM4 Attacks As Of Publication

   As of the publication of this document, no open research results have
   provided a method to successfully attack beyond 24 rounds of SM4.

   The traditional view suggests that SM4 provides an extra safety
   margin compared to blockciphers adopted in [ISO.IEC.18033-3] that
   already have full-round attacks, including MISTY1 [MISTY1-IC]
   [MISTY1-270] and AES [AES-CA] [AES-BC] [AES-RKC].

12.  Security Considerations

   o  Products and services that utilize cryptography are regulated by
      the SCA [SCA]; they must be explicitly approved or certified by
      the SCA before being allowed to be sold or used in China.
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   o  SM4 is a blockcipher symmetric algorithm with key length of 128
      bits.  It is considered as an alternative to AES-128
      [NIST.FIPS.197].

   o  SM4 [GBT.32907-2016] is a blockcipher certified by the SCA [SCA].
      No formal proof of security is provided.  There are no known
      practical attacks against SM4 algorithm by the time of publishing
      this document, but there are security concerns with regards to
      side-channel attacks when the SM4 algorithm is implemented in
      hardware.
      For instance, [SM4-Power] illustrated an attack by measuring the
      power consumption of the device.  A chosen ciphertext attack,
      assuming a fixed correlation between the round keys and data mask,
      is able to recover the round key successfully.
      When the SM4 algorithm is implemented in hardware, the parameters
      and keys *SHOULD* be randomly generated without fixed correlation.
      There have also been improvements to the hardware embodiment
      design for SM4 [SM4-VLSI] [SM4-FPGA], white-box implementions
      [SM4-WhiteBox], and performance enhancements [SM4-HiSpeed], that
      may resist such attacks.

   o  The IV does not have to be secret.  The IV itself, or criteria
      enough to determine it, *MAY* be transmitted with ciphertext.

   o  SM4-ECB: ECB is one of the four original modes defined for DES.
      With its problem well known to "leak quite a large amount of
      information" [BC-EVAL], it *SHOULD NOT* be used in most cases.

   o  SM4-CBC, SM4-CFB, SM4-OFB: CBC, CFB and OFB are IV-based modes of
      operation originally defined for DES.
      When using these modes of operation, the IV *SHOULD* be random to
      preserve message confidentiality [BC-EVAL].  It is shown in the
      same document that CBC, CFB, OFB, the variants #CBC, #CFB that
      utilize the recommendation of [NIST.SP.800-38A] to make CBC and
      CFB nonce-based, are SemCPA secure as probabilistic encryption
      schemes.
      Various attack scenarios have been described in [BC-EVAL] and
      these modes *SHOULD NOT* be used unless for compatibility reasons.

   o  SM4-CTR: CTR is considered to be the "best" mode of operation
      within [NIST.SP.800-38A] as it is considered SemCPA secure as a
      nonce-based encryption scheme, providing provable-security
      guarantees as good as the classic modes of operation (ECB, CBC,
      CFB, OFB) [BC-EVAL].
      Users with no need of authenticity, non-malleablility and chosen-
      ciphertext (CCA) security *MAY* utilize this mode of operation
      [BC-EVAL].
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13.  IANA Considerations

   This document does not require any action by IANA.
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   rk_0  = F12186F9   X_4  = 27FAD345
   rk_1  = 41662B61   X_5  = A18B4CB2
   rk_2  = 5A6AB19A   X_6  = 11C1E22A
   rk_3  = 7BA92077   X_7  = CC13E2EE
   rk_4  = 367360F4   X_8  = F87C5BD5
   rk_5  = 776A0C61   X_9  = 33220757
   rk_6  = B6BB89B3   X_10 = 77F4C297
   rk_7  = 24763151   X_11 = 7A96F2EB
   rk_8  = A520307C   X_12 = 27DAC07F
   rk_9  = B7584DBD   X_13 = 42DD0F19
   rk_10 = C30753ED   X_14 = B8A5DA02
   rk_11 = 7EE55B57   X_15 = 907127FA
   rk_12 = 6988608C   X_16 = 8B952B83
   rk_13 = 30D895B7   X_17 = D42B7C59
   rk_14 = 44BA14AF   X_18 = 2FFC5831
   rk_15 = 104495A1   X_19 = F69E6888
   rk_16 = D120B428   X_20 = AF2432C4
   rk_17 = 73B55FA3   X_21 = ED1EC85E
   rk_18 = CC874966   X_22 = 55A3BA22
   rk_19 = 92244439   X_23 = 124B18AA
   rk_20 = E89E641F   X_24 = 6AE7725F
   rk_21 = 98CA015A   X_25 = F4CBA1F9
   rk_22 = C7159060   X_26 = 1DCDFA10
   rk_23 = 99E1FD2E   X_27 = 2FF60603
   rk_24 = B79BD80C   X_28 = EFF24FDC
   rk_25 = 1D2115B0   X_29 = 6FE46B75
   rk_26 = 0E228AEB   X_30 = 893450AD
   rk_27 = F1780C81   X_31 = 7B938F4C
   rk_28 = 428D3654   X_32 = 536E4246
   rk_29 = 62293496   X_33 = 86B3E94F
   rk_30 = 01CF72E5   X_34 = D206965E
   rk_31 = 9124A012   X_35 = 681EDF34

