
Internet Research Task Force R. Tse
Internet-Draft Ribose
Intended status: Informational W. Wong
Expires: June 18, 2018 Hang Seng Management College
 December 15, 2017

The SM4 Blockcipher Algorithm And Its Modes Of Operations
draft-ribose-cfrg-sm4-08

Abstract

 This document describes the SM4 symmetric blockcipher algorithm
 published as GB/T 32907-2016 by the State Cryptography Administration
 of China (SCA).

 This document is a product of the Crypto Forum Research Group (CFRG).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 18, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Tse & Wong Expires June 18, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft SM4 Blockcipher Algorithm December 2017

Table of Contents

1. Introduction . 4
1.1. Purpose . 4
1.2. History . 4

2. Terms and Definitions . 5
3. Symbols And Abbreviations 6
4. Compute Structure . 6
5. Key And Key Parameters 7
6. Functions . 7
6.1. Round Function F . 7
6.2. Permutations T and T' 7
6.2.1. Nonlinear Transformation tau 8
6.2.2. Linear Transformations L and L' 8
6.2.3. S-box S . 8

7. Algorithm . 9
7.1. Encryption . 9
7.2. Decryption . 12
7.3. Key Schedule . 12
7.3.1. Family Key FK . 13
7.3.2. Constant Key CK 13

8. Modes of Operation . 14
8.1. Variables And Primitives 14
8.2. Initialization Vectors 15
8.3. SM4-ECB . 15
8.3.1. SM4-ECB Encryption 15
8.3.2. SM4-ECB Decryption 16

8.4. SM4-CBC . 16
8.4.1. SM4-CBC Encryption 17
8.4.2. SM4-CBC Decryption 17

8.5. SM4-CFB . 18
8.5.1. SM4-CFB Variants 18
8.5.2. SM4-CFB Encryption 19
8.5.3. SM4-CFB Decryption 19

8.6. SM4-OFB . 20
8.6.1. SM4-OFB Encryption 20
8.6.2. SM4-OFB Decryption 21

8.7. SM4-CTR . 22
8.7.1. SM4-CTR Encryption 22
8.7.2. SM4-CTR Decryption 23

9. Object Identifier . 24
9.1. GM/T OID . 24
9.2. ISO OID . 24

10. Design Considerations . 24
10.1. Basic Transformation 24
10.2. Nonlinear Transformation 25
10.2.1. S-box Algebraic Expression 25
10.2.2. Algebraic Degree And Distribution Of Terms 26

Tse & Wong Expires June 18, 2018 [Page 2]

Internet-Draft SM4 Blockcipher Algorithm December 2017

10.2.3. Differential Distribution 27
10.2.4. Nonlinearity . 28
10.2.5. Maximum Linearity Advantage 28
10.2.6. Balance . 28
10.2.7. Completness and Avalanche Effect 29

10.3. Linear Transform . 29
10.4. Key Expansion Algorithm 30

11. Cryptanalysis Results . 31
11.1. Differential Cryptanalysis 31
11.2. Linear Cryptanalysis 32
11.3. Multi-dimensional Linear Cryptanalysis 32
11.4. Impossible Differential Cryptanalysis 32
11.5. Zero-correlation Linear Cryptanalysis 33
11.6. Integral Cryptanalysis 33
11.7. Algebraic Attacks 33
11.8. Matrix Attacks . 33

 11.9. Provable Security Against Differential And Linear
 Cryptanalysis . 34
 11.10. Provable Security Against Related-Key Differential
 Cryptanalysis . 34

11.11. Summary of SM4 Cryptanalytic Attacks 35
12. Security Considerations 36
13. IANA Considerations . 38
14. References . 38
14.1. Normative References 38
14.2. Informative References 38

Appendix A. Appendix A: Example Calculations 44
A.1. Examples From GB/T 32907-2016 44
A.1.1. Example 1 (GB/T 32907-2016 Example 1 Encryption) . . 44
A.1.2. Example 2 (GB/T 32907-2016 Example 1 Decryption) . . 45
A.1.3. Example 3 (GB/T 32907-2016 Example 2 Encryption) . . 46
A.1.4. Example 4 . 47
A.1.5. Example 5 . 48
A.1.6. Example 6 . 49

A.2. Examples For Various Modes Of Operations 50
A.2.1. SM4-ECB Examples 50
A.2.1.1. Example 1 . 50
A.2.1.2. Example 2 . 50

A.2.2. SM4-CBC Examples 51
A.2.2.1. Example 1 . 51
A.2.2.2. Example 2 . 51

A.2.3. SM4-OFB Examples 52
A.2.3.1. Example 1 . 52
A.2.3.2. Example 2 . 52

A.2.4. SM4-CFB Examples 52
A.2.4.1. Example 1 . 53
A.2.4.2. Example 2 . 53

A.2.5. SM4-CTR Examples 53

Tse & Wong Expires June 18, 2018 [Page 3]

Internet-Draft SM4 Blockcipher Algorithm December 2017

A.2.5.1. Example 1 . 53
A.2.5.2. Example 2 . 54

Appendix B. Sample Implementation In C 55
B.1. sm4.h . 55
B.2. sm4.c . 55
B.3. sm4_main.c . 59
B.4. print.c and print.h 64

Appendix C. Acknowledgements 65
 Authors' Addresses . 65

1. Introduction

 SM4 [GBT.32907-2016] [ISO.IEC.18033-3.AMD2] is a cryptographic
 standard issued by the State Cryptography Administration (SCA) of
 China [SCA] (formerly the Office of State Commercial Cryptography
 Administration, OSCCA) as an authorized cryptographic algorithm for
 the use within China. The algorithm is published in public.

 SM4 is a symmetric encryption algorithm, specifically a blockcipher,
 designed for data encryption.

1.1. Purpose

 This document does not aim to introduce a new algorithm, but to
 provide a clear and open description of the SM4 algorithm in English,
 and also to serve as a stable reference for IETF documents that
 utilize this algorithm.

 While this document is similar to [SM4-En] in nature, [SM4-En] is a
 textual translation of the "SMS4" algorithm [SM4] published in 2006.
 Instead, this document follows the updated description and structure
 of [GBT.32907-2016] published in 2016. Sections 1 to 7 of this
 document directly map to the corresponding sections numbers of the
 [GBT.32907-2016] standard for convenience of the reader.

 This document also provides additional information on the design
 considerations of the SM4 algorithm [SM4-Details], its modes of
 operations that are currently being used (see Section 8), and the
 offical SM4 OIDs (see Section 9).

1.2. History

 The "SMS4" algorithm (the former name of SM4) was invented by Shu-
 Wang Lu [LSW-Bio]. It was first published in 2003 as part of
 [GB.15629.11-2003], then published independently in 2006 by SCA
 (OSCCA at that time) [SM4], published as an industry cryptographic
 standard and renamed to "SM4" in 2012 by SCA (OSCCA at that time)
 [GMT-0002-2012], and finally formalized in 2016 as a Chinese National

Tse & Wong Expires June 18, 2018 [Page 4]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 Standard (GB Standard) [GBT.32907-2016]. SM4 has also been
 standardized in [ISO.IEC.18033-3.AMD2] by the International
 Organization for Standardization in 2017.

 SMS4 was originally created for use in protecting wireless networks
 [SM4], and is mandated in the Chinese National Standard for Wireless
 LAN WAPI (Wired Authentication and Privacy Infrastructure)
 [GB.15629.11-2003]. A proposal was made to adopt SMS4 into the IEEE
 802.11i standard, but the algorithm was eventually not included due
 to concerns of introducing inoperability with existing ciphers.

 The latest SM4 standard [GBT.32907-2016] was proposed by the SCA
 (OSCCA at that time), standardized through TC 260 of the
 Standardization Administration of the People's Republic of China
 (SAC), and was drafted by the following individuals at the Data
 Assurance and Communication Security Research Center (DAS Center) of
 the Chinese Academy of Sciences, the China Commercial Cryptography
 Testing Center and the Beijing Academy of Information Science &
 Technology (BAIST):

 o Shu-Wang Lu

 o Dai-Wai Li

 o Kai-Yong Deng

 o Chao Zhang

 o Peng Luo

 o Zhong Zhang

 o Fang Dong

 o Ying-Ying Mao

 o Zhen-Hua Liu

2. Terms and Definitions

 The key words "*MUST*", "*MUST NOT*", "*REQUIRED*", "*SHALL*",
 "*SHALL NOT*", "*SHOULD*", "*SHOULD NOT*", "*RECOMMENDED*", "*MAY*",
 and "*OPTIONAL*" in this document are to be interpreted as described
 in [RFC2119].

 The following terms and definitions apply to this document.

 block length

https://datatracker.ietf.org/doc/html/rfc2119

Tse & Wong Expires June 18, 2018 [Page 5]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 Bit-length of a message block.

 key length
 Bit-length of a key.

 key expansion algorithm
 An operation that converts a key into a round key.

 rounds
 The number of iterations that the round function is run.

 round key
 A key used in each round on the blockcipher, derived from the
 input key, also called a subkey.

 word
 a 32-bit quantity

 S-box
 The S (substitution) box function produces 8-bit output from 8-bit
 input, represented as S(.)

3. Symbols And Abbreviations

 S xor T
 bitwise exclusive-or of two 32-bit vectors S and T. S and T will
 always have the same length.

 a <<< i
 32-bit bitwise cyclic shift on a with i bits shifted left.

4. Compute Structure

 The SM4 algorithm is a blockcipher, with block size of 128 bits and a
 key length of 128 bits.

 Both encryption and key expansion use 32 rounds of a nonlinear key
 schedule per block. Each round processes one of the four 32-bit
 words that constitute the block.

 The structure of encryption and decryption are identical, except that
 the round key schedule has its order reversed during decryption.

 Using a 8-bit S-box, it only uses exclusive-or, cyclic bit shifts and
 S-box lookups to execute.

Tse & Wong Expires June 18, 2018 [Page 6]

Internet-Draft SM4 Blockcipher Algorithm December 2017

5. Key And Key Parameters

 The SM4 encryption key is 128 bits long and represented below, where
 each MK_i, (i = 0, 1, 2, 3) is 32 bits long.

 MK = (MK_0, MK_1, MK_2, MK_3)

 The round key schedule is derived from the encryption key,
 represented as below where each rk_i (i = 0, ..., 31) is 32 bits
 long:

 (rk_0, rk_1, ... , rk_31)

 The family key used for key expansion is represented as FK, where
 each FK_i (i = 0, ..., 3) is 32 bits long:

 FK = (FK_0, FK_1, FK_2, FK_3)

 The constant key used for key expansion is represented as CK, where
 each CK_i (i = 0, ..., 31) is 32 bits long:

 CK = (CK_0, CK_1, ... , CK_31)

6. Functions

6.1. Round Function F

 The round function F is defined as:

 F(X_0, X_1, X_2, X_3, rk) = X_0 xor T(X_1 xor X_2 xor X_3 xor rk)

 Where:

 o Each $$X_i$ is 32-bit wide.

 o The round key rk is 32-bit wide.

6.2. Permutations T and T'

 T is a reversible permutation that outputs 32 bits from a 32-bit
 input.

 It consists of a nonlinear transform tau and linear transform L.

 T(.) = L(tau(.))

 The permutation T' is created from T by replacing the linear
 transform function L with L'.

Tse & Wong Expires June 18, 2018 [Page 7]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 T'(.) = L'(tau(.))

6.2.1. Nonlinear Transformation tau

 tau is composed of four parallel S-boxes.

 Given a 32-bit input A, where each a_i is a 8-bit string:

 A = (a_0, a_1, a_2, a_3)

 The output is a 32-bit B, where each b_i is a 8-bit string:

 B = (b_0, b_1, b_2, b_3)

 B is calculated as follows:

 (b_0, b_1, b_2, b_3) = tau(A)

 tau(A) = (S(a_0), S(a_1), S(a_2), S(a_3))

6.2.2. Linear Transformations L and L'

 The output of nonlinear transformation function tau is used as input
 to linear transformation function L.

 Given B, a 32-bit input.

 The linear transformation L' is defined as follows.

 L(B) = B xor (B <<< 2) xor (B <<< 10) xor (B <<< 18) xor (B <<< 24)

 The linear transformation L' is defined as follows.

 L'(B) = B xor (B <<< 13) xor (B <<< 23)

6.2.3. S-box S

 The S-box S used in nonlinear transformation tau is given in the
 lookup table shown in Figure 1 with hexadecimal values.

Tse & Wong Expires June 18, 2018 [Page 8]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 | 0 1 2 3 4 5 6 7 8 9 A B C D E F
 ---|---
 0 | D6 90 E9 FE CC E1 3D B7 16 B6 14 C2 28 FB 2C 05
 1 | 2B 67 9A 76 2A BE 04 C3 AA 44 13 26 49 86 06 99
 2 | 9C 42 50 F4 91 EF 98 7A 33 54 0B 43 ED CF AC 62
 3 | E4 B3 1C A9 C9 08 E8 95 80 DF 94 FA 75 8F 3F A6
 4 | 47 07 A7 FC F3 73 17 BA 83 59 3C 19 E6 85 4F A8
 5 | 68 6B 81 B2 71 64 DA 8B F8 EB 0F 4B 70 56 9D 35
 6 | 1E 24 0E 5E 63 58 D1 A2 25 22 7C 3B 01 21 78 87
 7 | D4 00 46 57 9F D3 27 52 4C 36 02 E7 A0 C4 C8 9E
 8 | EA BF 8A D2 40 C7 38 B5 A3 F7 F2 CE F9 61 15 A1
 9 | E0 AE 5D A4 9B 34 1A 55 AD 93 32 30 F5 8C B1 E3
 A | 1D F6 E2 2E 82 66 CA 60 C0 29 23 AB 0D 53 4E 6F
 B | D5 DB 37 45 DE FD 8E 2F 03 FF 6A 72 6D 6C 5B 51
 C | 8D 1B AF 92 BB DD BC 7F 11 D9 5C 41 1F 10 5A D8
 D | 0A C1 31 88 A5 CD 7B BD 2D 74 D0 12 B8 E5 B4 B0
 E | 89 69 97 4A 0C 96 77 7E 65 B9 F1 09 C5 6E C6 84
 F | 18 F0 7D EC 3A DC 4D 20 79 EE 5F 3E D7 CB 39 48

 Figure 1: SM4 S-box Values

 For example, input "EF" will produce an output read from the S-box
 table row E and column F, giving the result S(EF) = 84.

