
Workgroup: HTTPbis Working Group

Internet-Draft:

draft-richanna-http-message-signatures-00

Published: 12 December 2019

Intended Status: Standards Track

Expires: 14 June 2020

Authors: A. Backman, Ed.

Amazon

J. Richer

Bespoke Engineering

M. Sporny

Digital Bazaar

Signing HTTP Messages

Abstract

This document describes a mechanism for creating, encoding, and

verifying digital signatures or message authentication codes over

content within an HTTP message. This mechanism supports use cases

where the full HTTP message may not be known to the signer, and

where the message may be transformed (e.g., by intermediaries)

before reaching the verifier.

This draft is based on draft-cavage-http-signatures-12. The

community and the authors have identified several issues with the

current text. Additionally, the authors have identified a number of

features that are required in order to support additional use cases.

In order to preserve continuity with the effort that has been put

into draft-cavage-http-signatures-12, this draft maintains normative

compatibility with it, and thus does not address these issues or

include these features, as doing so requires making backwards-

incompatible changes to normative requirements. While such changes

are inevitable, the editor recommends that they be driven by working

group discussion following adoption of the draft (see Topics for

Working Group Discussion). The editor requests that the working

group recognize the intent of this initial draft and this

recommendation when considering adoption of this draft.

This note is to be removed before publishing as an RFC.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

¶

https://github.com/w3c-dvcg/http-signatures/issues?page=2&q=is%3Aissue+is%3Aopen
https://github.com/w3c-dvcg/http-signatures/issues?page=2&q=is%3Aissue+is%3Aopen
https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 June 2020.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Discussion

1.2. HTTP Message Transformations

1.3. Safe Transformations

1.4. Conventions and Terminology

2. Identifying and Canonicalizing Content

2.1. HTTP Header Fields

2.2. Signature Creation Time

2.3. Signature Expiration Time

2.4. Target Endpoint

3. HTTP Message Signatures

3.1. Signature Metadata

3.2. Creating a Signature

3.2.1. Choose and Set Signature Metadata Properties

3.2.2. Create the Signature Input

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3.2.3. Sign the Signature Input

3.3. Verifying a Signature

3.3.1. Enforcing Application Requirements

4. The 'Signature' HTTP Header

4.1. Signature Header Parameters

4.2. Example

5. IANA Considerations

5.1. HTTP Signature Algorithms Registry

5.1.1. Registration Template

5.1.2. Initial Contents

5.2. HTTP Signature Parameters Registry

5.2.1. Registration Template

5.2.2. Initial Contents

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Examples

A.1. Example Keys

A.1.1. rsa-test

A.2. Example keyId Values

A.3. Test Cases

A.3.1. Signature Generation

A.3.2. Signature Verification

Appendix B. Topics for Working Group Discussion

Acknowledgements

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Document History

Authors' Addresses

1. Introduction

Message integrity and authenticity are important security properties

that are critical to the secure operation of many [HTTP]

applications. Application developers typically rely on the transport

layer to provide these properties, by operating their application

over TLS [RFC8446]. However, TLS only guarantees these properties

over a single TLS connection, and the path between client and

application may be composed of multiple independent TLS connections

(for example, if the application is hosted behind a TLS-terminating

gateway or if the client is behind a TLS Inspection appliance). In

such cases, TLS cannot guarantee end-to-end message integrity or

authenticity between the client and application. Additionally, some

operating environments present obstacles that make it impractical to

use TLS, or to use features necessary to provide message

authenticity. Furthermore, some applications require the binding of

an application-level key to the HTTP message, separate from any TLS

certificates in use. Consequently, while TLS can meet message

integrity and authenticity needs for many HTTP-based applications,

it is not a universal solution.

This document defines a mechanism for providing end-to-end integrity

and authenticity for content within an HTTP message. The mechanism

allows applications to create digital signatures or message

authentication codes (MACs) over only that content within the

message that is meaningful and appropriate for the application.

Strict canonicalization rules ensure that the verifier can verify

the signature even if the message has been transformed in any of the

many ways permitted by HTTP.

The mechanism described in this document consists of three parts:

A common nomenclature and canonicalization rule set for the

different protocol elements and other content within HTTP

messages.

Algorithms for generating and verifying signatures over HTTP

message content using this nomenclature and rule set.

A mechanism for attaching a signature and related metadata to an

HTTP message.

1.1. Requirements Discussion

HTTP permits and sometimes requires intermediaries to transform

messages in a variety of ways. This may result in a recipient

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

receiving a message that is not bitwise equivalent to the message

that was oringally sent. In such a case, the recipient will be

unable to verify a signature over the raw bytes of the sender's HTTP

message, as verifying digital signatures or MACs requires both

signer and verifier to have the exact same signed content. Since the

raw bytes of the message cannot be relied upon as signed content,

the signer and verifier must derive the signed content from their

respective versions of the message, via a mechanism that is

resilient to safe changes that do not alter the meaning of the

message.

For a variety of reasons, it is impractical to strictly define what

constitutes a safe change versus an unsafe one. Applications use

HTTP in a wide variety of ways, and may disagree on whether a

particular piece of information in a message (e.g., the body, or the

Date header field) is relevant. Thus a general purpose solution must

provide signers with some degree of control over which message

content is signed.

HTTP applications may be running in environments that do not provide

complete access to or control over HTTP messages (such as a web

browser's JavaScript environment), or may be using libraries that

abstract away the details of the protocol (such as the Java

HTTPClient library). These applications need to be able to generate

and verify signatures despite incomplete knowledge of the HTTP

message.

1.2. HTTP Message Transformations

As mentioned earlier, HTTP explicitly permits and in some cases

requires implementations to transform messages in a variety of ways.

Implementations are required to tolerate many of these

transformations. What follows is a non-normative and non-exhaustive

list of transformations that may occur under HTTP, provided as

context:

Re-ordering of header fields with different header field names

([HTTP], Section 3.2.2).

Combination of header fields with the same field name ([HTTP],

Section 3.2.2).

Removal of header fields listed in the Connection header field

([HTTP], Section 6.1).

Addition of header fields that indicate control options ([HTTP],

Section 6.1).

Addition or removal of a transfer coding ([HTTP], Section 5.7.2).

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

https://openjdk.java.net/groups/net/httpclient/intro.html
https://openjdk.java.net/groups/net/httpclient/intro.html
https://rfc-editor.org/rfc/rfc7230#section-3.2.2
https://rfc-editor.org/rfc/rfc7230#section-3.2.2
https://rfc-editor.org/rfc/rfc7230#section-6.1
https://rfc-editor.org/rfc/rfc7230#section-6.1
https://rfc-editor.org/rfc/rfc7230#section-5.7.2

Addition of header fields such as Via ([HTTP], Section 5.7.1)

and Forwarded ([RFC7239], Section 4).

1.3. Safe Transformations

Based on the definition of HTTP and the requirements described

above, we can identify certain types of transformations that should

not prevent signature verification, even when performed on content

covered by the signature. The following list describes those

transformations:

Combination of header fields with the same field name.

Reordering of header fields with different names.

Conversion between HTTP/1.x and HTTP/2, or vice-versa.

Changes in casing (e.g., "Origin" to "origin") of any case-

insensitive content such as header field names, request URI

scheme, or host.

Addition or removal of leading or trailing whitespace to a header

field value.

Addition or removal of obs-folds.

