
Network Working Group A. Backman, Ed.
Internet-Draft Amazon
Intended status: Standards Track November 19, 2019
Expires: May 22, 2020

Signing HTTP Requests via JSON Web Signatures
draft-richanna-http-jwt-signature-00

Abstract

 This document defines a method for generating and validating a
 digital signature or Message Authentication Code (MAC) over a set of
 protocol elements within an HTTP Request, using JSON Web Signatures
 (JWS).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 22, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Backman Expires May 22, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Signing HTTP Requests via JWS November 2019

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Generating a HTTP Request Signature Using JWS 3
3.1. Generating the Payload of the JWS 4
3.2. Calculating the query parameter list and hash 5
3.3. Calculating the header list and hash 6

4. Validating the HTTP Request Signature 6
4.1. Validating the query parameter list and hash 7
4.2. Validating the header list and hash 7

5. IANA Considerations . 8
 5.1. JSON Web Signature and Encryption Type Values
 Registration . 8

6. Security Considerations 8
 6.1. Offering Confidentiality Protection for Access to
 Protected Resources 8

6.2. Plaintext Storage of Credentials 9
6.3. Entropy of Keys . 9
6.4. Denial of Service . 9
6.5. Validating the integrity of HTTP message 9

7. Privacy Considerations 10
8. Acknowledgements . 10
9. Normative References . 10

 Author's Address . 11

1. Introduction

 Digital signatures and MACs are popular cryptographic tools that can
 be used to address a variety of use cases, such as providing message
 integrity, or establishing proof of possession of a cryptographic
 key. While several digital signature algorithms exist, they
 generally share the constraint that any party wishing to validate a
 signature must have or be able to produce the exact byte sequence of
 the message that was signed. Consequently, it is non-trivial to
 create digital signatures over content that may undergo
 transformation, such as can occur with HTTP messages as they pass
 through proxies and software libraries in use by the sender or
 recipient.

 This draft describes a method for generating and validating digital
 signatures or MACs over a set of protocol elements within an HTTP
 Request. This method consists of:

 Mechanisms for identifying the protocol elements covered by the
 signature.

Backman Expires May 22, 2020 [Page 2]

Internet-Draft Signing HTTP Requests via JWS November 2019

 Mechanisms for creating canonical representations of protocol
 elements for the purpose of signing.

 A mechanism creating and encoding a signature over those canonical
 representations using JSON Web Signatures (JWS) [RFC7515].

 Many HTTP application frameworks reorder or insert extra headers,
 query parameters, and otherwise manipulate the HTTP request on its
 way from the web server into the application code itself. Such
 transformations may be applied by the sender and recipient, as well
 as any proxy through which the message passes. It is the goal of
 this draft to have a signature protection mechanism that is
 sufficiently robust against such deployment constraints while still
 providing sufficient security benefits.

 This draft is concerned specifically with the generation,
 representation, and validation of signatures over elements within an
 HTTP request, with the expectation that this draft will be profiled
 by later drafts that seek to apply these signatures to address
 specific use cases within a larger application context.
 Consequently, key distribution, signing algorithm selection, and
 determination of which elements must be covered by the signature are
 all out of scope of this draft.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

 Other terms such as "client", "server", "HTTP request", and "protocol
 element" are inherited from HTTP [RFC7230].

 This document uses the term 'sign' (or 'signature') to denote both a
 keyed message digest and a digital signature operation.

3. Generating a HTTP Request Signature Using JWS

 This specification uses JSON Web Signature [RFC7515] to sign a set of
 protocol elements taken from an HTTP Request. When a JWS is created
 for this purpose, its ""typ"" header attribute MUST have the value
 ""http-sig"".

 The JWS MUST be signed with a valid algorithm as defined in
 [RFC7518]. The "none" algorithm MUST NOT be used.

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7518

Backman Expires May 22, 2020 [Page 3]

Internet-Draft Signing HTTP Requests via JWS November 2019

3.1. Generating the Payload of the JWS

 The JWS Payload is a JSON object containing the data that will be
 covered by the signature. In order to include a protocol element
 within the covered data, its value must be represented within this
 JSON object. Some elements are represented directly, by setting the
 value of a member in the object to the element's value in the HTTP
 Request. Others are included indirectly, by setting the value of a
 member in the object to a cryptographic hash or other value derived
 from the element's value in the HTTP Request.