7. Algorithm

7.1. Encryption

 The encryption algorithm consists of 32 rounds and 1 reverse
 transform R.

 Given a 128-bit plaintext input, where each X_i is 32-bit wide:

 (X_0, X_1, X_2, X_3)

 The output is a 128-bit ciphertext, where each Y_i is 32-bit wide:

 (Y_0, Y_1, Y_2, Y_3)

 Each round key is designated as rk_i, where each rk_i is 32-bit wide
 and i = 0, 1, 2, ..., 31.

 a. 32 rounds of calculation

 i = 0, 1, ..., 31

 X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i)

Tse & Wong Expires June 18, 2018 [Page 9]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 b. reverse transformation

 (Y_0, Y_1, Y_2, Y_3) = R(X_32, X_33, X_34, X_35)

 R(X_32, X_33, X_34, X_35) = (X_35, X_34, X_33, X_32)

 Please refer to Appendix A for sample calculations.

 A flow of the calculation is given in Figure 2.

Tse & Wong Expires June 18, 2018 [Page 10]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 128-bits plaintext
 ___________________________/
 |
 v
 X_0 X_1 X_2 X_3
 | | | |
 v v v v
 +---------------------------+
 Round 1 | Round Function | <--rk_0
 +---------------------------+
 | | | |
 X_1 X_2 X_3 X_4
 | | | |
 v v v v
 +---------------------------+
 Round 2 | Round Function | <--rk_1
 +---------------------------+
 | | | |
 X_2 X_3 X_4 X_5
 | | | |
 v v v v
 ...

 X_31 X_32 X_33 X_34
 | | | |
 v v v v
 +---------------------------+
 Round 32 | Round Function | <--rk_31
 +---------------------------+
 | | | |
 X_32 X_33 X_34 X_35
 | | | |
 v v v v
 +---------------------------+
 | Reverse Transformation R |
 +---------------------------+
 | | | |
 Y_0 Y_1 Y_2 Y_3

 ___________________________/
 |
 v
 128-bits ciphertext

 Figure 2: SM4 Encryption Flow

Tse & Wong Expires June 18, 2018 [Page 11]

Internet-Draft SM4 Blockcipher Algorithm December 2017

7.2. Decryption

 Decryption takes an identical process as encryption, with the only
 difference the order of the round key sequence.

 During decryption, the round key sequence is:

 (rk_31, rk_30, ..., rk_0)

7.3. Key Schedule

 Round keys used during encryption are derived from the encryption
 key.

 Specifically, given the encryption key MK, where each MK_i is 32-bit
 wide:

 MK = (MK_0, MK_1, MK_2, MK_3)

 Each round key rk_i is created as follows, where i = 0, 1, ..., 31.

 (K_0, K_1, K_2, K_3) =
 (MK_0 xor FK_0, MK_1 xor FK_1, MK_2 xor FK_2, MK_3 xor FK_3)

 rk_i = K_{i + 4}

 K_{i + 4} =
 K_i xor T' (K_{i + 1} xor K_{i + 2} xor K_{i + 3} xor CK_i)

 Since the decryption key is identical to the encryption key, the
 round keys used in the decryption process are derived from the
 decryption key through the identical process to that of during
 encryption.

 Figure 3 depicts the i-th round of SM4.

Tse & Wong Expires June 18, 2018 [Page 12]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 X_i rk_i X_{i+1} X_{i+2} X_{i+3}
 | | | | |
 | | | | |
 | v | | |
 +---+ +---+ +---+ | | |
 | X | | | | X | <--+ | |
 | O | <- | T | <- | O | <----------+ |
 | R | | | | R | <------------------+
 +---+ +---+ +---+ | | |
 | / / /
 | / / /
 | / / /
 \--------------------------------------=
 / / / \
 / / / |
 /---------------/ / / |
 | | | |
 X_{i+1} X_{i+2} X_{i+3} X_{i+4}

 Figure 3: SM4 Round Function For the i-th Round

7.3.1. Family Key FK

 Family key FK given in hexadecimal notation, is:

 FK_0 = A3B1BAC6
 FK_1 = 56AA3350
 FK_2 = 677D9197
 FK_3 = B27022DC

7.3.2. Constant Key CK

 The method to retrieve values from the constant key CK is as follows.

 Let ck_{i, j} be the j-th byte (i = 0, 1, ..., 31; j = 0, 1, 2, 3) of
 CK_i.

 Therefore, each ck_{i, j} is a 8-bit string, and each CK_i a 32-bit
 word.

 CK_i = (ck_{i, 0}, ck_{i, 1}, ck_{i, 2}, ck_{i, 3})

 ck_{i, j} = (4i + j) x 7 (mod 256)

 The values of the constant key CK_i, where (i = 0, 1, ..., 31), in
 hexadecimal, are:

Tse & Wong Expires June 18, 2018 [Page 13]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 CK_0 = 00070E15 CK_16 = C0C7CED5
 CK_1 = 1C232A31 CK_17 = DCE3EAF1
 CK_2 = 383F464D CK_18 = F8FF060D
 CK_3 = 545B6269 CK_19 = 141B2229
 CK_4 = 70777E85 CK_20 = 30373E45
 CK_5 = 8C939AA1 CK_21 = 4C535A61
 CK_6 = A8AFB6BD CK_22 = 686F767D
 CK_7 = C4CBD2D9 CK_23 = 848B9299
 CK_8 = E0E7EEF5 CK_24 = A0A7AEB5
 CK_9 = FC030A11 CK_25 = BCC3CAD1
 CK_10 = 181F262D CK_26 = D8DFE6ED
 CK_11 = 343B4249 CK_27 = F4FB0209
 CK_12 = 50575E65 CK_28 = 10171E25
 CK_13 = 6C737A81 CK_29 = 2C333A41
 CK_14 = 888F969D CK_30 = 484F565D
 CK_15 = A4ABB2B9 CK_31 = 646B7279

8. Modes of Operation

 This document defines multiple modes of operation for the SM4
 blockcipher algorithm.

 The CBC (Cipher Block Chaining), ECB (Electronic CodeBook), CFB
 (Cipher FeedBack), OFB (Output FeedBack) and CTR (Counter) modes are
 defined in [NIST.SP.800-38A] and utilized with the SM4 algorithm in
 the following sections.

8.1. Variables And Primitives

 Hereinafter we define:

 SM4Encrypt(P, K)
 The SM4 algorithm that encrypts plaintext P with key K, described
 in Section 7.1

 SM4Decrypt(C, K)
 The SM4 algorithm that decrypts ciphertext C with key K, described
 in Section 7.2

 b
 block size in bits, defined as 128 for SM4

 P_j
 block j of ciphertext bitstring P

 C_j
 block j of ciphertext bitstring C

Tse & Wong Expires June 18, 2018 [Page 14]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 NBlocks(B, b)
 Number of blocks of size b-bit in bitstring B

 IV
 Initialization vector

 LSB(b, S)
 Least significant b bits of the bitstring S

 MSB(b, S)
 Most significant b bits of the bitstring S

8.2. Initialization Vectors

 The CBC, CFB and OFB modes require an additional input to the
 encryption process, called the initialization vector (IV). The
 identical IV is used in the input of encryption as well as the
 decryption of the corresponding ciphertext.

 Generation of IV values *MUST* take into account of the
 considerations in Section 12 recommended by [BC-EVAL].

8.3. SM4-ECB

 In SM4-ECB, the same key is utilized to create a fixed assignment for
 a plaintext block with a ciphertext block, meaning that a given
 plaintext block always gets encrypted to the same ciphertext block.
 As described in [NIST.SP.800-38A], this mode should be avoided if
 this property is undesirable.

 This mode requires input plaintext to be a multiple of the block
 size, which in this case of SM4 it is 128-bit. It also allows
 multiple blocks to be computed in parallel.

8.3.1. SM4-ECB Encryption

 Inputs:

 o P, plaintext, length *MUST* be multiple of b

 o K, SM4 128-bit encryption key

 Output:

 o C, ciphertext, length is a multiple of b

 C is defined as follows.

Tse & Wong Expires June 18, 2018 [Page 15]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 n = NBlocks(P, b)

 for i = 1 to n
 C_i = SM4Encrypt(P_i, K)
 end for

 C = C_1 || ... || C_n

8.3.2. SM4-ECB Decryption

 Inputs:

 o C, ciphertext, length *MUST* be multiple of b

 o K, SM4 128-bit encryption key

 Output:

 o P, plaintext, length is a multiple of b

 P is defined as follows.

 n = NBlocks(C, b)

 for i = 1 to n
 P_i = SM4Decrypt(C_i, K)
 end for

 P = P_1 || ... || P_n

8.4. SM4-CBC

 SM4-CBC is similar to SM4-ECB that the input plaintext *MUST* be a
 multiple of the block size, which is 128-bit in SM4. SM4-CBC
 requires an additional input, the IV, that is unpredictable for a
 particular execution of the encryption process.

 Since CBC encryption relies on a forward cipher operation that depend
 on results of the previous operation, it cannot be parallelized.
 However, for decryption, since ciphertext blocks are already
 available, CBC parallel decryption is possible.

Tse & Wong Expires June 18, 2018 [Page 16]

Internet-Draft SM4 Blockcipher Algorithm December 2017

8.4.1. SM4-CBC Encryption

 Inputs:

 o P, plaintext, length *MUST* be multiple of b

 o K, SM4 128-bit encryption key

 o IV, 128-bit, unpredictable, initialization vector

 Output:

 o C, ciphertext, length is a multiple of b

 C is defined as follows.

 n = NBlocks(P, b)

 C_1 = SM4Encrypt(P_1 xor IV, K)

 for i = 2 to n
 C_i = SM4Encrypt(P_i xor C_{i - 1}, K)
 end for

 C = C_1 || ... || C_n

8.4.2. SM4-CBC Decryption

 Inputs:

 o C, ciphertext, length *MUST* be a multiple of b

 o K, SM4 128-bit encryption key

 o IV, 128-bit, unpredictable, initialization vector

 Output:

 o P, plaintext, length is multiple of b

 P is defined as follows.

Tse & Wong Expires June 18, 2018 [Page 17]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 n = NBlocks(C, b)

 P_1 = SM4Decrypt(C_1, K) xor IV

 for i = 2 to n
 P_i = SM4Decrypt(C_i, K) xor C_{i - 1}
 end for

 P = P_1 || ... || P_n

8.5. SM4-CFB

 SM4-CFB relies on feedback provided by successive ciphertext segments
 to generate output blocks. The plaintext given must be a multiple of
 the block size.

 Similar to SM4-CBC, SM4-CFB requires an IV that is unpredictable for
 a particular execution of the encryption process.

 SM4-CFB further allows setting a positive integer parameter s, that
 is less than or equal to the block size, to specify the size of each
 data segment. The same segment size must be used in encryption and
 decryption.

 In SM4-CFB, since the input block to each forward cipher function
 depends on the output of the previous block (except the first that
 depends on the IV), encryption is not parallelizable. Decryption,
 however, can be parallelized.

8.5.1. SM4-CFB Variants

 SM4-CFB takes an integer s to determine segment size in its
 encryption and decryption routines. We define the following variants
 of SM4-CFB for various s:

 o SM4-CFB-1, the 1-bit SM4-CFB mode, where s is set to 1.

 o SM4-CFB-8, the 8-bit SM4-CFB mode, where s is set to 8.

 o SM4-CFB-64, the 64-bit SM4-CFB mode, where s is set to 64.

 o SM4-CFB-128, the 128-bit SM4-CFB mode, where s is set to 128.

Tse & Wong Expires June 18, 2018 [Page 18]

Internet-Draft SM4 Blockcipher Algorithm December 2017

8.5.2. SM4-CFB Encryption

 Inputs:

 o P#, plaintext, length *MUST* be multiple of s

 o K, SM4 128-bit encryption key

 o IV, 128-bit, unpredictable, initialization vector

 o s, an integer 1 <= s <= b that defines segment size

 Output:

 o C#, ciphertext, length is a multiple of s

 C# is defined as follows.

 n = NBlocks(P#, s)

 I_1 = IV
 for i = 2 to n
 I_i = LSB(b - s, I_{i - 1}) || C#_{j - 1}
 end for

 for i = 1 to n
 O_j = SM4Encrypt(I_i, K)
 end for

 for i = 1 to n
 C#_i = P#_1 xor MSB(s, O_j)
 end for

 C# = C#_1 || ... || C#_n

8.5.3. SM4-CFB Decryption

 Inputs:

 o C#, ciphertext, length *MUST* be a multiple of s

 o K, SM4 128-bit encryption key

 o IV, 128-bit, unpredictable, initialization vector

Tse & Wong Expires June 18, 2018 [Page 19]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 o s, an integer 1 <== s <== b that defines segment size

 Output:

 o P#, plaintext, length is multiple of s

 P# is defined as follows.

 n = NBlocks(P#, s)

 I_1 = IV
 for i = 2 to n
 I_i = LSB(b - s, I_{i - 1}) || C#_{j - 1}
 end for

 for i = 1 to n
 O_j = SM4Encrypt(I_i, K)
 end for

 for i = 1 to n
 P#_i = C#_1 xor MSB(s, O_j)
 end for

 P# = P#_1 || ... || P#_n

8.6. SM4-OFB

 SM4-OFB is the application of SM4 through the Output Feedback mode.
 This mode requires that the IV is a nonce, meaning that the IV *MUST*
 be unique for each execution for an input key. OFB does not require
 the input plaintext to be a multiple of the block size.