   Ciphertext:

   68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46

A.1.2.  Example 2 (GB/T 32907-2016 Example 1 Decryption)

   This demonstrates the decryption process of the Example 1 ciphertext
   provided by [GBT.32907-2016].

   Ciphertext:

   68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46

   Encryption key:
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   01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

   Status of the round key (rk_i) and round output (X_i) per round:

   rk_31 = 9124A012    X_35 = 7B938F4C
   rk_30 = 01CF72E5    X_34 = 893450AD
   rk_29 = 62293496    X_33 = 6FE46B75
   rk_28 = 428D3654    X_32 = EFF24FDC
   rk_27 = F1780C81    X_31 = 2FF60603
   rk_26 = 0E228AEB    X_30 = 1DCDFA10
   rk_25 = 1D2115B0    X_29 = F4CBA1F9
   rk_24 = B79BD80C    X_28 = 6AE7725F
   rk_23 = 99E1FD2E    X_27 = 124B18AA
   rk_22 = C7159060    X_26 = 55A3BA22
   rk_21 = 98CA015A    X_25 = ED1EC85E
   rk_20 = E89E641F    X_24 = AF2432C4
   rk_19 = 92244439    X_23 = F69E6888
   rk_18 = CC874966    X_22 = 2FFC5831
   rk_17 = 73B55FA3    X_21 = D42B7C59
   rk_16 = D120B428    X_20 = 8B952B83
   rk_15 = 104495A1    X_19 = 907127FA
   rk_14 = 44BA14AF    X_18 = B8A5DA02
   rk_13 = 30D895B7    X_17 = 42DD0F19
   rk_12 = 6988608C    X_16 = 27DAC07F
   rk_11 = 7EE55B57    X_15 = 7A96F2EB
   rk_10 = C30753ED    X_14 = 77F4C297
   rk_9  = B7584DBD    X_13 = 33220757
   rk_8  = A520307C    X_12 = F87C5BD5
   rk_7  = 24763151    X_11 = CC13E2EE
   rk_6  = B6BB89B3    X_10 = 11C1E22A
   rk_5  = 776A0C61    X_9  = A18B4CB2
   rk_4  = 367360F4    X_8  = 27FAD345
   rk_3  = 7BA92077    X_7  = 76543210
   rk_2  = 5A6AB19A    X_6  = FEDCBA98
   rk_1  = 41662B61    X_5  = 89ABCDEF
   rk_0  = F12186F9    X_4  = 01234567

   Plaintext:

   01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

A.1.3.  Example 3 (GB/T 32907-2016 Example 2 Encryption)

   This example is provided by [GBT.32907-2016] to demonstrate
   encryption of a plaintext 1,000,000 times repeatedly, using a fixed
   encryption key.

   Plaintext:
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   01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

   Encryption Key:

   01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

   Ciphertext:

   59 52 98 C7 C6 FD 27 1F 04 02 F8 04 C3 3D 3F 66

A.1.4.  Example 4

   The following example demonstrates encryption of a different message
   using a different key from the above examples.