Changes to the request-target and Host header field that when

applied together do not result in a change to the message's

effective request URI, as defined in Section 5.5 of [HTTP].

Additionally, all changes to content not covered by the signature

are considered safe.

1.4. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The terms "HTTP message", "HTTP method", "HTTP request", "HTTP

response", absolute-form, absolute-path, "effective request URI",

"gateway", "header field", "intermediary", request-target, "sender",

and "recipient" are used as defined in [HTTP].

For brevity, the term "signature" on its own is used in this

document to refer to both digital signatures and keyed MACs.

Similarly, the verb "sign" refers to the generation of either a

digital signature or keyed MAC over a given input string. The

*

¶

¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7230#section-5.7.1
https://rfc-editor.org/rfc/rfc7239#section-4
https://rfc-editor.org/rfc/rfc7230#section-5.5

Decimal String

Integer String

Signer

Verifier

qualified term "digital signature" refers specifically to the output

of an asymmetric cryptographic signing operation.

In addition to those listed above, this document uses the following

terms:

An Integer String optionally concatenated with a period "."

followed by a second Integer String, representing a positive real

number expressed in base 10. The first Integer String represents

the integral portion of the number, while the optional second

Integer String represents the fractional portion of the number.

[[Editor's note: There's got to be a definition for this that we

can reference.]]

A US-ASCII string of one or more digits "0-9", representing a

positive integer in base 10. [[Editor's note: There's got to be

a definition for this that we can reference.]]

The entity that is generating or has generated an HTTP Message

Signature.

An entity that is verifying or has verified an HTTP Message

Signature against an HTTP Message. Note that an HTTP Message

Signature may be verified multiple times, potentially by

different entities.

This document contains non-normative examples of partial and

complete HTTP messages. To improve readability, header fields may be

split into multiple lines, using the obs-fold syntax. This syntax is

deprecated in [HTTP], and senders MUST NOT generate messages that

include it.

2. Identifying and Canonicalizing Content

In order to allow signers and verifiers to establish which content

is covered by a signature, this document defines content identifiers

for signature metadata and discrete pieces of message content that

may be covered by an HTTP Message Signature.

Some content within HTTP messages may undergo transformations that

change the bitwise value without altering meaning of the content

(for example, the merging together of header fields with the same

name). Message content must therefore be canonicalized before it is

signed, to ensure that a signature can be verified despite such

innocuous transformations. This document defines rules for each

¶

¶

¶

¶

¶

¶

¶

¶

content identifier that transform the identifier's associated

content into such a canonical form.

The following sections define content identifiers, their associated

content, and their canonicalization rules.

2.1. HTTP Header Fields

An HTTP header field value is identified by its header field name.

While HTTP header field names are case-insensitive, implementations

SHOULD use lowercased field names (e.g., content-type, date, etag)

when using them as content identifiers.

An HTTP header field value is canonicalized as follows:

Create an ordered list of the field values of each instance of

the header field in the message, in the order that they occur

(or will occur) in the message.

Strip leading and trailing whitespace from each item in the

list.

Concatenate the list items together, with a comma "," and space

" " between each item. The resulting string is the

canonicalized value.

2.1.1. Canonicalization Examples

This section contains non-normative examples of canonicalized values

for header fields, given the following example HTTP message:

HTTP/1.1 200 OK

Server: www.example.com

Date: Tue, 07 Jun 2014 20:51:35 GMT

X-OWS-Header: Leading and trailing whitespace.

X-Obs-Fold-Header: Obsolete

 line folding.

X-Empty-Header:

Cache-Control: max-age=60

Cache-Control: must-revalidate

The following table shows example canonicalized values for header

fields, given that message:

Header Field Canonicalized Value

(cache-control) max-age=60, must-revalidate

(date) Tue, 07 Jun 2014 20:51:35 GMT

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

Header Field Canonicalized Value

(server) www.example.com

(x-empty-header)

(x-obs-fold-header) Obsolete line folding.

(x-ows-header) Leading and trailing whitespace.

Table 1: Non-normative examples of header field

canonicalization.

2.2. Signature Creation Time

The signature's Creation Time (Section 3.1) is identified by the

(created) identifier.

Its canonicalized value is an Integer String containing the

signature's Creation Time expressed as the number of seconds since

the Epoch, as defined in Section 4.16 of [POSIX.1].

The use of seconds since the Epoch to canonicalize a timestamp

simplifies processing and avoids timezone management required by

specifications such as [RFC3339].

2.3. Signature Expiration Time

The signature's Expiration Time (Section 3.1) is identified by the

(expired) identifier.

Its canonicalized value is a Decimal String containing the

signature's Expiration Time expressed as the number of seconds since

the Epoch, as defined in Section 4.16 of [POSIX.1].

2.4. Target Endpoint

The request target endpoint, consisting of the request method and

the path and query of the effective request URI, is identified by

the (request-target) identifier.

Its value is canonicalized as follows:

Take the lowercased HTTP method of the message.

Append a space " ".

Append the path and query of the request target of the message,

formatted according to the rules defined for the :path pseudo-

header in [HTTP2], Section 8.1.2.3. The resulting string is the

canonicalized value.

¶

¶

¶

¶

¶

¶

¶

1. ¶

2. ¶

3.

¶

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://rfc-editor.org/rfc/rfc7540#section-8.1.2.3

2.4.1. Canonicalization Examples

The following table contains non-normative example HTTP messages and

their canonicalized (request-target) values.

HTTP Message (request-target)

POST /?param=value HTTP/1.1

Host: www.example.com
post /?param=value

POST /a/b HTTP/1.1

Host: www.example.com
post /a/b

GET http://www.example.com/a/ HTTP/1.1 get /a/

GET http://www.example.com HTTP/1.1 get /

CONNECT server.example.com:80 HTTP/1.1

Host: server.example.com
connect /

OPTIONS * HTTP/1.1

Host: server.example.com
options *

Table 2: Non-normative examples of (request-target)

canonicalization.

3. HTTP Message Signatures

An HTTP Message Signature is a signature over a string generated

from a subset of the content in an HTTP message and metadata about

the signature itself. When successfully verified against an HTTP

message, it provides cryptographic proof that with respect to the

¶

¶

¶

¶

¶

¶

¶

Algorithm

Creation Time

Covered Content

Expiration Time

Verification Key Material

subset of content that was signed, the message is semantically

equivalent to the message for which the signature was generated.

3.1. Signature Metadata

HTTP Message Signatures have metadata properties that provide

information regarding the signature's generation and/or

verification. The following metadata properties are defined:

An HTTP Signature Algorithm defined in the HTTP Signature

Algorithms Registry defined in this document. It describes the

signing and verification algorithms for the signature.

A timestamp representing the point in time that the signature was

generated. Sub-second precision is not supported. A signature's

Creation Time MAY be undefined, indicating that it is unknown.

An ordered list of content identifiers (Section 2) that indicates

the metadata and message content that is covered by the

signature. The order of identifiers in this list affects

signature generation and verification, and therefore MUST be

preserved.

A timestamp representing the point in time at which the signature

expires. An expired signature always fails verification. A

signature's Expiration Time MAY be undefined, indicating that the

signature does not expire.

The key material required to verify the signature.

3.2. Creating a Signature

In order to create a signature, a signer completes the following

process:

Choose key material and algorithm, and set metadata properties

(Section 3.2.1)

Create the Signature Input (Section 3.2.2)

Sign the Signature Input (Section 3.2.3)

The following sections describe each of these steps in detail.