 The below list defines the means of inclusion of various protocol
 elements, including the JSON object member that MUST be used when
 including the element, and how the element's value should be
 included. When present, each of these members MUST be a top-level
 member of the JSON object.

 The JSON object MAY contain other top-level members. The syntax and
 semantics of members not listed below are out of scope of this
 specification. Implementations SHOULD consider a signature invalid
 if the JSON object contains members that the implementation does not
 understand.

 ts RECOMMENDED. The timestamp. This integer provides replay
 protection of the signed JSON object. Its value MUST be a number
 containing an integer value representing number of whole integer
 seconds from midnight, January 1, 1970 GMT.

 m OPTIONAL. The HTTP Method used to make this request. This MUST
 be the uppercase HTTP verb as a JSON string.

 u OPTIONAL. The HTTP URL host component as a JSON string. This MAY
 include the port separated from the host by a colon in host:port
 format.

 p OPTIONAL. The HTTP URL path component of the request as an HTTP
 string.

 q OPTIONAL. The hashed HTTP URL query parameter map of the request
 as a two-part JSON array. The first part of this array is a JSON
 array listing all query parameters that were used in the
 calculation of the hash in the order that they were added to the
 hashed value as described below. The second part of this array is
 a JSON string containing the Base64URL encoded hash itself,
 calculated as described below.

 h OPTIONAL. The hashed HTTP request headers as a two-part JSON
 array. The first part of this array is a JSON array listing all

Backman Expires May 22, 2020 [Page 4]

Internet-Draft Signing HTTP Requests via JWS November 2019

 headers that were used in the calculation of the hash in the order
 that they were added to the hashed value as described below. The
 second part of this array is a JSON string containing the
 Base64URL encoded hash itself, calculated as described below.

 b OPTIONAL. The base64URL encoded hash of the HTTP Request body,
 calculated as the SHA256 of the byte array of the body

 All hashes SHALL be calculated using the SHA256 algorithm.

3.2. Calculating the query parameter list and hash

 To generate the query parameter list and hash, the signer creates two
 data objects: an ordered list of strings to hold the query parameter
 names and a string buffer to hold the data to be hashed.

 The signer iterates through all query parameters in whatever order it
 chooses and for each query parameter it does the following:

 1. Adds the name of the query parameter to the end of the list.

 2. Percent-encodes the name and value of the parameter as specified
 in [RFC3986]. Note that if the name and value have already been
 percent-encoded for transit, they are not re-encoded for this
 step.

 3. Encodes the name and value of the query parameter as "name=value"
 and appends it to the string buffer separated by the ampersand
 "&" character.

 Repeated parameter names are processed separately with no special
 handling. Parameters MAY be skipped by the client if they are not
 required (or desired) to be covered by the signature.

 The signer then calculates the hash over the resulting string buffer.
 The list and the hash result are added to a list as the value of the
 "q" member.

 For example, the query parameter set of "b=bar", "a=foo", "c=duck" is
 concatenated into the string:

 b=bar&a=foo&c=duck

 When added to the JSON structure using this process, the results are:

 "q": [["b", "a", "c"], "u4LgkGUWhP9MsKrEjA4dizIllDXluDku6ZqCeyuR-JY"]

https://datatracker.ietf.org/doc/html/rfc3986

Backman Expires May 22, 2020 [Page 5]

Internet-Draft Signing HTTP Requests via JWS November 2019

3.3. Calculating the header list and hash

 To generate the header list and hash, the signer creates two data
 objects: an ordered list of strings to hold the header names and a
 string buffer to hold the data to be hashed.

 The signer iterates through all query parameters in whatever order it
 chooses and for each query parameter it does the following:

 1. Lowercases the header name.

 2. Adds the name of the header to the end of the list.

 3. Encodes the name and value of the header as "name: value" and
 appends it to the string buffer separated by a newline "\n"
 character.

 Repeated header names are processed separately with no special
 handling. Headers MAY be skipped by the client if they are not
 required (or desired) to be covered by the signature.

 The signer then calculates the hash over the resulting string buffer.
 The list and the hash result are added to a list as the value of the
 "h" member.