   Plaintext:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

   Encryption key:

   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   Status of the round key (rk_i) and round output (X_i) per round:
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   rk_0  = 0D8CC1B4    X_4  = F7EAEB6A
   rk_1  = AC44F213    X_5  = B4967C0F
   rk_2  = 188C0C40    X_6  = 5B9B2419
   rk_3  = 7537585E    X_7  = F46BECBA
   rk_4  = 627646F5    X_8  = A8013E25
   rk_5  = 54D785AD    X_9  = B38E2ABE
   rk_6  = 51B96DEE    X_10 = 3E7C99A1
   rk_7  = 0C385958    X_11 = 6DD5F47F
   rk_8  = 5E494992    X_12 = B286430C
   rk_9  = 32F3FE04    X_13 = AB997DE3
   rk_10 = 3A3A733D    X_14 = 80F8F21F
   rk_11 = 0EDFB91D    X_15 = 4EF7052E
   rk_12 = 6823CD6B    X_16 = 4462FFAF
   rk_13 = 40F7D825    X_17 = 14DFD5EA
   rk_14 = 4BD68EE5    X_18 = 6D33EFED
   rk_15 = 165A36C8    X_19 = 3A4F8B3C
   rk_16 = 56608984    X_20 = 1A435088
   rk_17 = 23F35FF4    X_21 = 4E64B153
   rk_18 = 8B592B3E    X_22 = 0415CEDA
   rk_19 = 80F7388A    X_23 = ADD88955
   rk_20 = 0415C409    X_24 = 73964EF1
   rk_21 = AFDF1370    X_25 = B0085092
   rk_22 = CF444772    X_26 = 554A1293
   rk_23 = 9AF9901F    X_27 = 4BC6D6A8
   rk_24 = C457578C    X_28 = 7BB650E1
   rk_25 = 95701C60    X_29 = DDFB8A61
   rk_26 = 2B0F4EE1    X_30 = 5C4DFD78
   rk_27 = 7F826139    X_31 = FD9066FD
   rk_28 = FA37F8D9    X_32 = 55ADB594
   rk_29 = D18AF8CE    X_33 = AC1B3EA9
   rk_30 = 5BD5D8C6    X_34 = 13F01ADE
   rk_31 = 711138B7    X_35 = F766678F

   Ciphertext:

   F7 66 67 8F 13 F0 1A DE AC 1B 3E A9 55 AD B5 94

A.1.5.  Example 5

   The following example demonstrates decryption of Example 4.

   Ciphertext:

   F7 66 67 8F 13 F0 1A DE AC 1B 3E A9 55 AD B5 94

   Encryption key:

   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
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   Status of the round key (rk_i) and round output (X_i) per round:

   rk_31 = 711138B7    X_35 = FD9066FD
   rk_30 = 5BD5D8C6    X_34 = 5C4DFD78
   rk_29 = D18AF8CE    X_33 = DDFB8A61
   rk_28 = FA37F8D9    X_32 = 7BB650E1
   rk_27 = 7F826139    X_31 = 4BC6D6A8
   rk_26 = 2B0F4EE1    X_30 = 554A1293
   rk_25 = 95701C60    X_29 = B0085092
   rk_24 = C457578C    X_28 = 73964EF1
   rk_23 = 9AF9901F    X_27 = ADD88955
   rk_22 = CF444772    X_26 = 0415CEDA
   rk_21 = AFDF1370    X_25 = 4E64B153
   rk_20 = 0415C409    X_24 = 1A435088
   rk_19 = 80F7388A    X_23 = 3A4F8B3C
   rk_18 = 8B592B3E    X_22 = 6D33EFED
   rk_17 = 23F35FF4    X_21 = 14DFD5EA
   rk_16 = 56608984    X_20 = 4462FFAF
   rk_15 = 165A36C8    X_19 = 4EF7052E
   rk_14 = 4BD68EE5    X_18 = 80F8F21F
   rk_13 = 40F7D825    X_17 = AB997DE3
   rk_12 = 6823CD6B    X_16 = B286430C
   rk_11 = 0EDFB91D    X_15 = 6DD5F47F
   rk_10 = 3A3A733D    X_14 = 3E7C99A1
   rk_9  = 32F3FE04    X_13 = B38E2ABE
   rk_8  = 5E494992    X_12 = A8013E25
   rk_7  = 0C385958    X_11 = F46BECBA
   rk_6  = 51B96DEE    X_10 = 5B9B2419
   rk_5  = 54D785AD    X_9  = B4967C0F
   rk_4  = 627646F5    X_8  = F7EAEB6A
   rk_3  = 7537585E    X_7  = 0C0D0E0F
   rk_2  = 188C0C40    X_6  = 08090A0B
   rk_1  = AC44F213    X_5  = 04050607
   rk_0  = 0D8CC1B4    X_4  = 00010203

   Plaintext:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

A.1.6.  Example 6

   This example is based on Example 4 to demonstrate encryption of a
   plaintext 1,000,000 times repeatedly, using a fixed encryption key.