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2. ¶

3. ¶

¶

3.2.1. Choose and Set Signature Metadata Properties

The signer chooses an HTTP Signature Algorithm from those

registered in the HTTP Signature Algorithms Registry defined by

this document, and sets the signature's Algorithm property to

that value. The signer MUST NOT choose an algorithm marked

"Deprecated". The mechanism by which the signer chooses an

algorithm is out of scope for this document.

The signer chooses key material to use for signing and

verification, and sets the signature's Verification Key

Material property to the key material required for

verification. The signer MUST choose key material that is

appropriate for the signature's Algorithm, and that conforms to

any requirements defined by the Algorithm, such as key size or

format. The mechanism by which the signer chooses key material

is out of scope for this document.

The signer sets the signature's Creation Time property to the

current time.

The signer sets the signature's Expiration Time property to the

time at which the signature is to expire, or to undefined if

the signature will not expire.

The signer creates an ordered list of content identifiers

representing the message content and signature metadata to be

covered by the signature, and assigns this list as the

signature's Covered Content. Each identifier MUST be one of

those defined in Section 2. This list MUST NOT be empty, as

this would result in creating a signature over the empty

string. If the signature's Algorithm name does not start with

rsa, hmac, or ecdsa, signers SHOULD include (created) and

(request-target) in the list. If the signature's Algorithm

starts with rsa, hmac, or ecdsa, signers SHOULD include date

and (request-target) in the list. Further guidance on what to

include in this list and in what order is out of scope for this

document. However, the list order is significant and once

established for a given signature it MUST be preserved for that

signature.

For example, given the following HTTP message:

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

GET /foo HTTP/1.1

Host: example.org

Date: Tue, 07 Jun 2014 20:51:35 GMT

X-Example: Example header

 with some whitespace.

X-EmptyHeader:

Cache-Control: max-age=60

Cache-Control: must-revalidate

The following table presents a non-normative example of metadata

values that a signer may choose:

Property Value

Algorithm rsa-256

Covered Content
(request-target), (created), host, date, cache-

contol, x-emptyheader, x-example

Creation Time
Equal to the value specified in the Date header

field.

Expiration Time Equal to the Creation Time plus five minutes.

Verification Key

Material

The public key provided in Appendix A.1.1 and

identified by the keyId value "test-key-b".

Table 3: Non-normative example metadata values

3.2.2. Create the Signature Input

The Signature Input is a US-ASCII string containing the content that

will be signed. To create it, the signer concatenates together

entries for each identifier in the signature's Covered Content in

the order it occurs in the list, with each entry separated by a

newline "\n". An identifier's entry is a US-ASCII string consisting

of the lowercased identifier followed with a colon ":", a space " ",

and the identifier's canonicalized value (described below).

If Covered Content contains (created) and the signature's Creation

Time is undefined or the signature's Algorithm name starts with rsa,

hmac, or ecdsa an implementation MUST produce an error.

If Covered Content contains (expires) and the signature does not

have an Expiration Time or the signature's Algorithm name starts

with rsa, hmac, or ecdsa an implementation MUST produce an error.

If Covered Content contains an identifier for a header field that is

not present or malformed in the message, the implementation MUST

produce an error.

¶

¶

¶

¶

¶

¶

For the non-normative example Signature metadata in Table 3, the

corresponding Signature Input is:

(request-target): get /foo

(created): 1402170695

host: example.org

date: Tue, 07 Jun 2014 20:51:35 GMT

cache-control: max-age=60, must-revalidate

x-emptyheader:

x-example: Example header with some whitespace.

Figure 1: Non-normative example Signature Input

3.2.3. Sign the Signature Input

The signer signs the Signature Input using the signing algorithm

described by the signature's Algorithm property, and the key

material chosen by the signer. The signer then encodes the result of

that operation as a base 64-encoded string [RFC4648]. This string is

the signature value.

For the non-normative example Signature metadata in Section 3.2.1

and Signature Input in Figure 1, the corresponding signature value

is:

T1l3tWH2cSP31nfuvc3nVaHQ6IAu9YLEXg2pCeEOJETXnlWbgKtBTaXV6LNQWtf4O42V2

DZwDZbmVZ8xW3TFW80RrfrY0+fyjD4OLN7/zV6L6d2v7uBpuWZ8QzKuHYFaRNVXgFBXN3

VJnsIOUjv20pqZMKO3phLCKX2/zQzJLCBQvF/5UKtnJiMp1ACNhG8LF0Q0FPWfe86YZBB

xqrQr5WfjMu0LOO52ZAxi9KTWSlceJ2U361gDb7S5Deub8MaDrjUEpluphQeo8xyvHBoN

Xsqeax/WaHyRYOgaW6krxEGVaBQAfA2czYZhEA05Tb38ahq/gwDQ1bagd9rGnCHtAg==

Figure 2: Non-normative example signature value

3.3. Verifying a Signature

In order to verify a signature, a verifier MUST:

Examine the signature's metadata to confirm that the signature

meets the requirements described in this document, as well as

any additional requirements defined by the application such as

which header fields or other content are required to be covered

by the signature.

¶

¶

¶

¶

¶

¶

1.

¶

Use the received HTTP message and the signature's metadata to

recreate the Signature Input, using the process described in

Section 3.2.2.

Use the signature's Algorithm and Verification Key Material

with the recreated Signing Input to verify the signature value.

A signature with a Creation Time that is in the future or an

Expiration Time that is in the past MUST NOT be processed.

The verifier MUST ensure that a signature's Algorithm is appropriate

for the key material the verifier will use to verify the signature.

If the Algorithm is not appropriate for the key material (for

example, if it is the wrong size, or in the wrong format), the

signature MUST NOT be processed.

3.3.1. Enforcing Application Requirements

The verification requirements specified in this document are

intended as a baseline set of restrictions that are generally

applicable to all use cases. Applications using HTTP Message

Signatures MAY impose requirements above and beyond those specified

by this document, as appropriate for their use case.

Some non-normative examples of additional requirements an

application might define are:

Requiring a specific set of header fields to be signed (e.g.,

Authorization, Digest).

Enforcing a maximum signature age.

Prohibiting the use of certain algorithms, or mandating the use

of an algorithm.

Requiring keys to be of a certain size (e.g., 2048 bits vs. 1024

bits).

Application-specific requirements are expected and encouraged. When

an application defines additional requirements, it MUST enforce them

during the signature verification process, and signature

verification MUST fail if the signature does not conform to the

application's requirements.

Applications MUST enforce the requirements defined in this document.

Regardless of use case, applications MUST NOT accept signatures that

do not conform to these requirements.

2.

¶

3.

¶

¶

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

¶

¶

algorithm

created

4. The 'Signature' HTTP Header

The "Signature" HTTP header provides a mechanism to attach a

signature to the HTTP message from which it was generated. The

header field name is "Signature" and its value is a list of

parameters and values, formatted according to the signature syntax

defined below, using the extended Augmented Backus-Naur Form (ABNF)

notation used in [HTTP].

signature = #(sig-param)

sig-param = token BWS "=" BWS (token / quoted-string)

Each sig-param is the name of a parameter defined in the Section 5.2

defined in this document. The initial contents of this registry are

described in Section 4.1.