 In OFB, the routines for encryption and decryption are identical. As
 each forward cipher function (except the first) depends on previous
 results, both routines cannot be parallelized. However given a known
 IV, output blocks could be generated prior to the input of plaintext
 (encryption) or ciphertext (decryption).

8.6.1. SM4-OFB Encryption

 Inputs:

 o P, plaintext, composed of (n - 1) blocks of size b, with the last
 block P_n of size 1 <== u <== b

Tse & Wong Expires June 18, 2018 [Page 20]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 o K, SM4 128-bit encryption key

 o IV, a nonce (a unique value for each execution per given key)

 Output:

 o C, ciphertext, composed of (n - 1) blocks of size b, with the last
 block C_n of size 1 <== u <== b

 C is defined as follows.

 n = NBlocks(P, b)

 I_1 = IV
 for i = 1 to (n - 1)
 O_i = SM4Encrypt(I_i)
 I_{i + 1} = O_i
 end for

 for i = 1 to (n - 1)
 C_i = P_i xor O_i
 end for

 C_n = P_n xor MSB(u, O_n)

 C = C_1 || ... || C_n

8.6.2. SM4-OFB Decryption

 Inputs:

 o C, ciphertext, composed of (n - 1) blocks of size b, with the last
 block C_n of size 1 <== u <== b

 o K, SM4 128-bit encryption key

 o IV, the nonce used during encryption

 Output:

 o P, plaintext, composed of (n - 1) blocks of size b, with the last
 block P_n of size 1 <== u <== b

 C is defined as follows.

Tse & Wong Expires June 18, 2018 [Page 21]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 n = NBlocks(C, b)

 I_1 = IV
 for i = 1 to (n - 1)
 O_i = SM4Encrypt(I_i)
 I_{i + 1} = O_i
 end for

 for i = 1 to (n - 1)
 P_i = C_i xor O_i
 end for

 P_n = C_n xor MSB(u, O_n)

 P = P_1 || ... || P_n

8.7. SM4-CTR

 SM4-CTR is an implementation of a stream cipher through a blockcipher
 primitive. It generates a "keystream" of keys that are used to
 encrypt successive blocks, with the keystream created from the input
 key, a nonce (the IV) and an incremental counter. The counter could
 be any sequence that does not repeat within the block size.

 Both SM4-CTR encryption and decryption routines could be
 parallelized, and random access is also possible.

8.7.1. SM4-CTR Encryption

 Inputs:

 o P, plaintext, composed of (n - 1) blocks of size b, with the last
 block P_n of size 1 <== u <== b

 o K, SM4 128-bit encryption key

 o IV, a nonce (a unique value for each execution per given key)

 o T, a sequence of counters from T_1 to T_n

 Output:

 o C, ciphertext, composed of (n - 1) blocks of size b, with the last
 block C_n of size 1 <== u <== b

Tse & Wong Expires June 18, 2018 [Page 22]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 C is defined as follows.

 n = NBlocks(P, b)

 for i = 1 to n
 O_i = SM4Encrypt(T_i)
 end for

 for i = 1 to (n - 1)
 C_i = P_i xor O_i
 end for

 C_n = P_n xor MSB(u, O_n)

 C = C_1 || ... || C_n

8.7.2. SM4-CTR Decryption

 Inputs:

 o C, ciphertext, composed of (n - 1) blocks of size b, with the last
 block C_n of size 1 <= u <= b

 o K, SM4 128-bit encryption key

 o IV, a nonce (a unique value for each execution per given key)

 o T, a sequence of counters from T_1 to T_n

 Output:

 o P, plaintext, composed of (n - 1) blocks of size b, with the last
 block P_n of size 1 <= u <= b

 P is defined as follows.

Tse & Wong Expires June 18, 2018 [Page 23]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 n = NBlocks(C, b)

 for i = 1 to n
 O_i = SM4Encrypt(T_i)
 end for

 for i = 1 to (n - 1)
 P_i = C_i xor O_i
 end for

 P_n = C_n xor MSB(u, O_n)

 C = C_1 || ... || C_n

9. Object Identifier

 The Object Identifier for SM4 is identified through these OIDs.

9.1. GM/T OID

 "1.2.156.10197.1.104" for "SM4 Algorithm" [GMT-0006-2012].

9.2. ISO OID

 "1.0.18033.3.2.4" for "id-bc128-sm4" [ISO.IEC.18033-3.AMD2],
 described below.

 o "is18033-3" {iso(1) standard(0) is18033(18033) part3(3)}

 o "id-bc128" {is18033-3 block-cipher-128-bit(2)}

 o "id-bc128-sm4" {id-bc128 sm4(4)}

10. Design Considerations

10.1. Basic Transformation

 The chaos principle and the diffusion principle are two basic
 principles of block cipher design. A well-designed blockcipher
 algorithm should be based on a cryptographically sound basic
 transformation structure, with its round calculation based on a
 cryptographically sound basic transformation.

 The cryptographic properties of the basic transformation determines
 the efficiency of the resulting encryption transformation.

Tse & Wong Expires June 18, 2018 [Page 24]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 The SM4 algorithm is structured on orthomorphic permutation. Its
 round transformation is an orthomorphic permutation, and its
 cryptographic properties can be deduced from the characteristics of
 orthomorphic permutations.

 Let the single round of the SM4 block cipher algorithm be P, for any
 given plaintext X, P (X, K ')! = P (X, K) if the key K'! = K.

 The conclusion shows that if X is a row variable and K is a column
 variable, the square P(X, K) forms a Latin square. There are two
 conclusions about the nature of cryptography:

 1. The SM4 blockcipher algorithm will produce different round
 transformations given different keys.

 2. The SM4 blockcipher algorithm, within a single round, will
 produce a different output given the same input with different
 keys.

10.2. Nonlinear Transformation

 An S-box can be viewed as a bijection:

 S(X) = (f_1(X), f_2(X), ... , f_m(X)) : F_2^n -> F_2^m.

 S(x): F_2^n -> F_2^m can be represented as a multi-output boolean
 function with n-bit input and m-bit output, or a n x m S-box (an
 S-box with n inputs and m outputs), usually realized as a
 substitution that takes an n-bit input and produces a m-bit output.
 In SM4, the S-box takes n = m = 8.

 In many blockciphers, the S-box is the sole element providing
 nonlinearity, for the purpose of mixing, in order to reduce linearity
 and to hide its variable structure.

 The cryptographic properties of the S-box directly affects the
 resulting cryptographic strength of the blockcipher. When designing
 a blockcipher, the cryptographic strength of the S-box must be taken
 into account. The cryptographic strength of an S-box can be
 generally measured by factors such as its nonlinearity and
 differential distribution.

10.2.1. S-box Algebraic Expression

 In order to prevent insertion attacks, the algebraic formula used for
 cryptographic substitution should be a high degree polynomial and
 contain a large number of terms.

Tse & Wong Expires June 18, 2018 [Page 25]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 The algebraic expression of the SM4 S-box [SM4-Sbox] is determined
 through Lagrange's interpolation to be a polynomial of the 254th
 degree with 255 terms, providing the highest level of complexity
 based on its size:

 f(x) : sum_{i=0}^{255} y_i
 PI_{j!=i, j=0}^255 ((x - x_j) / (x_i - x_j))

10.2.2. Algebraic Degree And Distribution Of Terms

 Any n boolean function f(x): F_2^n -> F_2 can be represented uniquely
 in its algebraic normal form shown below:

 f(X) = a_0 + sum_{1<=i_i<...<i_k<=n, 1<=k<=n}
 a_{i_1 i_2 ... i_k} x_{i_1} x_{i_2} ... x_{i_k}

 X = (x_1, x_2, ..., x_n)

 a_0, a_{i_1, i_2, ... i_k} element-of F_2

 The "algebraic degree" of the n-boolean function f(X) is defined to
 be the algebraic degree of the highest algebraic degree of its terms
 with a nonzero coefficient in its ANF representation. The constant
 of the i-th term of f(x) in ANF representation is called the i-th
 term of f(X), the total number of all i-th (0<=i<=n) terms is called
 the "number of terms" of f(X).

 S(X) can be represented as a m-component function S(X) = (f_1(X),
 f_2(X), ... f_m(X)): F_2^n -> F_2^m. Consider S(X) to be a random
 substitution, each of its component functions would be best to have
 algebraic degree of n-1, each component function i-th coefficient
 should be near C_n^i/2. If the algebraic degree is too low, for
 example, each component function has a degree of 2, then the
 algorithm can be easily attacked by advanced differential
 cryptanalysis. If the number of terms are insufficient, then it may
 improve the success probability of insert attacks.

 The algebraic degrees and number of terms of the SM4 S-box are
 described in Figure 4.

Tse & Wong Expires June 18, 2018 [Page 26]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 +--------------------+--+
 | | Algebraic Degree |
 | Component Function +-----+---+----+----+----+----+----+---+-----+
 | | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
 +--------------------+-----+---+----+----+----+----+----+---+-----+
 | Y_0 | 0 | 3 | 15 | 31 | 28 | 29 | 14 | 3 | 1 |
 | Y_1 | 0 | 3 | 12 | 34 | 40 | 33 | 12 | 4 | 1 |
 | Y_2 | 0 | 5 | 17 | 24 | 40 | 24 | 11 | 3 | 0 |
 | Y_3 | 0 | 2 | 11 | 31 | 34 | 27 | 15 | 5 | 1 |
 | Y_4 | 0 | 5 | 15 | 28 | 33 | 24 | 13 | 5 | 0 |
 | Y_5 | 0 | 5 | 11 | 25 | 41 | 25 | 16 | 4 | 1 |
 | Y_6 | 0 | 4 | 15 | 29 | 27 | 32 | 18 | 4 | 1 |
 | Y_7 | 0 | 4 | 14 | 32 | 35 | 30 | 16 | 3 | 0 |
 +--------------------+-----+---+----+----+----+----+----+---+-----+
 | Expected Value | 1/2 | 4 | 14 | 28 | 35 | 28 | 14 | 4 | 1/2 |
 +--------------------+-----+---+----+----+----+----+----+---+-----+

 Figure 4: SM4 S-box Component Functions Algebraic Degree And Terms

10.2.3. Differential Distribution

 The definition of differential distribution has been given in
 [BC-Design].

 Differential cryptanalysis is a chosen-plaintext attack, with the
 understanding that analysis of selected plaintexts of differentials
 can retrive the most probable key. Differential distribution is an
 attribute to measure the resistance of a cryptographic function
 against differential cryptanalysis.

 delta_S = 1/2^n max_{a in F_2^n, a!=0} max_{beta in F_2^m} |
 { X in F_2^n : S(X and alpha) - S(X) = beta } |

 "delta_S" is the differential distribution of the S-box "S".

 According to the definition of differential distribution, 2^{-m} <=
 delta_S <= 2^{m-n}, if there is a delta_S = 2^{m-n} then S is
 considered a fully nonlinear function from F_2^n to F_2^m. For
 resistance against differential cryptanalysis, the differential
 distribution should be as low as possible.

 The highest differential distribution of the SM4 S-box is 2^{-6},
 meaning it has a good resistance against differential cryptanalysis.

Tse & Wong Expires June 18, 2018 [Page 27]

Internet-Draft SM4 Blockcipher Algorithm December 2017

10.2.4. Nonlinearity

 The nonlinearity of an S-box is described by [BC-Design].

 Let S(X) = (f_1(X), f_2(X), ... , f_m(X)) : F_2^n -> F_2^m be a
 multi-output function. The nonlinearity of S(X) is defined as N_S =
 min_{l in L_n, 0 != u in F_2^m} d_H (u . S(X), l(X)).

 L_n is the group of all n-boolean functions, d_H(f, l) is the Hamming
 distance between f and l. The nonlinearity of the S-box is in fact
 the minimum Hamming distance between all the Boolean functions and
 all affine functions.

 The upper-bound of nonlinearity is known to be 2^{n-1} - 2^{n/2 - 1},
 where a Boolean function that reaches this bound is called a "bent
 function".

 The nonlinearity of a Boolean function is used to measure resistance
 against linear attacks. The higher the nonlinearity, the higher
 resistance that the Boolean function f(x) has against linear attacks.
 On the contrary, the lower the nonlinearity, the Boolean function
 f(x) has lower resistance against linear attacks.

 The nonlinearity of the SM4 S-box is 112.

10.2.5. Maximum Linearity Advantage

 Linear approximation of a S-box is defined in [BC-Design]. Given a
 S-box with n inputs and m outputs, any linear approximation can be
 represented as : a . X = b . Y, where a in F_2^n, b in F_2^m.

 The probability p that satisfies a . X = b . Y is

 | p - 1/2 | <= 1/2 - N_S / 2^n

 where | p - 1/2 | is the advantage of the linear approximation
 equation, lambda_S = 1/2 - N_s / 2^n is the maximum advantage of the
 S-box.

 The maximum advantage of the SM4 S-box is 2^{-4}.

10.2.6. Balance

 A S-box S(X) = (f_1(X), f_2(X), ... , f_m(X)) : F_2^n -> F_2^m is
 considered "balanced" if for any beta in F_2^m, there are 2^{n-m} x
 in F_2^n, such that S(x) = beta.

 The SM4 S-box is balanced.

Tse & Wong Expires June 18, 2018 [Page 28]

Internet-Draft SM4 Blockcipher Algorithm December 2017

10.2.7. Completness and Avalanche Effect

 A S-box S(X) = (f_1(X), f_2(X), ... , f_m(X)) : F_2^n -> F_2^m is
 considered "complete" if every input bit directly correlates to an
 output bit.

 In algebraic expression, each component function contains the unknown
 variables x_1, x_2, ... x_n, such that for any (s, t) in { (i, j) | 1
 <= i <= n, 1 <= j <= m}, there is an X that S(X) and S(X and e_s)
 would contain a different bit t.