   Plaintext:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
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   Encryption Key:

   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   Ciphertext:

   37 9A 96 D0 A6 A5 A5 06 0F B4 60 C7 5D 18 79 ED

A.2.  Examples For Various Modes Of Operations

   The following examples can be verified using open-source
   cryptographic libraries including:

   o  the Botan cryptographic library [BOTAN] with SM4 support, and

   o  the OpenSSL Cryptography and SSL/TLS Toolkit [OPENSSL] with SM4
      support

A.2.1.  SM4-ECB Examples

A.2.1.1.  Example 1

   Plaintext:

   AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
   EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

   Encryption Key:

   01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

   Ciphertext:

   5E C8 14 3D E5 09 CF F7 B5 17 9F 8F 47 4B 86 19
   2F 1D 30 5A 7F B1 7D F9 85 F8 1C 84 82 19 23 04

A.2.1.2.  Example 2

   Plaintext:

   AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
   EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

   Encryption Key:

   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   Ciphertext:
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   C5 87 68 97 E4 A5 9B BB A7 2A 10 C8 38 72 24 5B
   12 DD 90 BC 2D 20 06 92 B5 29 A4 15 5A C9 E6 00

A.2.2.  SM4-CBC Examples

A.2.2.1.  Example 1

   Plaintext:

   AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
   EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

   Encryption Key:

   01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

   IV:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

   Ciphertext:

   78 EB B1 1C C4 0B 0A 48 31 2A AE B2 04 02 44 CB
   4C B7 01 69 51 90 92 26 97 9B 0D 15 DC 6A 8F 6D

A.2.2.2.  Example 2

   Plaintext:

   AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
   EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

   Encryption Key:

   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   IV:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

   Ciphertext:

   0D 3A 6D DC 2D 21 C6 98 85 72 15 58 7B 7B B5 9A
   91 F2 C1 47 91 1A 41 44 66 5E 1F A1 D4 0B AE 38
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A.2.3.  SM4-OFB Examples

A.2.3.1.  Example 1

   Plaintext:

   AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
   EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

   Encryption Key:

   01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

   IV:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

   Ciphertext:

   AC 32 36 CB 86 1D D3 16 E6 41 3B 4E 3C 75 24 B7
   1D 01 AC A2 48 7C A5 82 CB F5 46 3E 66 98 53 9B

A.2.3.2.  Example 2

   Plaintext:

   AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
   EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

   Encryption Key:

   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   IV:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

   Ciphertext:

   5D CC CD 25 A8 4B A1 65 60 D7 F2 65 88 70 68 49
   33 FA 16 BD 5C D9 C8 56 CA CA A1 E1 01 89 7A 97

A.2.4.  SM4-CFB Examples
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A.2.4.1.  Example 1

   Plaintext:

   AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
   EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

   Encryption Key:

   01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

   IV:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

   Ciphertext:

   AC 32 36 CB 86 1D D3 16 E6 41 3B 4E 3C 75 24 B7
   69 D4 C5 4E D4 33 B9 A0 34 60 09 BE B3 7B 2B 3F

A.2.4.2.  Example 2

   Plaintext:

   AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
   EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

   Encryption Key:

   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   IV:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

   Ciphertext:

   5D CC CD 25 A8 4B A1 65 60 D7 F2 65 88 70 68 49
   0D 9B 86 FF 20 C3 BF E1 15 FF A0 2C A6 19 2C C5

A.2.5.  SM4-CTR Examples

A.2.5.1.  Example 1

   Plaintext:
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   AA AA AA AA AA AA AA AA BB BB BB BB BB BB BB BB
   CC CC CC CC CC CC CC CC DD DD DD DD DD DD DD DD
   EE EE EE EE EE EE EE EE FF FF FF FF FF FF FF FF
   AA AA AA AA AA AA AA AA BB BB BB BB BB BB BB BB

   Encryption Key:

   01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

   IV:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

   Ciphertext:

   AC 32 36 CB 97 0C C2 07 91 36 4C 39 5A 13 42 D1
   A3 CB C1 87 8C 6F 30 CD 07 4C CE 38 5C DD 70 C7
   F2 34 BC 0E 24 C1 19 80 FD 12 86 31 0C E3 7B 92
   6E 02 FC D0 FA A0 BA F3 8B 29 33 85 1D 82 45 14

A.2.5.2.  Example 2

   Plaintext:

   AA AA AA AA AA AA AA AA BB BB BB BB BB BB BB BB
   CC CC CC CC CC CC CC CC DD DD DD DD DD DD DD DD
   EE EE EE EE EE EE EE EE FF FF FF FF FF FF FF FF
   AA AA AA AA AA AA AA AA BB BB BB BB BB BB BB BB

   Encryption Key:

   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

   IV:

   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

   Ciphertext:

   5D CC CD 25 B9 5A B0 74 17 A0 85 12 EE 16 0E 2F
   8F 66 15 21 CB BA B4 4C C8 71 38 44 5B C2 9E 5C
   0A E0 29 72 05 D6 27 04 17 3B 21 23 9B 88 7F 6C
   8C B5 B8 00 91 7A 24 88 28 4B DE 9E 16 EA 29 06
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Appendix B.  Sample Implementation In C

B.1.  sm4.h

   "sm4.h" is the header file for the SM4 function.

   <CODE BEGINS>
   #ifndef HEADER_SM4_H
   # define HEADER_SM4_H

   #include <inttypes.h>

   # define SM4_BLOCK_SIZE    16
   # define SM4_KEY_SCHEDULE  32

   void sm4_encrypt(uint8_t key[],
       unsigned char plaintext[],
       unsigned char ciphertext[]);

   void sm4_decrypt(uint8_t key[],
       unsigned char ciphertext[],
       unsigned char plaintext[]);

   #endif

   <CODE ENDS>

B.2.  sm4.c

   "sm4.c" contains the main implementation of SM4.

   <CODE BEGINS>
   /* A sample implementation of SM4 */

   #include <stdlib.h>
   #include <string.h>
   #include "sm4.h"
   #include "print.h"

   /* Operations */
   /* Rotate Left 32-bit number */
   #define ROTL32(X, n) (((X) << (n)) | ((X) >> (32 - (n))))

   static uint32_t sm4_ck[32] = {
     0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269,
     0x70777E85, 0x8C939AA1, 0xA8AFB6BD, 0xC4CBD2D9,
     0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249,
     0x50575E65, 0x6C737A81, 0x888F969D, 0xA4ABB2B9,
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     0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229,
     0x30373E45, 0x4C535A61, 0x686F767D, 0x848B9299,
     0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209,
     0x10171E25, 0x2C333A41, 0x484F565D, 0x646B7279
   };

   static uint8_t sm4_sbox[256] = {
     0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7,
     0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05,
     0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3,
     0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
     0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A,
     0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62,
     0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95,
     0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6,
     0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA,
     0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8,
     0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B,
     0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35,
     0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2,
     0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87,
     0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52,
     0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E,
     0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5,
     0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1,
     0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55,
     0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3,
     0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60,
     0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F,
     0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F,
     0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51,
     0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F,
     0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8,
     0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD,
     0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0,
     0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E,
     0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84,
     0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20,
     0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48
   };

   static uint32_t sm4_fk[4] = {
     0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC
   };

   static uint32_t load_u32_be(const uint8_t *b, uint32_t n)
   {
     return ((uint32_t)b[4 * n + 3] << 24) |
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            ((uint32_t)b[4 * n + 2] << 16) |
            ((uint32_t)b[4 * n + 1] << 8)  |
            ((uint32_t)b[4 * n    ]);
   }

   static void store_u32_be(uint32_t v, uint8_t *b)
   {
     b[3] = (uint8_t)(v >> 24);
     b[2] = (uint8_t)(v >> 16);
     b[1] = (uint8_t)(v >> 8);
     b[0] = (uint8_t)(v);
   }

   static void sm4_key_schedule(uint8_t key[], uint32_t rk[])
   {
     uint32_t t, x, k[36];
     int i;

     for (i = 0; i < 4; i++)
     {
       k[i] = load_u32_be(key, i) ^ sm4_fk[i];
     }