4.1. Signature Header Parameters

The Signature header's parameters contain the signature value itself

and the signature metadata properties required to verify the

signature. Unless otherwise specified, parameters MUST NOT occur

multiple times in one header, whether with the same or different

values. The following parameters are defined:

RECOMMENDED. The algorithm parameter contains the name of the

signature's Algorithm, as registered in the HTTP Signature

Algorithms Registry defined by this document. Verifiers MUST

determine the signature's Algorithm from the keyId parameter

rather than from algorithm. If algorithm is provided and differs

from or is incompatible with the algorithm or key material

identified by keyId (for example, algorithm has a value of rsa-

sha256 but keyId identifies an EdDSA key), then implementations

MUST produce an error. Implementers should note that previous

versions of this specification determined the signature's

Algorithm using the algorithm parameter only, and thus could be

utilized by attackers to expose security vulnerabilities. The

default value for this parameter is "hs2019".

RECOMMENDED. The created parameter contains the signature's

Creation Time, expressed as the canonicalized value of the

(created) content identifier, as defined in Section 2. If not

specified, the signature's Creation Time is undefined. This

parameter is useful when signers are not capable of controlling

the Date HTTP Header such as when operating in certain web

browser environments.

¶

¶

¶

¶

¶

¶

expires

headers

keyId

signature

OPTIONAL. The expires parameter contains the signature's

Expiration Time, expressed as the canonicalized value of the

(expires) content identifier, as defined in Section 2. If the

signature does not have an Expiration Time, this parameter MUST

be omitted. If not specified, the signature's Expiration Time is

undefined.

OPTIONAL. The headers parameter contains the signature's Covered

Content, expressed as a string containing a quoted list of the

identifiers in the list, in the order they occur in the list,

with a space " " between each identifier. If specified,

identifiers for header fields SHOULD be lowercased and all others

MUST be lowercased. The default value for this parameter is

"(created)".

REQUIRED. The keyId parameter is a US-ASCII string whose value

can be used by a verifier to identify and/or obtain the

signature's Verification Key Material. The format and semantics

of this value are out of scope for this document.

REQUIRED. The signature parameter contains the signature value,

as described in Section 3.2.3.

4.2. Example

The following is a non-normative example Signature header field

representing the signature in Figure 2:

Signature: keyId="test-key-b", algorithm="rsa-sha256",

 created=1402170695, expires=1402170995,

 headers="(request-target) (created) host date cache-control

 x-emptyheader x-example",

 signature="T1l3tWH2cSP31nfuvc3nVaHQ6IAu9YLEXg2pCeEOJETXnlWbgKtBTa

 XV6LNQWtf4O42V2DZwDZbmVZ8xW3TFW80RrfrY0+fyjD4OLN7/zV6L6d2v7uB

 puWZ8QzKuHYFaRNVXgFBXN3VJnsIOUjv20pqZMKO3phLCKX2/zQzJLCBQvF/5

 UKtnJiMp1ACNhG8LF0Q0FPWfe86YZBBxqrQr5WfjMu0LOO52ZAxi9KTWSlceJ

 2U361gDb7S5Deub8MaDrjUEpluphQeo8xyvHBoNXsqeax/WaHyRYOgaW6krxE

 GVaBQAfA2czYZhEA05Tb38ahq/gwDQ1bagd9rGnCHtAg=="

¶

¶

¶

¶

¶

¶

Algorithm Name

Status

Description

Algorithm Name

Status

5. IANA Considerations

5.1. HTTP Signature Algorithms Registry

This document defines HTTP Signature Algorithms, for which IANA is

asked to create and maintain a new registry titled "HTTP Signature

Algorithms". Initial values for this registry are given in Section

5.1.2. Future assignments and modifications to existing assignment

are to be made through the Expert Review registration policy [BCP

26] and shall follow the template presented in Section 5.1.1.

5.1.1. Registration Template

An identifier for the HTTP Signature Algorithm. The name MUST be

an ASCII string consisting only of lower-case characters ("a" -

"z"), digits ("0" - "9"), and hyphens ("-"), and SHOULD NOT

exceed 20 characters in length. The identifier MUST be unique

within the context of the registry.

A brief text description of the status of the algorithm. The

description MUST begin with one of "Active" or "Deprecated", and

MAY provide further context or explanation as to the reason for

the status.

A description of the algorithm used to sign the signing string

when generating an HTTP Message Signature, or instructions on how

to determine that algorithm. When the description specifies an

algorithm, it MUST include a reference to the document or

documents that define the algorithm.

5.1.2. Initial Contents

[[MS: The references in this section are problematic as many of the

specifications that they refer to are too implementation specific,

rather than just pointing to the proper signature and hashing

specifications. A better approach might be just specifying the

signature and hashing function specifications, leaving implementers

to connect the dots (which are not that hard to connect).]]

hs2019

hs2019

active

¶

¶

¶

¶

¶

¶

¶

Description

Algorithm Name

Status

Description

Algorithm Name

Status

Description

Algorithm Name

Status

Description

Algorithm Name

Derived from metadata associated with keyId. Recommend support

for:

RSASSA-PSS [RFC8017] using SHA-512 [RFC6234]

HMAC [RFC2104] using SHA-512 [RFC6234]

ECDSA using curve P-256 [DSS] and SHA-512 [RFC6234]

Ed25519ph, Ed25519ctx, and Ed25519 [RFC8032]

rsa-sha1

rsa-sha1

Deprecated; SHA-1 not secure.

RSASSA-PKCS1-v1_5 [RFC8017] using SHA-1 [RFC6234]

rsa-sha256

rsa-sha256

Deprecated; specifying signature algorithm enables attack vector.

RSASSA-PKCS1-v1_5 [RFC8017] using SHA-256 [RFC6234]

hmac-sha256

hmac-sha256

Deprecated; specifying signature algorithm enables attack vector.

HMAC [RFC2104] using SHA-256 [RFC6234]

ecdsa-sha256

ecdsa-sha256

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Status

Description

Name

Status

Reference(s)

Deprecated; specifying signature algorithm enables attack vector.

ECDSA using curve P-256 [DSS] and SHA-256 [RFC6234]

5.2. HTTP Signature Parameters Registry

This document defines the Signature header field, whose value

contains a list of named parameters. IANA is asked to create and

maintain a new registry titled "HTTP Signature Parameters" to record

and maintain the set of named parameters defined for use within the

Signature header field. Initial values for this registry are given

in Section 5.2.2. Future assignments and modifications to existing

assignment are to be made through the Expert Review registration

policy [BCP 26] and shall follow the template presented in Section

5.2.1.

5.2.1. Registration Template

An identifier for the parameter. The name MUST be an ASCII string

consisting only of lower-case characters ("a" - "z"), digits ("0"

- "9"), and hyphens ("-"), and SHOULD NOT exceed 20 characters in

length. The identifier MUST be unique within the context of the

registry.

A value indicating the status of the parameter definition.

Allowed values are "Active" and "Deprecated". Active parameter

definitions are available for general use. Deprecated parameter

definitions may be in use by existing implementations, but SHOULD

NOT be used by new implementations.

A reference or list of references to the documents that define

the purpose, content, and usage of the parameter. The parameter

definition MUST define the format of the parameter's value using

the extended ABNF notation used in [HTTP], or by referencing one

or more standard formats such as base 64 or URI. The parameter

definition MUST also specify the normative requirements for when

and how the parameter may be used. Value formats MUST NOT allow

values that would break the parameter list syntax used by the

Signature header.