 Avalanche effect refers to a single bit change in the input would
 correspond to a change of half of the output bits.

 The SM4 S-box satisfies completness and the avalanche effect.

10.3. Linear Transform

 Linear transformation is used to provide diffusion in SM4. A
 blockcipher algorithm often adopts m x m S-boxes to form an
 obfuscation layer.

 Since the m-bits output by one S-box are only related to the m bits
 of its input and are irrelevant to the input of other S boxes, the
 introduction of a linear transform would disrupt and mix the output
 m-bits so that they seem correlating to the other S-box inputs.

 A sound linear transform design will diffuse the S-box output,
 allowing the blockcipher to resist differential and linear
 cryptanalysis.

 An important measure of the diffusivity of a linear transform is its
 branch number.

 The "branch number" of a linear transform is defined in [BC-Design]:

 B(theta) = min_{x!=0} w_b(x) + w_b(theta(x))

 Where B(theta) is the branch number of transform theta, w_b(x) is a
 non-zero integer x_i (1 <== i <== m), and x_i is called the "bundle
 weight".

 The branch number can be used to quantify the resistance of the block
 cipher algorithm to differential cryptanalysis and linear
 cryptanalysis.

Tse & Wong Expires June 18, 2018 [Page 29]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 Similar to differential cryptanalysis and linear cryptanalysis, the
 differential branch number and linear branch number of theta can be
 defined as follows.

 The differential branch number of theta is:

 B_d(theta) = min_{x, x!= x*}
 (w_b(x and x*) + w_b(theta(x)) and theta(x*))

 The linear branch number of theta is:

 B_l(theta) = min_{a, b, c (x . alpha^t , theta(x) . beta) != 0}
 (w_b(alpha) + w_b(beta))

 where,
 c (x . a^t , theta(x) . beta) =
 2 X Pr(x . alpha^t = theta(x) . beta) - 1
 x . alpha^t is a matrix multiplication.

 The branch number in a linear transformation reflects its
 diffusivity. The higher the branch number, the better the diffusion
 effect.

 This means that the larger the differential branch number or linear
 branch number, the more known plaintexts will be required for
 differential or linear cryptanalysis respectively.

 The linear transform differential branch number and linear branch
 number of SM4 are both 5.

10.4. Key Expansion Algorithm

 The SM4 key schedule is designed to fulfill the security requirements
 of the encryption algorithm and achieve ease of implementation for
 performance reasons.

 All subkeys are derived from the encryption key, and therefore,
 subkeys are always statistically relevant. In the context of a
 blockcipher, it is not possible to have non-statistical-correlated
 subkeys, but the designer can only aim to have subkeys achieve near
 statistical independence [BC-Design].

 The purpose of the key schedule, generated through the key expansion
 algorithm, is to mask the statistical correlation between subkeys to
 make this relationship difficult to exploit.

 The SM4 key expansion algorithm satisfies the following design
 criteria:

Tse & Wong Expires June 18, 2018 [Page 30]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 1. There are no obvious statistical correlation between subkeys;

 2. There are no weak subkeys;

 3. The speed of key expansion is not slower than the encryption
 algorithm, and uses less resources;

 4. Every subkey can be directly generated from the encryption key.

11. Cryptanalysis Results

 SM4 has been heavily cryptanalyzed by international researchers since
 it was first published. Nearly all currently known cryptanalysis
 techniques have been applied to SM4.

 At the time of publishing this document, there are no known practical
 attacks against the full SM4 blockcipher. However, there are side-
 channel concerns [SideChannel] when the algorithm is implemented in a
 hardware device.

 A summary of cryptanalysis results are presented in the following
 sections.

11.1. Differential Cryptanalysis

 In 2008, Zhang et al. [SM4-DiffZhang1] gave a 21-round differential
 analysis with data complexity 2^188, time complexity 2^126.8
 encryptions.

 In 2008, Kim et al. [SM4-LDA] gave a 22-round differential attack
 that requires 2^118 chosen plaintexts, 2^123 memory and 2^125.71
 encryptions.

 In 2009, Zhang et al. (differing author but overlapping team)
 [SM4-DiffZhang2] gave a 18-round differential characteristics with an
 attack that reaches the 22nd round, with data complexity 2^117 and
 time complexity 2^112.3.

 In 2010, Zhang et al. (with no relation to above) [SM4-DiffZhang3]
 utilized 18-round differential characteristics for the 22nd round
 with 2^117 chosen plaintexts with time complexity 2^123 encryptions,
 memory complexity of 2^112.

 In 2011, Su et al. [SM4-DiffSu] gave a 19 round differential
 characteristics and pushed their attack to the 23rd round, with data
 complexity of 2^118 chosen plaintexts, time complexity 2^126.7
 encryptions, and memory complexity 2^120.7.

Tse & Wong Expires June 18, 2018 [Page 31]

Internet-Draft SM4 Blockcipher Algorithm December 2017

11.2. Linear Cryptanalysis

 In 2008 Etrog et al. [SM4-LinearEtrog] provided a linear
 cryptanalysis result for 22 rounds of SM4, the data complexity is
 given as 2^188.4 known plaintexts, time complexity 2^117 encrypt
 operations.

 In the same year, Kim et al. [SM4-LDA] improved on the linear
 cryptanalysis result for 22 rounds of SM4 with data complexity of
 2^117 known plaintexts, memory complexity of 2^109 and time
 complexity of 2^109.86.

 In 2011 Dong [SM4-LinearDong] presented a linear cryptanalysis result
 for 20 rounds, 2^110.4 known ciphertexts, 2^106.8 encryption
 operations, memory complexity 2^90.

 In 2014 Liu et al. [SM4-LinearLiu] presented their linear
 cryptanalysis for 23-rounds of SM4, time complexity 2^112 encryption
 operations, data complexity 2^126.54 known ciphertexts, memory
 complexity 2^116.

 In 2017 Liu et al. [SM4-NLC] presented an attack based on linear
 cryptanalysis on 24-rounds of SM4, with time complexity of 2^122.6
 encryptions, data complexity of 2^122.6 known ciphertexts, and memory
 complexity of 2^85.

11.3. Multi-dimensional Linear Cryptanalysis

 In 2010, Liu et al. [SM4-MLLiu] constructed a series of 18 rounds of
 linear traces based on a 5-round circular linear trace, capable of
 attacking 22 rounds of SM4. The required data complexity was 2^112
 known plaintexts, time complexity 2^124.21 encryption operations,
 with memory complexity of 2^118.83.

 In 2010 Cho et al. [SM4-MLCho] gave a linear analysis of 23 rounds
 of SM4 with a data complexity of 2^126.7 known plaintexts and a time
 complexity of 2^127, memory complexity of 2^120.7.

 In 2014, Liu et al. [SM4-LinearLiu] gave the results of multi-
 dimensional linear analysis of 23 rounds of SM4 algorithm. The time
 complexity was 2^122.7, data complexity was 2^122.6 known plaintext
 with memory complexity 2^120.6.

11.4. Impossible Differential Cryptanalysis

 In 2007 Lu et al. [SM4-IDCLu] first presented 16 rounds of
 impossible differential analysis of SM4 with the required data

Tse & Wong Expires June 18, 2018 [Page 32]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 complexity 2^105 chosen plaintexts, time complexity 2^107 encryption
 operations.

 In 2008 Toz et al. [SM4-IDCToz] revised the results of [SM4-IDCLu],
 that the data complexity is actually 2^117.05 chosen plaintexts, time
 complexity 2^132.06 encryptions, but its complexity is already beyond
 the 2^128 limit.

 In 2010 Wang et al. [SM4-IDCWang] pushed the impossible differential
 cryptanalysis to 17 rounds of SM4, the data complexity is 2^117
 chosen ciphertexts, time complexity 2^132 memory queries.

11.5. Zero-correlation Linear Cryptanalysis

 In 2015 Ma et al. [SM4-ZCLC] gives the results of multi-dimensional
 zero-correlation linear cryptanalysis of a 14-round SM4 algorithm.
 The required data complexity is 2^123.5 known plaintexts, time
 complexity is 2^120.7 encryption operations and memory complexity of
 2^73 blocks.

11.6. Integral Cryptanalysis

 In 2007 Liu et al. [SM4-ICLiu] first gave a 13-round integral
 analysis of SM4, which required 2^16 chosen plaintexts and time
 complexity of 2^114 encryption operations.

 In 2008 Zhong et al. [SM4-ICZhong] constructed a 12-round
 distinguisher of SM4 to attack 14-round SM4, with data complexity of
 2^32 chosen plaintexts and time complexity 2^96.5 encryptions.

11.7. Algebraic Attacks

 In 2009 Ji et al. [SM4-AAJi] and in 2010 Erickson et al. [SM4-AAEr]
 utilized algebraic methods such as XL, Groebner base and SAT to
 analyze the resistance of SM4 against algebraic attacks. The results
 demonstrate that SM4 is safe against algebraic attacks, and
 specifically, has a higher resistance against algebraic attacks than
 AES.

11.8. Matrix Attacks

 In 2007 Lu et al. [SM4-IDCLu] provided a matrix attack against
 14-round SM4, with data complexity 2^121.82 chosen plaintexts, time
 complexity 2^116.66 encryptions.

 In 2008 Toz et al. [SM4-IDCToz] lowered both data and time
 complexity of the aformentioned attack to 2^106.89 chosen ciphertexts
 and time complexity of 2^107.89.

Tse & Wong Expires June 18, 2018 [Page 33]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 In 2008, Zhang et al. [SM4-DiffZhang1] provided a matrix attack
 against 16-round SM4, which required a data complexity of 2^125
 chosen plaintexts and time complexity of 2^116 encryptions.

 She's Master dissertation [SM4-MatrixShe] provided a SM4 16-round
 matrix distinguisher that can attack 18-round SM4, with data
 complexity of 2^127 chosen plaintexts and time complexity 2^110.77
 encryptions with memory complexity of 2^130.

 In 2012 Wei et al. [SM4-MatrixWei] applied differential analysis and
 algebraic attack techniques on 20-round SM4 and discovered that the
 combined attack results on 20-round SM4 are superior than using pure
 differential cryptanalysis.

11.9. Provable Security Against Differential And Linear Cryptanalysis

 SM4 uses a novel structure differing from the general Feistel and SP
 structures.

 [SM4-Random] has proven that the SM4 non-balanced Feistel structure
 is pseudo-random.

 [SM4-SLDC] analyzes the SM4 non-balanced Feistel structure on its
 resistance against differential and linear cryptanalysis techniques.
 Under SP type round functions with branch number 5, it is proven that
 in a 27-round SM4 guarantees at least 22 active S-boxes, therefore
 SM4 is secure against differential attacks.

 [SM4-SLC] has analyzed resistance of SM4 against linear
 cryptanalysis.

11.10. Provable Security Against Related-Key Differential Cryptanalysis

 Related-key differential cryptanalysis is related to the encryption
 algorithm and key schedule. When performing a related-key attack,
 the attacker simultaneously insert differences in both the key and
 the message.

 In [AutoDC], Sun et al. proposed an automated differential route
 search method based on MILP (mixed-integer linear programming) that
 can be used to assess the security bounds of a blockcipher under
 (related-key) differential cryptanalysis.

 [SM4-RKDC] describes the lower bounds of active S-boxes within SM4
 and is shown in Table 1.

Tse & Wong Expires June 18, 2018 [Page 34]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 +-------+------------+-------------+
 | Round | Single Key | Related Key |
 +-------+------------+-------------+
 | 3 | 0 | 0 |
 | 4 | 1 | 1 |
 | 5 | 2 | 2 |
 | 6 | 2 | 4 |
 | 7 | 5 | 6 |
 | 8 | 6 | 8 |
 | 9 | 7 | 9 |
 | 10 | 8 | 10 |
 | 11 | 9 | 11 |
 | 12 | 10 | 13 |
 | 13 | 10 | 14 |
 | 14 | 10 | 14 |
 | 15 | 13 | 16 |
 | 16 | 14 | 18 |
 | 17 | 15 | 19 |
 | 18 | 16 | 20 |
 | 19 | 18 | 22 |
 | 20 | 18 | - |
 | 21 | 19 | - |
 | 22 | 20 | - |
 | 23 | 22 | - |
 | 24 | 23 | - |
 | 25 | 23 | - |
 | 26 | 24 | - |
 +-------+------------+-------------+

 Table 1: Strongest SM4 Attacks ("-" denotes unknown)

 As the maximal probability of the SM4 S-box is 2^-6, when the minimum
 active S-boxes reach 22 the differential characteristics will have
 probability 2^132, which is higher than enumeration (2^128).

 This indicates that 19 rounds and 23 rounds under related key and
 single key settings will provide a minimum of 22 active S-boxes and
 is able to resist related-key differential attacks.

11.11. Summary of SM4 Cryptanalytic Attacks

 Table 2 provides a summary on the strongest attacks on SM4 at the
 time of publishing.

Tse & Wong Expires June 18, 2018 [Page 35]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 +-------------------+--------+--------------------+-----------------+
 | Method | Rounds | Complexity | Reference |
 +-------------------+--------+--------------------+-----------------+
Linear	24	Time: 2^{122.6},	[SM4-NLC]
		Data: 2^{122.6},	
		Memory: 2^{85}	
+-------------------+--------+--------------------+-----------------+			
Multi-dimensional	23	Time: 2^{122.7},	[SM4-LinearLiu]
Linear		Data: 2^{122.6},	
		Memory: 2^{120.6}	
+-------------------+--------+--------------------+-----------------+			
Differential	23	Time: 2^{126.7},	[SM4-DiffSu]
		Data: 2^{117},	
		Memory: 2^{120.7}	
+-------------------+--------+--------------------+-----------------+			
Matrix	18	Time: 2^{110.77},	[SM4-MatrixShe]
		Data: 2^{127},	
		Memory 2^{130}	
+-------------------+--------+--------------------+-----------------+			
Impossible	17	Time: 2^{132},	[SM4-IDCWang]
Differential		Data: 2^{117},	
		Memory: --	
+-------------------+--------+--------------------+-----------------+			
Zero-correlation	14	Time: 2^{120.7},	[SM4-ZCLC]
Linear		Data: 2^{123.5},	
		Memory: 2^{73}	
+-------------------+--------+--------------------+-----------------+			
Integral	14	Time: 2^{96.5},	[SM4-ICZhong]
		Data: 2^{32},	
		Memory: --	
 +-------------------+--------+--------------------+-----------------+

 Table 2: Leading SM4 Attacks As Of Publication

 As of the publication of this document, no open research results have
 provided a method to successfully attack beyond 24 rounds of SM4.