     /* T' */
     for (i = 0; i < SM4_KEY_SCHEDULE; ++i)
     {
       x = k[i + 1] ^ k[i + 2] ^ k[i + 3] ^ sm4_ck[i];

       /* Nonlinear operation tau */
       t = ((uint32_t)sm4_sbox[(uint8_t)(x >> 24)]) << 24 |
           ((uint32_t)sm4_sbox[(uint8_t)(x >> 16)]) << 16 |
           ((uint32_t)sm4_sbox[(uint8_t)(x >>  8)]) <<  8 |
           ((uint32_t)sm4_sbox[(uint8_t)(x)]);

       /* Linear operation L' */
       k[i+4] = k[i] ^ (t ^ ROTL32(t, 13) ^ ROTL32(t, 23));
       rk[i] = k[i + 4];
     }

   }

   #define SM4_ROUNDS(k0, k1, k2, k3, F)   \
     do {                                  \
       X0 ^= F(X1 ^ X2 ^ X3 ^ rk[k0]); \
       X1 ^= F(X0 ^ X2 ^ X3 ^ rk[k1]); \
       X2 ^= F(X0 ^ X1 ^ X3 ^ rk[k2]); \
       X3 ^= F(X0 ^ X1 ^ X2 ^ rk[k3]); \
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       debug_print("rk_%0.2i = %0.8x  " \
         "  X_%0.2i = %0.8x\n", k0, rk[k0], k0+4, X0); \
       debug_print("rk_%0.2i = %0.8x  " \
         "  X_%0.2i = %0.8x\n", k1, rk[k1], k1+4, X1); \
       debug_print("rk_%0.2i = %0.8x  " \
         "  X_%0.2i = %0.8x\n", k2, rk[k2], k2+4, X2); \
       debug_print("rk_%0.2i = %0.8x  " \
         "  X_%0.2i = %0.8x\n", k3, rk[k3], k3+4, X3); \
     } while(0)

   static uint32_t sm4_t(uint32_t x)
   {
     uint32_t t = 0;

     t |= ((uint32_t)sm4_sbox[(uint8_t)(x >> 24)]) << 24;
     t |= ((uint32_t)sm4_sbox[(uint8_t)(x >> 16)]) << 16;
     t |= ((uint32_t)sm4_sbox[(uint8_t)(x >> 8)]) << 8;
     t |= sm4_sbox[(uint8_t)x];

     /*
      * L linear transform
      */
     return t ^ ROTL32(t, 2) ^ ROTL32(t, 10) ^
            ROTL32(t, 18) ^ ROTL32(t, 24);
   }

   void sm4_encrypt(uint8_t key[],
       unsigned char plaintext[],
       unsigned char ciphertext[])
   {
     uint32_t rk[SM4_KEY_SCHEDULE], X0, X1, X2, X3;
     int i, j;

     sm4_key_schedule(key, rk);

     X0 = load_u32_be(plaintext, 0);
     X1 = load_u32_be(plaintext, 1);
     X2 = load_u32_be(plaintext, 2);
     X3 = load_u32_be(plaintext, 3);

     SM4_ROUNDS( 0,  1,  2,  3, sm4_t);
     SM4_ROUNDS( 4,  5,  6,  7, sm4_t);
     SM4_ROUNDS( 8,  9, 10, 11, sm4_t);
     SM4_ROUNDS(12, 13, 14, 15, sm4_t);
     SM4_ROUNDS(16, 17, 18, 19, sm4_t);
     SM4_ROUNDS(20, 21, 22, 23, sm4_t);
     SM4_ROUNDS(24, 25, 26, 27, sm4_t);
     SM4_ROUNDS(28, 29, 30, 31, sm4_t);
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     store_u32_be(X3, ciphertext);
     store_u32_be(X2, ciphertext + 4);
     store_u32_be(X1, ciphertext + 8);
     store_u32_be(X0, ciphertext + 12);
   }

   void sm4_decrypt(uint8_t key[],
       unsigned char ciphertext[],
       unsigned char plaintext[])
   {
     uint32_t rk[SM4_KEY_SCHEDULE], X0, X1, X2, X3;
     int i, j;

     sm4_key_schedule(key, rk);

     X0 = load_u32_be(ciphertext, 0);
     X1 = load_u32_be(ciphertext, 1);
     X2 = load_u32_be(ciphertext, 2);
     X3 = load_u32_be(ciphertext, 3);