5.2.2. Initial Contents

The table below contains the initial contents of the HTTP Signature

Parameters Registry. Each row in the table represents a distinct

entry in the registry.

¶

¶

¶

¶

¶

¶

¶

[BCP 26]

[DSS]

[HTTP]

[HTTP2]

Name Status Reference(s)

algorithm Active Section 4.1 of this document

created Active Section 4.1 of this document

expires Active Section 4.1 of this document

headers Active Section 4.1 of this document

keyId Active Section 4.1 of this document

signature Active Section 4.1 of this document

Table 4: Initial contents of the HTTP Signature

Parameters Registry.

6. Security Considerations

[[TODO: need to dive deeper on this section; not sure how much of

what's referenced below is actually applicable, or if it covers

everything we need to worry about.]]

[[TODO: Should provide some recommendations on how to determine

what content needs to be signed for a given use case.]]

There are a number of security considerations to take into account

when implementing or utilizing this specification. A thorough

security analysis of this protocol, including its strengths and

weaknesses, can be found in Security Considerations for HTTP

Signatures [WP-HTTP-Sig-Audit].

7. References

7.1. Normative References

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

NIST, "Digital Signature Standard (DSS)", FIPS 186-4, DOI

10.6028/NIST.FIPS.186-4, July 2013, <https://

csrc.nist.gov/publications/detail/fips/186/4/final>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540

[POSIX.1]

[RFC2104]

[RFC2119]

[RFC3986]

[RFC4648]

[RFC7541]

[RFC8174]

[RFC3339]

[RFC6234]

IEEE and The Open Group, "The Open Group Base

Specifications Issue 7, 2018 edition", IEEE Std

1003.1-2017, 2018, <https://pubs.opengroup.org/

onlinepubs/9699919799/>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Peon, R. and H. Ruellan, "HPACK: Header Compression for

HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,

<https://www.rfc-editor.org/info/rfc7541>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc7541
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc3339

[RFC7239]

[RFC7518]

[RFC8017]

[RFC8032]

[RFC8446]

[WP-HTTP-Sig-Audit]

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/info/rfc6234>.

Petersson, A. and M. Nilsson, "Forwarded HTTP Extension",

RFC 7239, DOI 10.17487/RFC7239, June 2014, <https://

www.rfc-editor.org/info/rfc7239>.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI

10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/

info/rfc7518>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Sporny, M., "Security Considerations for HTTP

Signatures", June 2013, <https://web-payments.org/specs/

source/http-signatures-audit/>.

Appendix A. Examples

A.1. Example Keys

This section provides cryptographic keys that are referenced in

example signatures throughout this document. These keys MUST NOT be

used for any purpose other than testing.

A.1.1. rsa-test

The following key is a 2048-bit RSA public and private key pair:

¶

¶

https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc7239
https://www.rfc-editor.org/info/rfc7239
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8446
https://web-payments.org/specs/source/http-signatures-audit/
https://web-payments.org/specs/source/http-signatures-audit/

-----BEGIN RSA PUBLIC KEY-----

MIIBCgKCAQEAhAKYdtoeoy8zcAcR874L8cnZxKzAGwd7v36APp7Pv6Q2jdsPBRrw

WEBnez6d0UDKDwGbc6nxfEXAy5mbhgajzrw3MOEt8uA5txSKobBpKDeBLOsdJKFq

MGmXCQvEG7YemcxDTRPxAleIAgYYRjTSd/QBwVW9OwNFhekro3RtlinV0a75jfZg

kne/YiktSvLG34lw2zqXBDTC5NHROUqGTlML4PlNZS5Ri2U4aCNx2rUPRcKIlE0P

uKxI4T+HIaFpv8+rdV6eUgOrB2xeI1dSFFn/nnv5OoZJEIB+VmuKn3DCUcCZSFlQ

PSXSfBDiUGhwOw76WuSSsf1D4b/vLoJ10wIDAQAB

-----END RSA PUBLIC KEY-----

-----BEGIN RSA PRIVATE KEY-----

MIIEqAIBAAKCAQEAhAKYdtoeoy8zcAcR874L8cnZxKzAGwd7v36APp7Pv6Q2jdsP

BRrwWEBnez6d0UDKDwGbc6nxfEXAy5mbhgajzrw3MOEt8uA5txSKobBpKDeBLOsd

JKFqMGmXCQvEG7YemcxDTRPxAleIAgYYRjTSd/QBwVW9OwNFhekro3RtlinV0a75

jfZgkne/YiktSvLG34lw2zqXBDTC5NHROUqGTlML4PlNZS5Ri2U4aCNx2rUPRcKI

lE0PuKxI4T+HIaFpv8+rdV6eUgOrB2xeI1dSFFn/nnv5OoZJEIB+VmuKn3DCUcCZ

SFlQPSXSfBDiUGhwOw76WuSSsf1D4b/vLoJ10wIDAQABAoIBAG/JZuSWdoVHbi56

vjgCgkjg3lkO1KrO3nrdm6nrgA9P9qaPjxuKoWaKO1cBQlE1pSWp/cKncYgD5WxE

CpAnRUXG2pG4zdkzCYzAh1i+c34L6oZoHsirK6oNcEnHveydfzJL5934egm6p8DW

+m1RQ70yUt4uRc0YSor+q1LGJvGQHReF0WmJBZHrhz5e63Pq7lE0gIwuBqL8SMaA

yRXtK+JGxZpImTq+NHvEWWCu09SCq0r838ceQI55SvzmTkwqtC+8AT2zFviMZkKR

Qo6SPsrqItxZWRty2izawTF0Bf5S2VAx7O+6t3wBsQ1sLptoSgX3QblELY5asI0J

YFz7LJECgYkAsqeUJmqXE3LP8tYoIjMIAKiTm9o6psPlc8CrLI9CH0UbuaA2JCOM

cCNq8SyYbTqgnWlB9ZfcAm/cFpA8tYci9m5vYK8HNxQr+8FS3Qo8N9RJ8d0U5Csw

DzMYfRghAfUGwmlWj5hp1pQzAuhwbOXFtxKHVsMPhz1IBtF9Y8jvgqgYHLbmyiu1

mwJ5AL0pYF0G7x81prlARURwHo0Yf52kEw1dxpx+JXER7hQRWQki5/NsUEtv+8RT

qn2m6qte5DXLyn83b1qRscSdnCCwKtKWUug5q2ZbwVOCJCtmRwmnP131lWRYfj67

B/xJ1ZA6X3GEf4sNReNAtaucPEelgR2nsN0gKQKBiGoqHWbK1qYvBxX2X3kbPDkv

9C+celgZd2PW7aGYLCHq7nPbmfDV0yHcWjOhXZ8jRMjmANVR/eLQ2EfsRLdW69bn

f3ZD7JS1fwGnO3exGmHO3HZG+6AvberKYVYNHahNFEw5TsAcQWDLRpkGybBcxqZo

81YCqlqidwfeO5YtlO7etx1xLyqa2NsCeG9A86UjG+aeNnXEIDk1PDK+EuiThIUa

/2IxKzJKWl1BKr2d4xAfR0ZnEYuRrbeDQYgTImOlfW6/GuYIxKYgEKCFHFqJATAG

IxHrq1PDOiSwXd2GmVVYyEmhZnbcp8CxaEMQoevxAta0ssMK3w6UsDtvUvYvF22m

qQKBiD5GwESzsFPy3Ga0MvZpn3D6EJQLgsnrtUPZx+z2Ep2x0xc5orneB5fGyF1P

WtP+fG5Q6Dpdz3LRfm+KwBCWFKQjg7uTxcjerhBWEYPmEMKYwTJF5PBG9/ddvHLQ

EQeNC8fHGg4UXU8mhHnSBt3EA10qQJfRDs15M38eG2cYwB1PZpDHScDnDA0=

-----END RSA PRIVATE KEY-----

A.2. Example keyId Values

The table below maps example keyId values to associated algorithms

and/or keys. These are example mappings that are valid only within

the context of examples in examples within this and future documents

that reference this section. Unless otherwise specified, within the

context of examples it should be assumed that the signer and

verifier understand these keyId mappings. These keyId values are not

reserved, and deployments are free to use them, with these

associations or others.