 For example, the headers "Content-Type: application/json" and "Etag:
 742-3u8f34-3r2nvv3" are concatenated into the string:

 content-type: application/json
 etag: 742-3u8f34-3r2nvv3

 "h": [["content-type", "etag"],
 "bZA981YJBrPlIzOvplbu3e7ueREXXr38vSkxIBYOaxI"]

4. Validating the HTTP Request Signature

 Validation of the signature is done using normal JWS validation for
 the signature and key type. Additionally, in order to trust any of
 the hashed components of the HTTP request, the validator MUST re-
 create and verify a hash for each component as described below. This
 process is a mirror of the process used to create the hashes in the
 first place, with a mind toward the fact that order may have changed
 and that elements may have been added or deleted. The protected
 resource MUST similarly compare the replicated values included in
 various JSON fields with the corresponding actual values from the
 request. Failure to do so will allow an attacker to modify the
 underlying request while at the same time having the application
 layer verify the signature correctly.

Backman Expires May 22, 2020 [Page 6]

Internet-Draft Signing HTTP Requests via JWS November 2019

4.1. Validating the query parameter list and hash

 The validator has at its disposal a map that indexes the query
 parameter names to the values given. The validator creates a string
 buffer for calculating the hash. The validator then iterates through
 the "list" portion of the "p" parameter. For each item in the list
 (in the order of the list) it does the following:

 1. Fetch the value of the parameter from the HTTP request query
 parameter map. If a parameter is found in the list of signed
 parameters but not in the map, the validation fails.

 2. Percent-encodes the name and value of the parameter as specified
 in [RFC3986]. Note that if the name and value have already been
 percent-encoded for transit, they are not re-encoded for this
 step.

 3. Encode the parameter as "name=value" and concatenate it to the
 end of the string buffer, separated by an ampersand character.

 The validator calculates the hash of the string buffer and base64url
 encodes it. The protected resource compares that string to the
 string passed in as the hash. If the two match, the hash validates,
 and all named parameters and their values are considered covered by
 the signature.

 There MAY be additional query parameters that are not listed in the
 list and are therefore not covered by the signature. The validator
 MUST decide whether or not to accept a request with these uncovered
 parameters.

4.2. Validating the header list and hash

 The validator has at its disposal a map that indexes the header names
 to the values given. The validator creates a string buffer for
 calculating the hash. The validator then iterates through the "list"
 portion of the "h" parameter. For each item in the list (in the
 order of the list) it does the following:

 1. Fetch the value of the header from the HTTP request header map.
 If a header is found in the list of signed parameters but not in
 the map, the validation fails.

 2. Encode the parameter as "name: value" and concatenate it to the
 end of the string buffer, separated by a newline character.

 The validator calculates the hash of the string buffer and base64url
 encodes it. The protected resource compares that string to the

https://datatracker.ietf.org/doc/html/rfc3986

Backman Expires May 22, 2020 [Page 7]

Internet-Draft Signing HTTP Requests via JWS November 2019

 string passed in as the hash. If the two match, the hash validates,
 and all named headers and their values are considered covered by the
 signature.

 There MAY be additional headers that are not listed in the list and
 are therefore not covered by the signature. The validator MUST
 decide whether or not to accept a request with these uncovered
 headers.

5. IANA Considerations

5.1. JSON Web Signature and Encryption Type Values Registration

 This specification registers the "http-sig" type value in the IANA
 JSON Web Signature and Encryption Type Values registry [RFC7515]:

 o "typ" Header Parameter Value: "http-sig"

 o Abbreviation for MIME Type: None

 o Change Controller: IETF

 o Specification Document(s): [[this document]]

6. Security Considerations

6.1. Offering Confidentiality Protection for Access to Protected
 Resources

 This specification can be used with and without Transport Layer
 Security (TLS).

 Without TLS this protocol provides a mechanism for verifying the
 integrity of requests, it provides no confidentiality protection.
 Consequently, eavesdroppers will have full access to communication
 content and any further messages exchanged between the client and the
 server. This could be problematic when data is exchanged that
 requires care, such as personal data.