     SM4_ROUNDS(31, 30, 29, 28, sm4_t);
     SM4_ROUNDS(27, 26, 25, 24, sm4_t);
     SM4_ROUNDS(23, 22, 21, 20, sm4_t);
     SM4_ROUNDS(19, 18, 17, 16, sm4_t);
     SM4_ROUNDS(15, 14, 13, 12, sm4_t);
     SM4_ROUNDS(11, 10,  9,  8, sm4_t);
     SM4_ROUNDS( 7,  6,  5,  4, sm4_t);
     SM4_ROUNDS( 3,  2,  1,  0, sm4_t);

     store_u32_be(X3, plaintext);
     store_u32_be(X2, plaintext + 4);
     store_u32_be(X1, plaintext + 8);
     store_u32_be(X0, plaintext + 12);
   }

   <CODE ENDS>

B.3.  sm4_main.c

   "sm4_main.c" is used to run the examples provided in this document
   and print out internal state for implementation reference.

   <CODE BEGINS>
   #include <stdlib.h>
   #include <string.h>
   #include <stdbool.h>
   #include "sm4.h"
   #include "print.h"
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   typedef struct {
     unsigned char* key;
     unsigned char* message;
     unsigned char* expected;
     int iterations;
     bool encrypt;
   } test_case;

   int sm4_run_example(test_case tc)
   {
     unsigned char input[SM4_BLOCK_SIZE] = {0};
     unsigned char output[SM4_BLOCK_SIZE] = {0};
     int i;

     debug_print("-----------------------"
         " Message Input m Begin "
         "-------------------------\n");
     print_bytes((unsigned int*)tc.message, SM4_BLOCK_SIZE);
     debug_print("----------------------- "
         "Message Input m End "
         "---------------------------\n");

     if (tc.encrypt)
     {
       debug_print("----------------------- "
           "Encrypt "
           "---------------------------\n");
       memcpy(input, tc.message, SM4_BLOCK_SIZE);
       for (i = 0; i != tc.iterations; ++i)
       {
         sm4_encrypt(tc.key,
             (unsigned char*)input,
             (unsigned char*)output);
         memcpy(input, output, SM4_BLOCK_SIZE);
       }
     }
     else
     {
       debug_print("----------------------- "
           "Decrypt "
           "---------------------------\n");
       memcpy(input, tc.message, SM4_BLOCK_SIZE);
       for (i = 0; i != tc.iterations; ++i)
       {
         sm4_decrypt(tc.key,
             (unsigned char*)input,
             (unsigned char*)output);
         memcpy(input, output, SM4_BLOCK_SIZE);
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       }
     }

     debug = 1;
     debug_print("+++++++++++++++++++++++++++++++"
         " RESULT "
         "++++++++++++++++++++++++++++++++\n");
     debug_print("RESULTS:\n");
     debug_print(" Expected:\n");
     print_bytes((unsigned int*)tc.expected, SM4_BLOCK_SIZE);

     debug_print(" Output:\n");
     print_bytes((unsigned int*)output, SM4_BLOCK_SIZE);

     debug = 0;
     return memcmp(
       (unsigned char*)output,
       (unsigned char*)tc.expected,
       SM4_BLOCK_SIZE
     );
   }

   int main(int argc, char **argv)
   {

     int i;
     unsigned char key[SM4_BLOCK_SIZE];
     unsigned char block[SM4_BLOCK_SIZE];

     test_case tests[8] = {0};

     /*
      * This test vector comes from Example 1 of GB/T 32907-2016,
      */
     static const unsigned int gbt32907k1[SM4_BLOCK_SIZE] = {
       0x01234567, 0x89abcdef,
       0xfedcba98, 0x76543210
     };
     static const unsigned int gbt32907m1[SM4_BLOCK_SIZE] = {
       0x01234567, 0x89abcdef,
       0xfedcba98, 0x76543210
     };
     static const unsigned int gbt32907e1[SM4_BLOCK_SIZE] = {
       0x681edf34, 0xd206965e,
       0x86b3e94f, 0x536e4246
     };
     test_case gbt32907t1 = {
       (unsigned char*)gbt32907k1,
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       (unsigned char*)gbt32907m1,
       (unsigned char*)gbt32907e1,
       1,
       true
     };
     tests[0] = gbt32907t1;