¶

¶

keyId Algorithm Verification Key

test-

key-a

hs2019, using RSASSA-PSS

[RFC8017] and SHA-512 [RFC6234]

The public key specified

in Appendix A.1.1.

test-

key-b
rsa-256

The public key specified

in Appendix A.1.1.

Table 5

A.3. Test Cases

This section provides non-normative examples that may be used as

test cases to validate implementation correctness. These examples

are based on the following HTTP message:

POST /foo?param=value&pet=dog HTTP/1.1

Host: example.com

Date: Tue, 07 Jun 2014 20:51:35 GMT

Content-Type: application/json

Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

Content-Length: 18

{"hello": "world"}

A.3.1. Signature Generation

A.3.1.1. hs2019 signature over minimal recommended content

This presents metadata for a Signature using hs2019, over minimum

recommended data to sign:

Property Value

Algorithm
hs2019, using RSASSA-PSS [RFC8017] using

SHA-512 [RFC6234]

Covered Content (created) (request-target)

Creation Time 8:51:35 PM GMT, June 7th, 2014

Expiration Time Undefined

Verification Key

Material
The public key specified in Appendix A.1.1.

Table 6

The Signature Input is:

(created): 1402170695

(request-target): post /foo?param=value&pet=dog

The signature value is:

¶

¶

¶

¶

¶

¶

e3y37nxAoeuXw2KbaIxE2d9jpE7Z9okgizg6QbD2Z7fUVUvog+ZTKKLRBnhNglVIY6fAa

YlHwx7ZAXXdBVF8gjWBPL6U9zRrB4PFzjoLSxHaqsvS0ZK9FRxpenptgukaVQ1aeva3PE

1aD6zZ93df2lFIFXGDefYCQ+M/SrDGQOFvaVykEkte5mO6zQZ/HpokjMKvilfSMJS+vbv

C1GJItQpjs636Db+7zB2W1BurkGxtQdCLDXuIDg4S8pPSDihkch/dUzL2BpML3PXGKVXw

HOUkVG6Q2ge07IYdzya6N1fIVA9eKI1Y47HT35QliVAxZgE0EZLo8mxq19ReIVvuFg==

A possible Signature header for this signature is:

Signature: keyId="test-key-a", created=1402170695,

 headers="(created) (request-target)",

 signature="e3y37nxAoeuXw2KbaIxE2d9jpE7Z9okgizg6QbD2Z7fUVUvog+ZTKK

 LRBnhNglVIY6fAaYlHwx7ZAXXdBVF8gjWBPL6U9zRrB4PFzjoLSxHaqsvS0ZK

 9FRxpenptgukaVQ1aeva3PE1aD6zZ93df2lFIFXGDefYCQ+M/SrDGQOFvaVyk

 Ekte5mO6zQZ/HpokjMKvilfSMJS+vbvC1GJItQpjs636Db+7zB2W1BurkGxtQ

 dCLDXuIDg4S8pPSDihkch/dUzL2BpML3PXGKVXwHOUkVG6Q2ge07IYdzya6N1

 fIVA9eKI1Y47HT35QliVAxZgE0EZLo8mxq19ReIVvuFg=="

A.3.1.2. hs2019 signature covering all header fields

This presents metadata for a Signature using hs2019 that covers all

header fields in the request:

Property Value

Algorithm
hs2019, using RSASSA-PSS [RFC8017] using SHA-512

[RFC6234]

Covered Content
(created), (request-target), host, date, content-

type, digest, content-length

Creation Time 8:51:35 PM GMT, June 7th, 2014

Expiration Time Undefined

Verification Key

Material
The public key specified in Appendix A.1.1.

Table 7

The Signature Input is:

(created): 1402170695

(request-target): post /foo?param=value&pet=dog

host: example.com

date: Tue, 07 Jun 2014 20:51:35 GMT

content-type: application/json

digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

content-length: 18

¶

¶

¶

¶

¶

¶

The signature value is:

KXUj1H3ZOhv3Nk4xlRLTn4bOMlMOmFiud3VXrMa9MaLCxnVmrqOX5BulRvB65YW/wQp0o

T/nNQpXgOYeY8ovmHlpkRyz5buNDqoOpRsCpLGxsIJ9cX8XVsM9jy+Q1+RIlD9wfWoPHh

qhoXt35ZkasuIDPF/AETuObs9QydlsqONwbK+TdQguDK/8Va1Pocl6wK1uLwqcXlxhPEb

55EmdYB9pddDyHTADING7K4qMwof2mC3t8Pb0yoLZoZX5a4Or4FrCCKK/9BHAhq/RsVk0

dTENMbTB4i7cHvKQu+o9xuYWuxyvBa0Z6NdOb0di70cdrSDEsL5Gz7LBY5J2N9KdGg==

A possible Signature header for this signature is:

Signature: keyId="test-key-a", algorithm="hs2019",

 created=1402170695,

 headers="(request-target) (created) host date content-type digest

 content-length",

 signature="KXUj1H3ZOhv3Nk4xlRLTn4bOMlMOmFiud3VXrMa9MaLCxnVmrqOX5B

 ulRvB65YW/wQp0oT/nNQpXgOYeY8ovmHlpkRyz5buNDqoOpRsCpLGxsIJ9cX8

 XVsM9jy+Q1+RIlD9wfWoPHhqhoXt35ZkasuIDPF/AETuObs9QydlsqONwbK+T

 dQguDK/8Va1Pocl6wK1uLwqcXlxhPEb55EmdYB9pddDyHTADING7K4qMwof2m

 C3t8Pb0yoLZoZX5a4Or4FrCCKK/9BHAhq/RsVk0dTENMbTB4i7cHvKQu+o9xu

 YWuxyvBa0Z6NdOb0di70cdrSDEsL5Gz7LBY5J2N9KdGg=="

A.3.2. Signature Verification

A.3.2.1. Minimal Required Signature Header

This presents a Signature header containing only the minimal

required parameters:

Signature: keyId="test-key-a", (created): 1402170695,

 signature="V3SijFpJOvDUT8t1/EnYli/4TbF2AGqwBGiGUGrgClCkiOAIlOxxY7

 2Mr13DccFkYzg3gX1jIOpKXzH70C5bru4b71SBG+ShiJLu34gHCG33iw44NLG

 UvT5+F+LCKbbHberyk8eyYsZ+TLwtZAYKafxfNOWQXF4o3QaWslDMm8Tcgrd8

 onM45ayFyR4nXRlcGad4PISYGz8PmO4Y+K8RYOyDkgsmRxKtftFQUYG41anyE

 lccNLfEfLBKsyV6kxr36U1Q7FdUopLv8kqluQySrWD6kesvFxNvbEOi+1uZqT

 uFlK8ZldITQiqtNYaabRjQFZio63gma2y+UAaTGLdM9A=="

The corresponding signature metadata derived from this header field

is:

Property Value

Algorithm
hs2019, using RSASSA-PSS [RFC8017] using

SHA-256 [RFC6234]

Covered Content (created)

Creation Time 8:51:35 PM GMT, June 7th, 2014

¶

¶

¶

¶

¶

¶

¶

Property Value

Expiration Time Undefined

Verification Key

Material
The public key specified in Appendix A.1.1.