 The traditional view suggests that SM4 provides an extra safety
 margin compared to blockciphers adopted in [ISO.IEC.18033-3] that
 already have full-round attacks, including MISTY1 [MISTY1-IC]
 [MISTY1-270] and AES [AES-CA] [AES-BC] [AES-RKC].

12. Security Considerations

 o Products and services that utilize cryptography are regulated by
 the SCA [SCA]; they must be explicitly approved or certified by
 the SCA before being allowed to be sold or used in China.

Tse & Wong Expires June 18, 2018 [Page 36]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 o SM4 is a blockcipher symmetric algorithm with key length of 128
 bits. It is considered as an alternative to AES-128
 [NIST.FIPS.197].

 o SM4 [GBT.32907-2016] is a blockcipher certified by the SCA [SCA].
 No formal proof of security is provided. There are no known
 practical attacks against SM4 algorithm by the time of publishing
 this document, but there are security concerns with regards to
 side-channel attacks when the SM4 algorithm is implemented in
 hardware.
 For instance, [SM4-Power] illustrated an attack by measuring the
 power consumption of the device. A chosen ciphertext attack,
 assuming a fixed correlation between the round keys and data mask,
 is able to recover the round key successfully.
 When the SM4 algorithm is implemented in hardware, the parameters
 and keys *SHOULD* be randomly generated without fixed correlation.
 There have also been improvements to the hardware embodiment
 design for SM4 [SM4-VLSI] [SM4-FPGA], white-box implementions
 [SM4-WhiteBox], and performance enhancements [SM4-HiSpeed], that
 may resist such attacks.

 o The IV does not have to be secret. The IV itself, or criteria
 enough to determine it, *MAY* be transmitted with ciphertext.

 o SM4-ECB: ECB is one of the four original modes defined for DES.
 With its problem well known to "leak quite a large amount of
 information" [BC-EVAL], it *SHOULD NOT* be used in most cases.

 o SM4-CBC, SM4-CFB, SM4-OFB: CBC, CFB and OFB are IV-based modes of
 operation originally defined for DES.
 When using these modes of operation, the IV *SHOULD* be random to
 preserve message confidentiality [BC-EVAL]. It is shown in the
 same document that CBC, CFB, OFB, the variants #CBC, #CFB that
 utilize the recommendation of [NIST.SP.800-38A] to make CBC and
 CFB nonce-based, are SemCPA secure as probabilistic encryption
 schemes.
 Various attack scenarios have been described in [BC-EVAL] and
 these modes *SHOULD NOT* be used unless for compatibility reasons.

 o SM4-CTR: CTR is considered to be the "best" mode of operation
 within [NIST.SP.800-38A] as it is considered SemCPA secure as a
 nonce-based encryption scheme, providing provable-security
 guarantees as good as the classic modes of operation (ECB, CBC,
 CFB, OFB) [BC-EVAL].
 Users with no need of authenticity, non-malleablility and chosen-
 ciphertext (CCA) security *MAY* utilize this mode of operation
 [BC-EVAL].

Tse & Wong Expires June 18, 2018 [Page 37]

Internet-Draft SM4 Blockcipher Algorithm December 2017

13. IANA Considerations

 This document does not require any action by IANA.

14. References

14.1. Normative References

 [GBT.32907-2016]
 Standardization Administration of the People's Republic of
 China, "GB/T 32907-2016: Information security technology
 -- SM4 block cipher algorithm", August 2016,
 <http://www.gb688.cn/bzgk/gb/

newGbInfo?hcno=7803DE42D3BC5E80B0C3E5D8E873D56A>.

 [ISO.IEC.18033-3.AMD2]
 International Organization for Standardization, "ISO/IEC
 WD1 18033-3/AMD2 -- Encryption algorithms -- Part 3: Block
 ciphers -- Amendment 2", June 2017,
 <https://www.iso.org/standard/54531.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

14.2. Informative References

 [AES-BC] Bogdanov, A., Khovratovich, D., and C. Rechberger,
 "Biclique Cryptanalysis of the Full AES", 2011,
 <https://doi.org/10.1007/978-3-642-25385-0_19>.

 [AES-CA] Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay,
 M., Wagner, D., and D. Whiting, "Improved Cryptanalysis of
 Rijndael", Jan 2002,
 <https://doi.org/10.1007/3-540-44706-7_15>.

 [AES-RKC] Biryukov, A. and D. Khovratovich, "Related-Key
 Cryptanalysis of the Full AES-192 and AES-256", 2009,
 <https://doi.org/10.1007/978-3-642-10366-7_1>.

 [AutoDC] Siwei, S., Hu, L., Wang, P., Qiao, K., Ma, X., and L.
 Song, "Automatic Security Evaluation and (Related-key)
 Differential Characteristic Search: Application to SIMON,
 PRESENT, LBlock, DES(L) and Other Bit-Oriented Block
 Ciphers", 2014,
 <https://doi.org/10.1007/978-3-662-45611-8_9>.

http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=7803DE42D3BC5E80B0C3E5D8E873D56A
http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=7803DE42D3BC5E80B0C3E5D8E873D56A
https://www.iso.org/standard/54531.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-662-45611-8_9

Tse & Wong Expires June 18, 2018 [Page 38]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 [BC-Design]
 Wu, W., "Block Cipher Design and Analysis (in Chinese)",
 October 2009, <http://www.tup.tsinghua.edu.cn/booksCenter/

book_03193701.html>.

 [BC-EVAL] Rogaway, P., "Evaluation of Some Blockcipher Modes of
 Operation", February 2011,
 <http://web.cs.ucdavis.edu/rogaway/papers/modes.pdf>.

 [BOTAN] Lloyd, J., "Botan: Crypto and TLS for C++11", October
 2017, <https://botan.randombit.net>.

 [GB.15629.11-2003]
 Standardization Administration of the People's Republic of
 China, "Information technology -- Telecommunications and
 information exchange between systems -- Local and
 metropolitan area networks -- Specific requirements --
 Part 11: Wireless LAN Medium Access Control (MAC) and
 Physical Layer (PHY) Specifications", May 2003,
 <http://www.gb688.cn/bzgk/gb/

newGbInfo?hcno=74B9DD11287E72408C19C4D3A360D1BD>.

 [GMT-0002-2012]
 Office of State Commercial Administration of China, "GM/T
 0002-2012: SM4 block cipher algorithm", March 2012,
 <http://www.oscca.gov.cn/Column/Column_32.htm>.

 [GMT-0006-2012]
 Office of State Commercial Administration of China, "GM/T
 0006-2012: Cryptographic Application Identifier Criterion
 Specification", March 2012,
 <http://www.oscca.gov.cn/Column/Column_32.htm>.

 [ISO.IEC.18033-3]
 International Organization for Standardization, "ISO/IEC
 18033-3:2010 -- Encryption algorithms -- Part 3: Block
 ciphers", December 2017,
 <https://www.iso.org/standard/54531.html>.

 [LSW-Bio] Sun, M., "Lv Shu Wang -- A life in cryptography", November
 2010,
 <http://press.ustc.edu.cn/sites/default/files/fujian/field
 _fujian_multi/20120113/%E5%90%95%E8%BF%B0%E6%9C%9B%20%E5%A
 F%86%E7%A0%81%E4%B8%80%E6%A0%B7%E7%9A%84%E4%BA%BA%E7%94%9F
 .pdf>.

http://www.tup.tsinghua.edu.cn/booksCenter/book_03193701.html
http://www.tup.tsinghua.edu.cn/booksCenter/book_03193701.html
http://web.cs.ucdavis.edu/rogaway/papers/modes.pdf
https://botan.randombit.net
http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=74B9DD11287E72408C19C4D3A360D1BD
http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=74B9DD11287E72408C19C4D3A360D1BD
http://www.oscca.gov.cn/Column/Column_32.htm
http://www.oscca.gov.cn/Column/Column_32.htm
https://www.iso.org/standard/54531.html
http://press.ustc.edu.cn/sites/default/files/fujian/field

Tse & Wong Expires June 18, 2018 [Page 39]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 [MISTY1-270]
 Bar-On, A. and N. Keller, "A 2^{70} Attack on the Full
 MISTY1", 2016,
 <https://doi.org/10.1007/978-3-662-53018-4_16>.

 [MISTY1-IC]
 Todo, Y., "Integral Cryptanalysis on Full MISTY1", 2015,
 <https://doi.org/10.1007/s00145-016-9240-x>.

 [NIST.FIPS.197]
 National Institute of Standards and Technology, "NIST FIPS
 197: Advanced Encryption Standard (AES)", November 2001,
 <https://doi.org/10.6028/NIST.FIPS.197>.

 [NIST.SP.800-38A]
 Dworkin, M., "NIST Special Publication 800-38A:
 Recommendation for Block Cipher Modes of Operation --
 Methods and Techniques", December 2001,
 <http://dx.doi.org/10.6028/NIST.SP.800-38A>.

 [OPENSSL] OpenSSL Software Foundation, "OpenSSL: Cryptography and
 SSL/TLS Toolkit", October 2017, <https://www.openssl.org>.

 [SCA] State Cryptography Administration of China, "State
 Cryptography Administration of China", Dec 2017,
 <http://www.sca.gov.cn>.

 [SideChannel]
 Lei, Q., Wu, L., Zhang, S., Zhang, X., Li, X., Pan, L.,
 and Z. Dong, "Software Hardware Co-design for Side-Channel
 Analysis Platform on Security Chips", December 2015,
 <https://doi.org/10.1109/CIS.2015.102>.

 [SM4] Office of State Commercial Administration of China, "SMS4
 Cryptographic Algorithm For Wireless LAN Products",
 January 2006,
 <http://www.oscca.gov.cn/UpFile/200621016423197990.pdf>.

 [SM4-AAEr]
 Erickson, J., Ding, J., and C. Christensen, "Algebraic
 Cryptanalysis of SMS4: Groebner Basis Attack and SAT
 Attack Compared", 2010,
 <https://doi.org/10.1007/978-3-642-14423-3_6>.

 [SM4-AAJi]
 Wen, J., Lei, H., and H. Ou, "Algebraic Attack to SMS4 and
 the Comparison with AES", 2009,
 <https://doi.org/10.1109/IAS.2009.171>.

https://doi.org/10.1007/978-3-662-53018-4_16
https://doi.org/10.1007/s00145-016-9240-x
https://doi.org/10.6028/NIST.FIPS.197
http://dx.doi.org/10.6028/NIST.SP.800-38A
https://www.openssl.org
http://www.sca.gov.cn
https://doi.org/10.1109/CIS.2015.102
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf
https://doi.org/10.1007/978-3-642-14423-3_6
https://doi.org/10.1109/IAS.2009.171

Tse & Wong Expires June 18, 2018 [Page 40]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 [SM4-Details]
 Lu, S., Su, B., Peng, P., Miao, Y., and L. Huo, "Overview
 on SM4 Algorithm", October 2016,
 <http://ris.sic.gov.cn/EN/Y2016/V2/I11/995>.

 [SM4-DiffSu]
 Su, B., Wu, W., and W. Zhang, "Security of the SMS4 Block
 Cipher Against Differential Cryptanalysis", January 2011,
 <https://doi.org/10.1007/s11390-011-9420-y>.

 [SM4-DiffZhang1]
 Zhang, L., Zhang, W., and W. Wu, "Cryptanalysis of
 Reduced-Round SMS4 Block Cipher", July 2008,
 <https://doi.org/10.1007/978-3-540-70500-0_16>.

 [SM4-DiffZhang2]
 Zhang, W., Wu, W., Feng, D., and B. Su, "Some New
 Observations on the SMS4 Block Cipher in the Chinese WAPI
 Standard", 2009,
 <https://doi.org/10.1007/978-3-642-00843-6_28>.

 [SM4-DiffZhang3]
 Zhang, M., Liu, J., and X. Wang, "22-Round SMS4
 Differential Cryptanalysis", 2010,
 <http://www.airitilibrary.com/Publication/alDetailedMesh?d

ocid=05296579-201003-201004120040-201004120040-43-47>.

 [SM4-En] Diffie, W. and G. Ledin, "SMS4 Encryption Algorithm for
 Wireless Networks", May 2008,
 <https://eprint.iacr.org/2008/329>.

 [SM4-FPGA]
 Cheng, H., Zhai, S., Fang, L., Ding, Q., and C. Huang,
 "Improvements of SM4 Algorithm and Application in Ethernet
 Encryption System Based on FPGA", July 2014,
 <https://www.researchgate.net/publication/287081686_Improv

ements_of_SM4_algorithm_and_application_in_Ethernet_encryp
tion_system_based_on_FPGA>.

 [SM4-HiSpeed]
 Lv, Q., Li, L., and Y. Cao, "High-speed Encryption
 Decryption System Based on SM4", July 2016,
 <http://dx.doi.org/10.14257/ijsia.2016.10.9.01>.