 When TLS is used then confidentiality of the transmission can be
 ensured between endpoints, including both the request and the
 response. The use of TLS in combination with the signed HTTP request
 mechanism is highly recommended to ensure the confidentiality of the
 data returned from the protected resource.

https://datatracker.ietf.org/doc/html/rfc7515

Backman Expires May 22, 2020 [Page 8]

Internet-Draft Signing HTTP Requests via JWS November 2019

6.2. Plaintext Storage of Credentials

 The mechanism described in this document works in a similar way to
 many three-party authentication and key exchange mechanisms. In
 order to compute the signature over the HTTP request, the client must
 have access to the decryption key in plaintext form. If an attacker
 were to gain access to these stored secrets at the client or (in case
 of symmetric keys) at the server they would be able to forge
 signatures for any HTTP request they wished, effectively allowing
 them to impersonate the client.

 It is therefore paramount to the security of the protocol that any
 private or symmetric keys used to sign HTTP requests are protected
 from unauthorized access.

6.3. Entropy of Keys

 Unless TLS is used between the client and the resource server,
 eavesdroppers will have full access to requests sent by the client.
 They will thus be able to mount off-line brute-force attacks to
 attempt recovery of the session key or private key used to compute
 the keyed message digest or digital signature, respectively.

 Key generation and distribution is out of scope for this document.
 It is the responsibility of users of this specification to ensure
 that keys are generated with sufficient entropy and rotated at an
 appropriate frequency to sufficiently mitigate the risk of such
 attacks, as appropriate for their use case.

6.4. Denial of Service

 This specification includes a number of features which may make
 resource exhaustion attacks against servers possible. For example,
 server may need to consult back-end databases or other servers in
 order to verify a signature, or the cryptographic overhead may
 present a significant burden on the server. An attacker could
 leverage this overhead to attempt a denial of service attack by
 sending a large number of invalid requests to the server, causing the
 server to expend significant resources checking invalid signatures.
 This attack vector must be taken into consideration when implementing
 or deploying this specification.

6.5. Validating the integrity of HTTP message

 This specification provides flexibility for selectively validating
 the integrity of the HTTP request, including header fields, query
 parameters, and message bodies. Since all components of the HTTP
 request are only optionally validated by this method, and even some

Backman Expires May 22, 2020 [Page 9]

Internet-Draft Signing HTTP Requests via JWS November 2019

 components may be validated only in part (e.g., some headers but not
 others) it is up to developers to verify that any vital parameters in
 a request are actually covered by the signature. Failure to do so
 could allow an attacker to inject vital parameters or headers into
 the request, ouside of the protection of the signature.

 The application verifying this signature MUST NOT assume that any
 particular parameter is appropriately covered by the signature unless
 it is included in the signed structure and the hash is verified. Any
 applications that are sensitive of header or query parameter order
 MUST verify the order of the parameters on their own. The
 application MUST also compare the values in the JSON container with
 the actual parameters received with the HTTP request (using a direct
 comparison or a hash calculation, as appropriate). Failure to make
 this comparison will render the signature mechanism useless for
 protecting these elements.

 The behavior of repeated query parameters or repeated HTTP headers is
 undefined by this specification. If a header or query parameter is
 repeated on either the outgoing request from the client or the
 incoming request to the protected resource, that query parameter or
 header name MUST NOT be covered by the hash and signature.

 This specification records the order in which query parameters and
 headers are hashed, but it does not guarantee that order is preserved
 between the client and protected resource. If the order of
 parameters or headers are significant to the underlying application,
 it MUST confirm their order on its own, apart from the signature and
 HTTP message validation.

7. Privacy Considerations

 This specification addresses machine to machine communications and
 raises no privacy considerations beyond existing HTTP interactions.

8. Acknowledgements

 The authors thank the OAuth Working Group for input into this work.

 In particular, the authors thank Justin Richer for his work on
 [I-D.ietf-oauth-signed-http-request], on which this specification is
 based.

9. Normative References

Backman Expires May 22, 2020 [Page 10]

Internet-Draft Signing HTTP Requests via JWS November 2019

 [I-D.ietf-oauth-signed-http-request]
 Richer, J., Bradley, J., and H. Tschofenig, "A Method for
 Signing HTTP Requests for OAuth", draft-ietf-oauth-signed-

http-request-03 (work in progress), August 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

Author's Address

 Annabelle Backman (editor)
 Amazon

 Email: richanna@amazon.com

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-signed-http-request-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-signed-http-request-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518

Backman Expires May 22, 2020 [Page 11]