Table 8

The corresponding Signature Input is:

(created): 1402170695

A.3.2.2. Minimal Recommended Signature Header

This presents a Signature header containing only the minimal

required and recommended parameters:

Signature: algorithm="hs2019", keyId="test-key-a",

 (created): 1402170695,

 signature="V3SijFpJOvDUT8t1/EnYli/4TbF2AGqwBGiGUGrgClCkiOAIlOxxY7

 2Mr13DccFkYzg3gX1jIOpKXzH70C5bru4b71SBG+ShiJLu34gHCG33iw44NLG

 UvT5+F+LCKbbHberyk8eyYsZ+TLwtZAYKafxfNOWQXF4o3QaWslDMm8Tcgrd8

 onM45ayFyR4nXRlcGad4PISYGz8PmO4Y+K8RYOyDkgsmRxKtftFQUYG41anyE

 lccNLfEfLBKsyV6kxr36U1Q7FdUopLv8kqluQySrWD6kesvFxNvbEOi+1uZqT

 uFlK8ZldITQiqtNYaabRjQFZio63gma2y+UAaTGLdM9A=="

The corresponding signature metadata derived from this header field

is:

Property Value

Algorithm
hs2019, using RSASSA-PSS [RFC8017] using

SHA-512 [RFC6234]

Covered Content (created)

Creation Time 8:51:35 PM GMT, June 7th, 2014

Expiration Time Undefined

Verification Key

Material
The public key specified in Appendix A.1.1.

Table 9

The corresponding Signature Input is:

(created): 1402170695

¶

¶

¶

¶

¶

¶

¶

A.3.2.3. Minimal Signature Header using rsa-256

This presents a minimal Signature header for a signature using the

rsa-256 algorithm:

Signature: algorithm="rsa-256", keyId="test-key-b",

 headers="date",

 signature="HtXycCl97RBVkZi66ADKnC9c5eSSlb57GnQ4KFqNZplOpNfxqk62Jz

 Z484jXgLvoOTRaKfR4hwyxlcyb+BWkVasApQovBSdit9Ml/YmN2IvJDPncrlh

 PDVDv36Z9/DiSO+RNHD7iLXugdXo1+MGRimW1RmYdenl/ITeb7rjfLZ4b9VNn

 LFtVWwrjhAiwIqeLjodVImzVc5srrk19HMZNuUejK6I3/MyN3+3U8tIRW4LWz

 x6ZgGZUaEEP0aBlBkt7Fj0Tt5/P5HNW/Sa/m8smxbOHnwzAJDa10PyjzdIbyw

 lnWIIWtZKPPsoVoKVopUWEU3TNhpWmaVhFrUL/O6SN3w=="

The corresponding signature metadata derived from this header field

is:

Property Value

Algorithm rsa-256

Covered Content date

Creation Time Undefined

Expiration Time Undefined

Verification Key

Material

The public key specified in Appendix A.

1.1.

Table 10

The corresponding Signature Input is:

date: Tue, 07 Jun 2014 20:51:35 GMT

Appendix B. Topics for Working Group Discussion

This section is to be removed before publishing as an RFC.

The goal of this draft document is to provide a starting point at

feature parity and compatible with the cavage-12 draft. The draft

has known issues that will need to be addressed during development,

and in the spirit of keeping compatibility, these issues have been

enumerated but not addressed in this version. The editor recommends

the working group discuss the issues and features described in this

section after adoption of the document by the working group. Topics

are not listed in any particular order.

¶

¶

¶

¶

¶

¶

¶

B.1. Issues

B.1.1. Confusing guidance on algorithm and key identification

The current draft encourages determining the Algorithm metadata

property from the keyId field, both in the guidance for the use of

algorithm and keyId, and the definition for the hs2019 algorithm and

deprecation of the other algorithms in the registry. The current

state arose from concern that a malicious party could change the

value of the algorithm parameter, potentially tricking the verifier

into accepting a signature that would not have been verified under

the actual parameter.

Punting algorithm identification into keyId hurts interoperability,

since we aren't defining the syntax or semantics of keyId. It

actually goes against that claim, as we are dictating that the

signing algorithm must be specified by keyId or derivable from it.

It also renders the algorithm registry essentially useless. Instead

of this approach, we can protect against manipulation of the

Signature header field by adding support for (and possibly

mandating) including Signature metadata within the Signature Input.

B.1.2. Lack of definition of keyId hurts interoperability

The current text leaves the format and semantics of keyId completely

up to the implementation. This is primarily due to the fact that

most implementers of Cavage have extensive investment in key

distribution and management, and just need to plug an identifier

into the header. We should support those cases, but we also need to

provide guidance for the developer that doesn't have that and just

wants to know how to identify a key. It may be enough to punt this

to profiling specs, but this needs to be explored more.

B.1.3. Algorithm Registry duplicates work of JWA

JSON Web Algorithms (JWA) [RFC7518] already defines an IANA registry

for cryptographic algorithms. This wasn't used by Cavage out of

concerns about complexity of JOSE, and issues with JWE and JWS being

too flexible, leading to insecure combinations of options. Using

JWA's definitions does not need to mean we're using JOSE, however.

We should look at if/how we can leverage JWA's work without

introducing too many sharp edges for implementers.

In any use of JWS algorithms, this spec would define a way to create

the JWS Signing Input string to be applied to the algorithm. It

should be noted that this is incompatible with JWS itself, which

requires the inclusion of a structured header in the signature

input.

¶

¶

¶

¶

¶

A possible approach is to incorporate all elements of the JWA

signature algorithm registry into this spec using a prefix or other

marker, such as jws-RS256 for the RSA 256 JSON Web Signature

algorithm.

B.1.4. Algorithm Registry should not be initialized with deprecated

entries

The initial entries in this document reflect those in Cavage. The

ones that are marked deprecated were done so because of the issue

explained in Appendix B.1.1, with the possible exception of rsa-

sha1. We should probably just remove that one.

B.1.5. No percent-encoding normalization of path/query

See: issue #26

The canonicalization rules for (request-target) do not perform

handle minor, semantically meaningless differences in percent-

encoding, such that verification could fail if an intermediary

normalizes the effective request URI prior to forwarding the

message.

At a minimum, they should be case and percent-encoding normalized as

described in sections 6.2.2.1 and 6.2.2.2 of [RFC3986].

B.1.6. Misleading name for headers parameter

The Covered Content list contains identifiers for more than just

headers, so the header parameter name is no longer appropriate. Some

alternatives: "content", "signed-content", "covered-content".