 [SM4-ICLiu]
 Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A.,
 and R. Weinmann, "Analysis of the SMS4 Block Cipher",
 2007, <https://doi.org/10.1007/978-3-540-73458-1_13>.

http://ris.sic.gov.cn/EN/Y2016/V2/I11/995
https://doi.org/10.1007/s11390-011-9420-y
https://doi.org/10.1007/978-3-540-70500-0_16
https://doi.org/10.1007/978-3-642-00843-6_28
http://www.airitilibrary.com/Publication/alDetailedMesh?docid=05296579-201003-201004120040-201004120040-43-47
http://www.airitilibrary.com/Publication/alDetailedMesh?docid=05296579-201003-201004120040-201004120040-43-47
https://eprint.iacr.org/2008/329
https://www.researchgate.net/publication/287081686_Improvements_of_SM4_algorithm_and_application_in_Ethernet_encryption_system_based_on_FPGA
https://www.researchgate.net/publication/287081686_Improvements_of_SM4_algorithm_and_application_in_Ethernet_encryption_system_based_on_FPGA
https://www.researchgate.net/publication/287081686_Improvements_of_SM4_algorithm_and_application_in_Ethernet_encryption_system_based_on_FPGA
http://dx.doi.org/10.14257/ijsia.2016.10.9.01
https://doi.org/10.1007/978-3-540-73458-1_13

Tse & Wong Expires June 18, 2018 [Page 41]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 [SM4-ICZhong]
 Zhong, M., Hu, Y., and J. Chen, "14-Round Square Attack on
 Blockcipher SMS4", 2008, <http://www.cnki.com.cn/Article/

CJFDTotal-XDKD200801019.htm>.

 [SM4-IDCLu]
 Lu, J., "Attacking Reduced-Round Versions of the SMS4
 Block Cipher in the Chinese WAPI Standard", 2007,
 <https://doi.org/10.1007/978-3-540-77048-0_24>.

 [SM4-IDCToz]
 Toz, D. and O. Dunkelman, "Analysis of Two Attacks on
 Reduced-Round Versions of the SMS4", 2008,
 <https://doi.org/10.1007/978-3-540-88625-9_10>.

 [SM4-IDCWang]
 Wang, G., "Improved Impossible Differential Cryptanalysis
 on SMS4", October 2010,
 <https://doi.org/10.1109/CIS.2012.116>.

 [SM4-LDA] Kim, T., Kim, J., Kim, S., and J. Sung, "Linear and
 Differential Cryptanalysis of Reduced SMS4 Block Cipher",
 June 2008, <https://eprint.iacr.org/2008/281>.

 [SM4-LinearDong]
 Dong, X., "Security Analysis of the blockciphers AES and
 SM4", 2011, <http://kns.cnki.net/KCMS/detail/detail.aspx?d

bcode=CDFD&dbname=CDFD1214&filename=1013114416.nh>.

 [SM4-LinearEtrog]
 Etrog, J. and M. Robshaw, "The Cryptanalysis of Reduced-
 Round SMS4", 2009,
 <https://doi.org/10.1007/978-3-642-04159-4_4>.

 [SM4-LinearLiu]
 Liu, M. and J. Chen, "Improved Linear Attacks on the
 Chinese Block Cipher Standard", November 2014,
 <https://doi.org/10.1007/s11390-014-1495-9>.

 [SM4-MatrixShe]
 Ping, S., "Matrix Attack On Blockcipher SMS4", 2012,
 <http://cdmd.cnki.com.cn/Article/

CDMD-10422-1012464969.htm>.

http://www.cnki.com.cn/Article/CJFDTotal-XDKD200801019.htm
http://www.cnki.com.cn/Article/CJFDTotal-XDKD200801019.htm
https://doi.org/10.1007/978-3-540-77048-0_24
https://doi.org/10.1007/978-3-540-88625-9_10
https://doi.org/10.1109/CIS.2012.116
https://eprint.iacr.org/2008/281
http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD1214&filename=1013114416.nh
http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD1214&filename=1013114416.nh
https://doi.org/10.1007/978-3-642-04159-4_4
https://doi.org/10.1007/s11390-014-1495-9
http://cdmd.cnki.com.cn/Article/CDMD-10422-1012464969.htm
http://cdmd.cnki.com.cn/Article/CDMD-10422-1012464969.htm

Tse & Wong Expires June 18, 2018 [Page 42]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 [SM4-MatrixWei]
 Wei, H., Cui, H., and X. Lu, "Differential-Algebraic
 Analysis of the SMS4 Block Cipher", 2012,
 <http://www.cnki.com.cn/Article/

CJFDTotal-CDDD201202017.htm>.

 [SM4-MLCho]
 Cho, J. and K. Nyberg, "Improved linear cryptanalysis of
 SM4 block cipher", 2010, <https://scholar.google.com.hk/

scholar?cluster=13432379689578293076>.

 [SM4-MLLiu]
 Zhiqiang, L., Dawu, G., and Z. Jing, "Multiple Linear
 Cryptanalysis of Reduced-Round SMS4 Block Cipher", 2010,
 <http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.215.8314>.

 [SM4-NLC] Liu, Y., Liang, H., Wang, W., and M. Wang, "New Linear
 Cryptanalysis of Chinese Commercial Block Cipher Standard
 SM4", June 2017, <https://doi.org/10.1155/2017/1461520>.

 [SM4-Power]
 Du, Z., Wu, Z., Wang, M., and J. Rao, "Improved chosen-
 plaintext power analysis attack against SM4 at the round-
 output", October 2015,
 <http://dx.doi.org/10.6028/NIST.FIPS.180-4>.

 [SM4-Random]
 Zhang, L. and W. Wu, "Pseudorandomness and Super-
 pseudorandomness of a non-balanced Feistel Structure using
 compressed functions", January 2009,
 <http://www.cnki.com.cn/Article/

CJFDTOTAL-JSJX200907008.htm>.

 [SM4-RKDC]
 Zhang, J., Wu, W., and Y. Zheng, "Security of SM4 Against
 (Related-Key) Differential Cryptanalysis", November 2016,
 <http://doi.org/10.1007/978-3-319-49151-6_5>.

 [SM4-Sbox]
 Liu, J., Wei, B., and X. Dai, "Cryptographic Properties of
 S-box in SMS4", January 2011,
 <http://www.cnki.com.cn/Article/

CJFDTotal-JSJC200805057.htm>.

http://www.cnki.com.cn/Article/CJFDTotal-CDDD201202017.htm
http://www.cnki.com.cn/Article/CJFDTotal-CDDD201202017.htm
https://scholar.google.com.hk/scholar?cluster=13432379689578293076
https://scholar.google.com.hk/scholar?cluster=13432379689578293076
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.8314
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.8314
https://doi.org/10.1155/2017/1461520
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX200907008.htm
http://www.cnki.com.cn/Article/CJFDTOTAL-JSJX200907008.htm
http://doi.org/10.1007/978-3-319-49151-6_5
http://www.cnki.com.cn/Article/CJFDTotal-JSJC200805057.htm
http://www.cnki.com.cn/Article/CJFDTotal-JSJC200805057.htm

Tse & Wong Expires June 18, 2018 [Page 43]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 [SM4-SLC] Zhang, B. and J. Chenhui, "Practical security against
 linear cryptanalysis for SMS4-like ciphers with SP round
 function", 2012,
 <https://doi.org/10.1007/s11432-011-4448-8>.

 [SM4-SLDC]
 Zhang, M., Liu, Y., Liu, J., and X. Min, "Practically
 Secure against Differential Cryptanalysis for Block Cipher
 SMS4", 2011, <http://www.ajetr.org/vol15/no1/n09.pdf>.

 [SM4-VLSI]
 Yu, S., Li, K., Li, K., Qin, Y., and Z. Tong, "A VLSI
 implementation of an SM4 algorithm resistant to power
 analysis", July 2016,
 <https://doi.org/10.3233/JIFS-169011>.

 [SM4-WhiteBox]
 Bai, K. and C. Wu, "A secure white-box SM4
 implementation", May 2008,
 <http://dx.doi.org/10.1002/sec.1394>.

 [SM4-ZCLC]
 Ma, M., Zhao, Y., Liu, Q., and F. Liu, "Multidimensional
 Zero-correlation Linear Cryptanalysis on SMS4 Algorithm",
 September 2015,
 <http://www.jcr.cacrnet.org.cn:8080/mmxb/CN/abstract/

abstract105.shtml>.

Appendix A. Appendix A: Example Calculations

A.1. Examples From GB/T 32907-2016

A.1.1. Example 1 (GB/T 32907-2016 Example 1 Encryption)

 This is example 1 provided by [GBT.32907-2016] to demonstrate
 encryption of a plaintext.

 Plaintext:

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 Encryption key:

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 Status of the round key (rk_i) and round output (X_i) per round:

https://doi.org/10.1007/s11432-011-4448-8
http://www.ajetr.org/vol15/no1/n09.pdf
https://doi.org/10.3233/JIFS-169011
http://dx.doi.org/10.1002/sec.1394
http://www.jcr.cacrnet.org.cn:8080/mmxb/CN/abstract/abstract105.shtml
http://www.jcr.cacrnet.org.cn:8080/mmxb/CN/abstract/abstract105.shtml

Tse & Wong Expires June 18, 2018 [Page 44]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 rk_0 = F12186F9 X_4 = 27FAD345
 rk_1 = 41662B61 X_5 = A18B4CB2
 rk_2 = 5A6AB19A X_6 = 11C1E22A
 rk_3 = 7BA92077 X_7 = CC13E2EE
 rk_4 = 367360F4 X_8 = F87C5BD5
 rk_5 = 776A0C61 X_9 = 33220757
 rk_6 = B6BB89B3 X_10 = 77F4C297
 rk_7 = 24763151 X_11 = 7A96F2EB
 rk_8 = A520307C X_12 = 27DAC07F
 rk_9 = B7584DBD X_13 = 42DD0F19
 rk_10 = C30753ED X_14 = B8A5DA02
 rk_11 = 7EE55B57 X_15 = 907127FA
 rk_12 = 6988608C X_16 = 8B952B83
 rk_13 = 30D895B7 X_17 = D42B7C59
 rk_14 = 44BA14AF X_18 = 2FFC5831
 rk_15 = 104495A1 X_19 = F69E6888
 rk_16 = D120B428 X_20 = AF2432C4
 rk_17 = 73B55FA3 X_21 = ED1EC85E
 rk_18 = CC874966 X_22 = 55A3BA22
 rk_19 = 92244439 X_23 = 124B18AA
 rk_20 = E89E641F X_24 = 6AE7725F
 rk_21 = 98CA015A X_25 = F4CBA1F9
 rk_22 = C7159060 X_26 = 1DCDFA10
 rk_23 = 99E1FD2E X_27 = 2FF60603
 rk_24 = B79BD80C X_28 = EFF24FDC
 rk_25 = 1D2115B0 X_29 = 6FE46B75
 rk_26 = 0E228AEB X_30 = 893450AD
 rk_27 = F1780C81 X_31 = 7B938F4C
 rk_28 = 428D3654 X_32 = 536E4246
 rk_29 = 62293496 X_33 = 86B3E94F
 rk_30 = 01CF72E5 X_34 = D206965E
 rk_31 = 9124A012 X_35 = 681EDF34

 Ciphertext:

 68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46

A.1.2. Example 2 (GB/T 32907-2016 Example 1 Decryption)

 This demonstrates the decryption process of the Example 1 ciphertext
 provided by [GBT.32907-2016].

 Ciphertext:

 68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46

 Encryption key:

Tse & Wong Expires June 18, 2018 [Page 45]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 Status of the round key (rk_i) and round output (X_i) per round:

 rk_31 = 9124A012 X_35 = 7B938F4C
 rk_30 = 01CF72E5 X_34 = 893450AD
 rk_29 = 62293496 X_33 = 6FE46B75
 rk_28 = 428D3654 X_32 = EFF24FDC
 rk_27 = F1780C81 X_31 = 2FF60603
 rk_26 = 0E228AEB X_30 = 1DCDFA10
 rk_25 = 1D2115B0 X_29 = F4CBA1F9
 rk_24 = B79BD80C X_28 = 6AE7725F
 rk_23 = 99E1FD2E X_27 = 124B18AA
 rk_22 = C7159060 X_26 = 55A3BA22
 rk_21 = 98CA015A X_25 = ED1EC85E
 rk_20 = E89E641F X_24 = AF2432C4
 rk_19 = 92244439 X_23 = F69E6888
 rk_18 = CC874966 X_22 = 2FFC5831
 rk_17 = 73B55FA3 X_21 = D42B7C59
 rk_16 = D120B428 X_20 = 8B952B83
 rk_15 = 104495A1 X_19 = 907127FA
 rk_14 = 44BA14AF X_18 = B8A5DA02
 rk_13 = 30D895B7 X_17 = 42DD0F19
 rk_12 = 6988608C X_16 = 27DAC07F
 rk_11 = 7EE55B57 X_15 = 7A96F2EB
 rk_10 = C30753ED X_14 = 77F4C297
 rk_9 = B7584DBD X_13 = 33220757
 rk_8 = A520307C X_12 = F87C5BD5
 rk_7 = 24763151 X_11 = CC13E2EE
 rk_6 = B6BB89B3 X_10 = 11C1E22A
 rk_5 = 776A0C61 X_9 = A18B4CB2
 rk_4 = 367360F4 X_8 = 27FAD345
 rk_3 = 7BA92077 X_7 = 76543210
 rk_2 = 5A6AB19A X_6 = FEDCBA98
 rk_1 = 41662B61 X_5 = 89ABCDEF
 rk_0 = F12186F9 X_4 = 01234567

 Plaintext:

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

A.1.3. Example 3 (GB/T 32907-2016 Example 2 Encryption)

 This example is provided by [GBT.32907-2016] to demonstrate
 encryption of a plaintext 1,000,000 times repeatedly, using a fixed
 encryption key.

 Plaintext:

Tse & Wong Expires June 18, 2018 [Page 46]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 Encryption Key:

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 Ciphertext:

 59 52 98 C7 C6 FD 27 1F 04 02 F8 04 C3 3D 3F 66

A.1.4. Example 4

 The following example demonstrates encryption of a different message
 using a different key from the above examples.