     /*
      * This test vector comes from Example 2 from GB/T 32907-2016.
      * After 1,000,000 iterations.
      */
     static const unsigned int gbt32907e2[SM4_BLOCK_SIZE] = {
       0x595298c7, 0xc6fd271f,
       0x0402f804, 0xc33d3f66
     };
     test_case gbt32907t2 = {
       (unsigned char*)gbt32907k1,
       (unsigned char*)gbt32907m1,
       (unsigned char*)gbt32907e2,
       1000000,
       true
     };
     tests[1] = gbt32907t2;

     /*
      * This test vector reverses Example 1 of GB/T 32907-2016.
      * After decrypting 1 iteration.
      */
     test_case gbt32907t3 = {
       (unsigned char*)gbt32907k1,
       (unsigned char*)gbt32907e1,
       (unsigned char*)gbt32907m1,
       1,
       false
     };
     tests[2] = gbt32907t3;

     /*
      * This test vector reverses Example 2 of GB/T 32907-2016.
      * After decrypting 1,000,000 iterations.
      */
     test_case gbt32907t4 = {
       (unsigned char*)gbt32907k1,
       (unsigned char*)gbt32907e2,
       (unsigned char*)gbt32907m1,
       1000000,
       false
     };
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     tests[3] = gbt32907t4;

     /*
      * Newly added examples to demonstrate key changes.
      */
     static const unsigned int newexamplek1[SM4_BLOCK_SIZE] = {
       0xfedcba98, 0x76543210,
       0x01234567, 0x89abcdef
     };
     static const unsigned int newexamplem1[SM4_BLOCK_SIZE] = {
       0x00010203, 0x04050607,
       0x08090a0b, 0x0c0d0e0f
     };
     static const unsigned int newexamplee1[SM4_BLOCK_SIZE] = {
       0xf766678f, 0x13f01ade,
       0xac1b3ea9, 0x55adb594
     };
     /*
      */
     test_case newexample1 = {
       (unsigned char*)newexamplek1,
       (unsigned char*)newexamplem1,
       (unsigned char*)newexamplee1,
       1,
       true
     };
     tests[4] = newexample1;

     test_case newexample2 = {
       (unsigned char*)newexamplek1,
       (unsigned char*)newexamplee1,
       (unsigned char*)newexamplem1,
       1,
       false
     };
     tests[5] = newexample2;

     /*
      * After 1,000,000 iterations.
      */
     static const unsigned int newexamplee2[SM4_BLOCK_SIZE] = {
       0x379a96d0, 0xa6a5a506,
       0x0fb460c7, 0x5d1879ed
     };
     test_case newexample3 = {
       (unsigned char*)newexamplek1,
       (unsigned char*)newexamplem1,
       (unsigned char*)newexamplee2,
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       1000000,
       true
     };
     tests[6] = newexample3;

     for (i = 0; i < 7; ++i)
     {

       if (i == 1 || i == 3)
         continue;

       printf("sm4_example[%2i]: %s\n", i,
         sm4_run_example(tests[i]) ?  "FAIL" : "PASS");
     }

     return 0;
   }

   <CODE ENDS>

B.4.  print.c and print.h

   "print.c" and "print.h" are used to provide pretty formatting used to
   print out the examples for this document.

   "print.h"

   <CODE BEGINS>
   #ifndef SM4PRINT_H
   #define SM4PRINT_H

   #define DEBUG 0
   #define debug_print(...) \
     do { if (DEBUG) fprintf(stderr, __VA_ARGS__); } while (0)

   #include <stdio.h>

   void print_bytes(unsigned* buf, int n);

   #endif
   <CODE ENDS>

   "print.c"
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   <CODE BEGINS>
   #include <stdio.h>
   #include "print.h"

   void print_bytes(unsigned int* buf, int n)
   {
     unsigned char* ptr = (unsigned char*)buf;
     int i, j;

     for (i = 0; i <= n/4; i++) {
       if (i > 0 && i % 8 == 0) {
         debug_print("\n");
       }
       for (j = 1; j <= 4; j++) {
         if ((i*4+4-j) < n) {
           debug_print("%.2X", ptr[(i*4)+4-j]);
         }
       }
       debug_print(" ");
     }
     debug_print("\n");
   }

   <CODE ENDS>
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