 Plaintext:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 Encryption key:

 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

 Status of the round key (rk_i) and round output (X_i) per round:

Tse & Wong Expires June 18, 2018 [Page 47]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 rk_0 = 0D8CC1B4 X_4 = F7EAEB6A
 rk_1 = AC44F213 X_5 = B4967C0F
 rk_2 = 188C0C40 X_6 = 5B9B2419
 rk_3 = 7537585E X_7 = F46BECBA
 rk_4 = 627646F5 X_8 = A8013E25
 rk_5 = 54D785AD X_9 = B38E2ABE
 rk_6 = 51B96DEE X_10 = 3E7C99A1
 rk_7 = 0C385958 X_11 = 6DD5F47F
 rk_8 = 5E494992 X_12 = B286430C
 rk_9 = 32F3FE04 X_13 = AB997DE3
 rk_10 = 3A3A733D X_14 = 80F8F21F
 rk_11 = 0EDFB91D X_15 = 4EF7052E
 rk_12 = 6823CD6B X_16 = 4462FFAF
 rk_13 = 40F7D825 X_17 = 14DFD5EA
 rk_14 = 4BD68EE5 X_18 = 6D33EFED
 rk_15 = 165A36C8 X_19 = 3A4F8B3C
 rk_16 = 56608984 X_20 = 1A435088
 rk_17 = 23F35FF4 X_21 = 4E64B153
 rk_18 = 8B592B3E X_22 = 0415CEDA
 rk_19 = 80F7388A X_23 = ADD88955
 rk_20 = 0415C409 X_24 = 73964EF1
 rk_21 = AFDF1370 X_25 = B0085092
 rk_22 = CF444772 X_26 = 554A1293
 rk_23 = 9AF9901F X_27 = 4BC6D6A8
 rk_24 = C457578C X_28 = 7BB650E1
 rk_25 = 95701C60 X_29 = DDFB8A61
 rk_26 = 2B0F4EE1 X_30 = 5C4DFD78
 rk_27 = 7F826139 X_31 = FD9066FD
 rk_28 = FA37F8D9 X_32 = 55ADB594
 rk_29 = D18AF8CE X_33 = AC1B3EA9
 rk_30 = 5BD5D8C6 X_34 = 13F01ADE
 rk_31 = 711138B7 X_35 = F766678F

 Ciphertext:

 F7 66 67 8F 13 F0 1A DE AC 1B 3E A9 55 AD B5 94

A.1.5. Example 5

 The following example demonstrates decryption of Example 4.

 Ciphertext:

 F7 66 67 8F 13 F0 1A DE AC 1B 3E A9 55 AD B5 94

 Encryption key:

 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

Tse & Wong Expires June 18, 2018 [Page 48]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 Status of the round key (rk_i) and round output (X_i) per round:

 rk_31 = 711138B7 X_35 = FD9066FD
 rk_30 = 5BD5D8C6 X_34 = 5C4DFD78
 rk_29 = D18AF8CE X_33 = DDFB8A61
 rk_28 = FA37F8D9 X_32 = 7BB650E1
 rk_27 = 7F826139 X_31 = 4BC6D6A8
 rk_26 = 2B0F4EE1 X_30 = 554A1293
 rk_25 = 95701C60 X_29 = B0085092
 rk_24 = C457578C X_28 = 73964EF1
 rk_23 = 9AF9901F X_27 = ADD88955
 rk_22 = CF444772 X_26 = 0415CEDA
 rk_21 = AFDF1370 X_25 = 4E64B153
 rk_20 = 0415C409 X_24 = 1A435088
 rk_19 = 80F7388A X_23 = 3A4F8B3C
 rk_18 = 8B592B3E X_22 = 6D33EFED
 rk_17 = 23F35FF4 X_21 = 14DFD5EA
 rk_16 = 56608984 X_20 = 4462FFAF
 rk_15 = 165A36C8 X_19 = 4EF7052E
 rk_14 = 4BD68EE5 X_18 = 80F8F21F
 rk_13 = 40F7D825 X_17 = AB997DE3
 rk_12 = 6823CD6B X_16 = B286430C
 rk_11 = 0EDFB91D X_15 = 6DD5F47F
 rk_10 = 3A3A733D X_14 = 3E7C99A1
 rk_9 = 32F3FE04 X_13 = B38E2ABE
 rk_8 = 5E494992 X_12 = A8013E25
 rk_7 = 0C385958 X_11 = F46BECBA
 rk_6 = 51B96DEE X_10 = 5B9B2419
 rk_5 = 54D785AD X_9 = B4967C0F
 rk_4 = 627646F5 X_8 = F7EAEB6A
 rk_3 = 7537585E X_7 = 0C0D0E0F
 rk_2 = 188C0C40 X_6 = 08090A0B
 rk_1 = AC44F213 X_5 = 04050607
 rk_0 = 0D8CC1B4 X_4 = 00010203

 Plaintext:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

A.1.6. Example 6

 This example is based on Example 4 to demonstrate encryption of a
 plaintext 1,000,000 times repeatedly, using a fixed encryption key.

 Plaintext:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Tse & Wong Expires June 18, 2018 [Page 49]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 Encryption Key:

 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

 Ciphertext:

 37 9A 96 D0 A6 A5 A5 06 0F B4 60 C7 5D 18 79 ED

A.2. Examples For Various Modes Of Operations

 The following examples can be verified using open-source
 cryptographic libraries including:

 o the Botan cryptographic library [BOTAN] with SM4 support, and

 o the OpenSSL Cryptography and SSL/TLS Toolkit [OPENSSL] with SM4
 support

A.2.1. SM4-ECB Examples

A.2.1.1. Example 1

 Plaintext:

 AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
 EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

 Encryption Key:

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 Ciphertext:

 5E C8 14 3D E5 09 CF F7 B5 17 9F 8F 47 4B 86 19
 2F 1D 30 5A 7F B1 7D F9 85 F8 1C 84 82 19 23 04

A.2.1.2. Example 2

 Plaintext:

 AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
 EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

 Encryption Key:

 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

 Ciphertext:

Tse & Wong Expires June 18, 2018 [Page 50]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 C5 87 68 97 E4 A5 9B BB A7 2A 10 C8 38 72 24 5B
 12 DD 90 BC 2D 20 06 92 B5 29 A4 15 5A C9 E6 00

A.2.2. SM4-CBC Examples

A.2.2.1. Example 1

 Plaintext:

 AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
 EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

 Encryption Key:

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 IV:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 Ciphertext:

 78 EB B1 1C C4 0B 0A 48 31 2A AE B2 04 02 44 CB
 4C B7 01 69 51 90 92 26 97 9B 0D 15 DC 6A 8F 6D

A.2.2.2. Example 2

 Plaintext:

 AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
 EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

 Encryption Key:

 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

 IV:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 Ciphertext:

 0D 3A 6D DC 2D 21 C6 98 85 72 15 58 7B 7B B5 9A
 91 F2 C1 47 91 1A 41 44 66 5E 1F A1 D4 0B AE 38

Tse & Wong Expires June 18, 2018 [Page 51]

Internet-Draft SM4 Blockcipher Algorithm December 2017

A.2.3. SM4-OFB Examples

A.2.3.1. Example 1

 Plaintext:

 AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
 EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

 Encryption Key:

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 IV:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 Ciphertext:

 AC 32 36 CB 86 1D D3 16 E6 41 3B 4E 3C 75 24 B7
 1D 01 AC A2 48 7C A5 82 CB F5 46 3E 66 98 53 9B

A.2.3.2. Example 2

 Plaintext:

 AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
 EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

 Encryption Key:

 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

 IV:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 Ciphertext:

 5D CC CD 25 A8 4B A1 65 60 D7 F2 65 88 70 68 49
 33 FA 16 BD 5C D9 C8 56 CA CA A1 E1 01 89 7A 97

A.2.4. SM4-CFB Examples

Tse & Wong Expires June 18, 2018 [Page 52]

Internet-Draft SM4 Blockcipher Algorithm December 2017

A.2.4.1. Example 1

 Plaintext:

 AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
 EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

 Encryption Key:

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 IV:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 Ciphertext:

 AC 32 36 CB 86 1D D3 16 E6 41 3B 4E 3C 75 24 B7
 69 D4 C5 4E D4 33 B9 A0 34 60 09 BE B3 7B 2B 3F

A.2.4.2. Example 2

 Plaintext:

 AA AA AA AA BB BB BB BB CC CC CC CC DD DD DD DD
 EE EE EE EE FF FF FF FF AA AA AA AA BB BB BB BB

 Encryption Key:

 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

 IV:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 Ciphertext:

 5D CC CD 25 A8 4B A1 65 60 D7 F2 65 88 70 68 49
 0D 9B 86 FF 20 C3 BF E1 15 FF A0 2C A6 19 2C C5

A.2.5. SM4-CTR Examples

A.2.5.1. Example 1

 Plaintext:

Tse & Wong Expires June 18, 2018 [Page 53]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 AA AA AA AA AA AA AA AA BB BB BB BB BB BB BB BB
 CC CC CC CC CC CC CC CC DD DD DD DD DD DD DD DD
 EE EE EE EE EE EE EE EE FF FF FF FF FF FF FF FF
 AA AA AA AA AA AA AA AA BB BB BB BB BB BB BB BB

 Encryption Key:

 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

 IV:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 Ciphertext:

 AC 32 36 CB 97 0C C2 07 91 36 4C 39 5A 13 42 D1
 A3 CB C1 87 8C 6F 30 CD 07 4C CE 38 5C DD 70 C7
 F2 34 BC 0E 24 C1 19 80 FD 12 86 31 0C E3 7B 92
 6E 02 FC D0 FA A0 BA F3 8B 29 33 85 1D 82 45 14

A.2.5.2. Example 2

 Plaintext:

 AA AA AA AA AA AA AA AA BB BB BB BB BB BB BB BB
 CC CC CC CC CC CC CC CC DD DD DD DD DD DD DD DD
 EE EE EE EE EE EE EE EE FF FF FF FF FF FF FF FF
 AA AA AA AA AA AA AA AA BB BB BB BB BB BB BB BB

 Encryption Key:

 FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF

 IV:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

 Ciphertext:

 5D CC CD 25 B9 5A B0 74 17 A0 85 12 EE 16 0E 2F
 8F 66 15 21 CB BA B4 4C C8 71 38 44 5B C2 9E 5C
 0A E0 29 72 05 D6 27 04 17 3B 21 23 9B 88 7F 6C
 8C B5 B8 00 91 7A 24 88 28 4B DE 9E 16 EA 29 06

Tse & Wong Expires June 18, 2018 [Page 54]

Internet-Draft SM4 Blockcipher Algorithm December 2017

Appendix B. Sample Implementation In C

B.1. sm4.h

 "sm4.h" is the header file for the SM4 function.

 <CODE BEGINS>
 #ifndef HEADER_SM4_H
 # define HEADER_SM4_H

 #include <inttypes.h>

 # define SM4_BLOCK_SIZE 16
 # define SM4_KEY_SCHEDULE 32

 void sm4_encrypt(uint8_t key[],
 unsigned char plaintext[],
 unsigned char ciphertext[]);

 void sm4_decrypt(uint8_t key[],
 unsigned char ciphertext[],
 unsigned char plaintext[]);

 #endif

 <CODE ENDS>

B.2. sm4.c

 "sm4.c" contains the main implementation of SM4.

 <CODE BEGINS>
 /* A sample implementation of SM4 */

 #include <stdlib.h>
 #include <string.h>
 #include "sm4.h"
 #include "print.h"

 /* Operations */
 /* Rotate Left 32-bit number */
 #define ROTL32(X, n) (((X) << (n)) | ((X) >> (32 - (n))))

 static uint32_t sm4_ck[32] = {
 0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269,
 0x70777E85, 0x8C939AA1, 0xA8AFB6BD, 0xC4CBD2D9,
 0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249,
 0x50575E65, 0x6C737A81, 0x888F969D, 0xA4ABB2B9,

Tse & Wong Expires June 18, 2018 [Page 55]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229,
 0x30373E45, 0x4C535A61, 0x686F767D, 0x848B9299,
 0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209,
 0x10171E25, 0x2C333A41, 0x484F565D, 0x646B7279
 };

 static uint8_t sm4_sbox[256] = {
 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7,
 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05,
 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3,
 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A,
 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62,
 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95,
 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6,
 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA,
 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8,
 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B,
 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35,
 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2,
 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87,
 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52,
 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E,
 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5,
 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1,
 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55,
 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3,
 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60,
 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F,
 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F,
 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51,
 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F,
 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8,
 0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD,
 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0,
 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E,
 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84,
 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20,
 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48
 };

 static uint32_t sm4_fk[4] = {
 0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC
 };

 static uint32_t load_u32_be(const uint8_t *b, uint32_t n)
 {
 return ((uint32_t)b[4 * n + 3] << 24) |

Tse & Wong Expires June 18, 2018 [Page 56]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 ((uint32_t)b[4 * n + 2] << 16) |
 ((uint32_t)b[4 * n + 1] << 8) |
 ((uint32_t)b[4 * n]);
 }

 static void store_u32_be(uint32_t v, uint8_t *b)
 {
 b[3] = (uint8_t)(v >> 24);
 b[2] = (uint8_t)(v >> 16);
 b[1] = (uint8_t)(v >> 8);
 b[0] = (uint8_t)(v);
 }

 static void sm4_key_schedule(uint8_t key[], uint32_t rk[])
 {
 uint32_t t, x, k[36];
 int i;

 for (i = 0; i < 4; i++)
 {
 k[i] = load_u32_be(key, i) ^ sm4_fk[i];
 }

 /* T' */
 for (i = 0; i < SM4_KEY_SCHEDULE; ++i)
 {
 x = k[i + 1] ^ k[i + 2] ^ k[i + 3] ^ sm4_ck[i];

 /* Nonlinear operation tau */
 t = ((uint32_t)sm4_sbox[(uint8_t)(x >> 24)]) << 24 |
 ((uint32_t)sm4_sbox[(uint8_t)(x >> 16)]) << 16 |
 ((uint32_t)sm4_sbox[(uint8_t)(x >> 8)]) << 8 |
 ((uint32_t)sm4_sbox[(uint8_t)(x)]);

 /* Linear operation L' */
 k[i+4] = k[i] ^ (t ^ ROTL32(t, 13) ^ ROTL32(t, 23));
 rk[i] = k[i + 4];
 }

 }

 #define SM4_ROUNDS(k0, k1, k2, k3, F) \
 do { \
 X0 ^= F(X1 ^ X2 ^ X3 ^ rk[k0]); \
 X1 ^= F(X0 ^ X2 ^ X3 ^ rk[k1]); \
 X2 ^= F(X0 ^ X1 ^ X3 ^ rk[k2]); \
 X3 ^= F(X0 ^ X1 ^ X2 ^ rk[k3]); \

Tse & Wong Expires June 18, 2018 [Page 57]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 debug_print("rk_%0.2i = %0.8x " \
 " X_%0.2i = %0.8x\n", k0, rk[k0], k0+4, X0); \
 debug_print("rk_%0.2i = %0.8x " \
 " X_%0.2i = %0.8x\n", k1, rk[k1], k1+4, X1); \
 debug_print("rk_%0.2i = %0.8x " \
 " X_%0.2i = %0.8x\n", k2, rk[k2], k2+4, X2); \
 debug_print("rk_%0.2i = %0.8x " \
 " X_%0.2i = %0.8x\n", k3, rk[k3], k3+4, X3); \
 } while(0)

 static uint32_t sm4_t(uint32_t x)
 {
 uint32_t t = 0;

 t |= ((uint32_t)sm4_sbox[(uint8_t)(x >> 24)]) << 24;
 t |= ((uint32_t)sm4_sbox[(uint8_t)(x >> 16)]) << 16;
 t |= ((uint32_t)sm4_sbox[(uint8_t)(x >> 8)]) << 8;
 t |= sm4_sbox[(uint8_t)x];

 /*
 * L linear transform
 */
 return t ^ ROTL32(t, 2) ^ ROTL32(t, 10) ^
 ROTL32(t, 18) ^ ROTL32(t, 24);
 }

 void sm4_encrypt(uint8_t key[],
 unsigned char plaintext[],
 unsigned char ciphertext[])
 {
 uint32_t rk[SM4_KEY_SCHEDULE], X0, X1, X2, X3;
 int i, j;

 sm4_key_schedule(key, rk);

 X0 = load_u32_be(plaintext, 0);
 X1 = load_u32_be(plaintext, 1);
 X2 = load_u32_be(plaintext, 2);
 X3 = load_u32_be(plaintext, 3);

 SM4_ROUNDS(0, 1, 2, 3, sm4_t);
 SM4_ROUNDS(4, 5, 6, 7, sm4_t);
 SM4_ROUNDS(8, 9, 10, 11, sm4_t);
 SM4_ROUNDS(12, 13, 14, 15, sm4_t);
 SM4_ROUNDS(16, 17, 18, 19, sm4_t);
 SM4_ROUNDS(20, 21, 22, 23, sm4_t);
 SM4_ROUNDS(24, 25, 26, 27, sm4_t);
 SM4_ROUNDS(28, 29, 30, 31, sm4_t);

Tse & Wong Expires June 18, 2018 [Page 58]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 store_u32_be(X3, ciphertext);
 store_u32_be(X2, ciphertext + 4);
 store_u32_be(X1, ciphertext + 8);
 store_u32_be(X0, ciphertext + 12);
 }

 void sm4_decrypt(uint8_t key[],
 unsigned char ciphertext[],
 unsigned char plaintext[])
 {
 uint32_t rk[SM4_KEY_SCHEDULE], X0, X1, X2, X3;
 int i, j;

 sm4_key_schedule(key, rk);

 X0 = load_u32_be(ciphertext, 0);
 X1 = load_u32_be(ciphertext, 1);
 X2 = load_u32_be(ciphertext, 2);
 X3 = load_u32_be(ciphertext, 3);

 SM4_ROUNDS(31, 30, 29, 28, sm4_t);
 SM4_ROUNDS(27, 26, 25, 24, sm4_t);
 SM4_ROUNDS(23, 22, 21, 20, sm4_t);
 SM4_ROUNDS(19, 18, 17, 16, sm4_t);
 SM4_ROUNDS(15, 14, 13, 12, sm4_t);
 SM4_ROUNDS(11, 10, 9, 8, sm4_t);
 SM4_ROUNDS(7, 6, 5, 4, sm4_t);
 SM4_ROUNDS(3, 2, 1, 0, sm4_t);

 store_u32_be(X3, plaintext);
 store_u32_be(X2, plaintext + 4);
 store_u32_be(X1, plaintext + 8);
 store_u32_be(X0, plaintext + 12);
 }

 <CODE ENDS>

B.3. sm4_main.c

 "sm4_main.c" is used to run the examples provided in this document
 and print out internal state for implementation reference.

 <CODE BEGINS>
 #include <stdlib.h>
 #include <string.h>
 #include <stdbool.h>
 #include "sm4.h"
 #include "print.h"

Tse & Wong Expires June 18, 2018 [Page 59]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 typedef struct {
 unsigned char* key;
 unsigned char* message;
 unsigned char* expected;
 int iterations;
 bool encrypt;
 } test_case;

 int sm4_run_example(test_case tc)
 {
 unsigned char input[SM4_BLOCK_SIZE] = {0};
 unsigned char output[SM4_BLOCK_SIZE] = {0};
 int i;

 debug_print("-----------------------"
 " Message Input m Begin "
 "-------------------------\n");
 print_bytes((unsigned int*)tc.message, SM4_BLOCK_SIZE);
 debug_print("----------------------- "
 "Message Input m End "
 "---------------------------\n");

 if (tc.encrypt)
 {
 debug_print("----------------------- "
 "Encrypt "
 "---------------------------\n");
 memcpy(input, tc.message, SM4_BLOCK_SIZE);
 for (i = 0; i != tc.iterations; ++i)
 {
 sm4_encrypt(tc.key,
 (unsigned char*)input,
 (unsigned char*)output);
 memcpy(input, output, SM4_BLOCK_SIZE);
 }
 }
 else
 {
 debug_print("----------------------- "
 "Decrypt "
 "---------------------------\n");
 memcpy(input, tc.message, SM4_BLOCK_SIZE);
 for (i = 0; i != tc.iterations; ++i)
 {
 sm4_decrypt(tc.key,
 (unsigned char*)input,
 (unsigned char*)output);
 memcpy(input, output, SM4_BLOCK_SIZE);

Tse & Wong Expires June 18, 2018 [Page 60]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 }
 }

 debug = 1;
 debug_print("+++++++++++++++++++++++++++++++"
 " RESULT "
 "++++++++++++++++++++++++++++++++\n");
 debug_print("RESULTS:\n");
 debug_print(" Expected:\n");
 print_bytes((unsigned int*)tc.expected, SM4_BLOCK_SIZE);

 debug_print(" Output:\n");
 print_bytes((unsigned int*)output, SM4_BLOCK_SIZE);

 debug = 0;
 return memcmp(
 (unsigned char*)output,
 (unsigned char*)tc.expected,
 SM4_BLOCK_SIZE
);
 }

 int main(int argc, char **argv)
 {

 int i;
 unsigned char key[SM4_BLOCK_SIZE];
 unsigned char block[SM4_BLOCK_SIZE];

 test_case tests[8] = {0};

 /*
 * This test vector comes from Example 1 of GB/T 32907-2016,
 */
 static const unsigned int gbt32907k1[SM4_BLOCK_SIZE] = {
 0x01234567, 0x89abcdef,
 0xfedcba98, 0x76543210
 };
 static const unsigned int gbt32907m1[SM4_BLOCK_SIZE] = {
 0x01234567, 0x89abcdef,
 0xfedcba98, 0x76543210
 };
 static const unsigned int gbt32907e1[SM4_BLOCK_SIZE] = {
 0x681edf34, 0xd206965e,
 0x86b3e94f, 0x536e4246
 };
 test_case gbt32907t1 = {
 (unsigned char*)gbt32907k1,

Tse & Wong Expires June 18, 2018 [Page 61]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 (unsigned char*)gbt32907m1,
 (unsigned char*)gbt32907e1,
 1,
 true
 };
 tests[0] = gbt32907t1;

 /*
 * This test vector comes from Example 2 from GB/T 32907-2016.
 * After 1,000,000 iterations.
 */
 static const unsigned int gbt32907e2[SM4_BLOCK_SIZE] = {
 0x595298c7, 0xc6fd271f,
 0x0402f804, 0xc33d3f66
 };
 test_case gbt32907t2 = {
 (unsigned char*)gbt32907k1,
 (unsigned char*)gbt32907m1,
 (unsigned char*)gbt32907e2,
 1000000,
 true
 };
 tests[1] = gbt32907t2;

 /*
 * This test vector reverses Example 1 of GB/T 32907-2016.
 * After decrypting 1 iteration.
 */
 test_case gbt32907t3 = {
 (unsigned char*)gbt32907k1,
 (unsigned char*)gbt32907e1,
 (unsigned char*)gbt32907m1,
 1,
 false
 };
 tests[2] = gbt32907t3;

 /*
 * This test vector reverses Example 2 of GB/T 32907-2016.
 * After decrypting 1,000,000 iterations.
 */
 test_case gbt32907t4 = {
 (unsigned char*)gbt32907k1,
 (unsigned char*)gbt32907e2,
 (unsigned char*)gbt32907m1,
 1000000,
 false
 };

Tse & Wong Expires June 18, 2018 [Page 62]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 tests[3] = gbt32907t4;

 /*
 * Newly added examples to demonstrate key changes.
 */
 static const unsigned int newexamplek1[SM4_BLOCK_SIZE] = {
 0xfedcba98, 0x76543210,
 0x01234567, 0x89abcdef
 };
 static const unsigned int newexamplem1[SM4_BLOCK_SIZE] = {
 0x00010203, 0x04050607,
 0x08090a0b, 0x0c0d0e0f
 };
 static const unsigned int newexamplee1[SM4_BLOCK_SIZE] = {
 0xf766678f, 0x13f01ade,
 0xac1b3ea9, 0x55adb594
 };
 /*
 */
 test_case newexample1 = {
 (unsigned char*)newexamplek1,
 (unsigned char*)newexamplem1,
 (unsigned char*)newexamplee1,
 1,
 true
 };
 tests[4] = newexample1;

 test_case newexample2 = {
 (unsigned char*)newexamplek1,
 (unsigned char*)newexamplee1,
 (unsigned char*)newexamplem1,
 1,
 false
 };
 tests[5] = newexample2;

 /*
 * After 1,000,000 iterations.
 */
 static const unsigned int newexamplee2[SM4_BLOCK_SIZE] = {
 0x379a96d0, 0xa6a5a506,
 0x0fb460c7, 0x5d1879ed
 };
 test_case newexample3 = {
 (unsigned char*)newexamplek1,
 (unsigned char*)newexamplem1,
 (unsigned char*)newexamplee2,

Tse & Wong Expires June 18, 2018 [Page 63]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 1000000,
 true
 };
 tests[6] = newexample3;

 for (i = 0; i < 7; ++i)
 {

 if (i == 1 || i == 3)
 continue;

 printf("sm4_example[%2i]: %s\n", i,
 sm4_run_example(tests[i]) ? "FAIL" : "PASS");
 }

 return 0;
 }

 <CODE ENDS>

B.4. print.c and print.h

 "print.c" and "print.h" are used to provide pretty formatting used to
 print out the examples for this document.

 "print.h"

 <CODE BEGINS>
 #ifndef SM4PRINT_H
 #define SM4PRINT_H

 #define DEBUG 0
 #define debug_print(...) \
 do { if (DEBUG) fprintf(stderr, __VA_ARGS__); } while (0)

 #include <stdio.h>

 void print_bytes(unsigned* buf, int n);

 #endif
 <CODE ENDS>

 "print.c"

Tse & Wong Expires June 18, 2018 [Page 64]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 <CODE BEGINS>
 #include <stdio.h>
 #include "print.h"

 void print_bytes(unsigned int* buf, int n)
 {
 unsigned char* ptr = (unsigned char*)buf;
 int i, j;

 for (i = 0; i <= n/4; i++) {
 if (i > 0 && i % 8 == 0) {
 debug_print("\n");
 }
 for (j = 1; j <= 4; j++) {
 if ((i*4+4-j) < n) {
 debug_print("%.2X", ptr[(i*4)+4-j]);
 }
 }
 debug_print(" ");
 }
 debug_print("\n");
 }

 <CODE ENDS>

Appendix C. Acknowledgements

 The authors would like to thank the following persons for their
 valuable advice and input.

 o Erick Borsboom, for assisting the lengthy review of this document;

 o Jack Lloyd and Daniel Wyatt, of the Ribose RNP team, for their
 input and implementation;

 o Paul Yang, for reviewing and proposing improvements to readability
 of this document;

 o Markku-Juhani Olavi Saarinen, for reviewing and proposing
 inclusion of better examples and reference code to aid
 implementers, as well as for actually going through the examples
 to ensure their correctness.

Authors' Addresses

Tse & Wong Expires June 18, 2018 [Page 65]

Internet-Draft SM4 Blockcipher Algorithm December 2017

 Ronald Henry Tse
 Ribose
 Suite 1111, 1 Pedder Street
 Central, Hong Kong
 People's Republic of China

 Email: ronald.tse@ribose.com
 URI: https://www.ribose.com

 Wai Kit Wong
 Hang Seng Management College
 Hang Shin Link, Siu Lek Yuen
 Shatin, Hong Kong
 People's Republic of China

 Email: wongwk@hsmc.edu.hk
 URI: https://www.hsmc.edu.hk

https://www.ribose.com
https://www.hsmc.edu.hk

Tse & Wong Expires June 18, 2018 [Page 66]