B.1.7. Changes to whitespace in header field values break verification

Some header field values contain RWS, OWS, and/or BWS. Since the

header field value canonicalization rules do not address whitespace,

changes to it (e.g., removing OWS or BWS or replacing strings of RWS

with a single space) can cause verification to fail.

B.1.8. Multiple Set-Cookie headers are not well supported

The Set-Cookie header can occur multiple times but does not adhere

to the list syntax, and thus is not well supported by the header

field value concatenation rules.

B.1.9. Covered Content list is not signed

The Covered Content list should be part of the Signature Input, to

protect against malicious changes.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/w3c-dvcg/http-signatures/issues/26
https://rfc-editor.org/rfc/rfc3986#section-6.2.2.1
https://rfc-editor.org/rfc/rfc3986#section-6.2.2.2

B.1.10. Algorithm is not signed

The Algorithm should be part of the Signature Input, to protect

against malicious changes.

B.1.11. Verification key identifier is not signed

The Verification key identifier (e.g., the value used for the keyId

parameter) should be part of the Signature Input, to protect against

malicious changes.

B.1.12. Max values, precision for Integer String and Decimal String

not defined

The definitions for Integer String and Decimal String do not specify

a maximum value. The definition for Decimal String (used to provide

sub-second precision for Expiration Time) does not define minimum or

maximum precision requirements. It should set a sane requirement

here (e.g., MUST support up to 3 decimal places and no more).

B.1.13. keyId parameter value could break list syntax

The keyId parameter value needs to be constrained so as to not break

list syntax (e.g., by containing a comma).

B.1.14. Creation Time and Expiration Time do not allow for clock skew

The processing instructions for Creation Time and Expiration Time

imply that verifiers are not permitted to account for clock skew

during signature verification.

B.1.15. Should require lowercased header field names as identifiers

The current text allows mixed-case header field names when they are

being used as content identifiers. This is unnecessary, as header

field names are case-insensitive, and creates opportunity for

incompatibility. Instead, content identifiers should always be

lowercase.

B.1.16. Reconcile Date header and Creation Time

The draft is missing guidance on if/how the Date header relates to

signature Creation Time. There are cases where they may be

different, such as if a signature was pre-created. Should Creation

Time default to the value in the Date header if the created

parameter is not specified?

¶

¶

¶

¶

¶

¶

¶

B.1.17. Remove algorithm-specific rules for content identifiers

The rules that restrict when the signer can or must include certain

identifiers appear to be related to the pseudo-revving of the Cavage

draft that happened when the hs2019 algorithm was introduced. We

should drop these rules, as it can be expected that anyone

implementing this draft will support all content identifiers.

B.1.18. Add guidance for signing compressed headers

The draft should provide guidance on how to sign headers when HTTP/2

header compression [RFC7541] is used. This guidance might be as

simple as "sign the uncompressed header field value."

B.1.19. Transformations to Via header field value break verification

Intermediaries are permitted to strip comments from the Via header

field value, and consolidate related sequences of entries. The

canonicalization rules do not account for these changes, and thus

they cause signature verification to fail if the Via header is

signed. At the very least, guidance on signing or not signing Via

headers needs to be included.

B.1.20. Case changes to case-insensitive header field values break

verification

Some header field values are case-insensitive, in whole or in part.

The canonicalization rules do not account for this, thus a case

change to a covered header field value causes verification to fail.

B.1.21. Need more examples for Signature header

Add more examples showing different cases e.g, where created or

expires are not present.

B.1.22. Expiration not needed

In many cases, putting the expiration of the signature into the

hands of the signer opens up more options for failures than

necessary. Instead of the expires, any verifier can use the created

field and an internal lifetime or offset to calculate expiration. We

should consider dropping the expires field.

¶

¶

¶

¶

¶

¶

B.2. Features

B.2.1. Define more content identifiers

It should be possible to independently include the following content

and metadata properties in Covered Content:

The signature's Algorithm

The signature's Covered Content

The value used for the keyId parameter

Request method

Individual components of the effective request URI: scheme,

authority, path, query

Status code

Request body (currently supported via Digest header)

B.2.2. Multiple signature support

[[Editor's note: I believe this use case is theoretical. Please let

me know if this is a use case you have.]]

There may be scenarios where attaching multiple signatures to a

single message is useful:

A gateway attaches a signature over headers it adds (e.g.,

Forwarded) to messages already signed by the user agent.

A signer attaches two signatures signed by different keys, to be

verified by different entities.

This could be addressed by changing the Signature header syntax to

accept a list of parameter sets for a single signature, e.g., by

separating parameters with ";" instead of ",". It may also be

necessary to include a signature identifier parameter.

B.2.3. Support for incremental signing of header field value list

items

[[Editor's note: I believe this use case is theoretical. Please let

me know if this is a use case you have.]]

Currently, signing a header field value is all-or-nothing: either

the entire value is signed, or none of it is. For header fields that

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

¶

*

¶

*

¶

¶

¶

use list syntax, it would be useful to be able to specify which

items in the list are signed.

A simple approach that allowed the signer to indicate the list size

at signing time would allow a signer to sign header fields that are

may be appended to by intermediaries as the message makes its way to

the recipient. Specifying list size in terms of number of items

could introduce risks of list syntax is not strictly adhered to

(e.g., a malicious party crafts a value that gets parsed by the

application as 5 items, but by the verifier as 4). Specifying list

size in number of octets might address this, but more exploration is

required.

B.2.4. Support expected authority changes

In some cases, the authority of the effective request URI may be

expected to change, for example from "public-service-

name.example.com" to "service-host-1.public-service-

name.example.com". This is commonly the case for services that are

hosted behind a load-balancing gateway, where the client sends

requests to a publicly known domain name for the service, and these

requests are transformed by the gateway into requests to specific

hosts in the service fleet.

One possible way to handle this would be to special-case the Host

header field to allow verifier to substitute a known expected value,

or a value provided in another header field (e.g., Via) when

generating the Signature Input, provided that the verifier also

recognizes the real value in the Host header. Alternatively, this

logic could apply to an (audience) content identifier.

B.2.5. Support for signing specific cookies

A signer may only wish to sign one or a few cookies, for example if

the website requires its authentication state cookie to be signed,

but also sets other cookies (e.g., for analytics, ad tracking, etc.)

Acknowledgements

This specification is based on the draft-cavage-http-signatures

draft. The editor would like to thank the authors of that draft,

Mark Cavage and Manu Sporny, for their work on that draft and their

continuing contributions.

The editor would also like to thank the following individuals for

feedback on and implementations of the draft-cavage-http-signatures

draft (in alphabetical order): Mark Adamcin, Mark Allen, Paul

Annesley, Karl Boehlmark, Stephane Bortzmeyer, Sarven Capadisli,

Liam Dennehy, ductm54, Stephen Farrell, Phillip Hallam-Baker, Eric

Holmes, Andrey Kislyuk, Adam Knight, Dave Lehn, Dave Longley, James

¶

¶

¶

¶

¶

¶

H. Manger, Ilari Liusvaara, Mark Nottingham, Yoav Nir, Adrian

Palmer, Lucas Pardue, Roberto Polli, Julian Reschke, Michael

Richardson, Wojciech Rygielski, Adam Scarr, Cory J. Slep, Dirk

Stein, Henry Story, Lukasz Szewc, Chris Webber, and Jeffrey Yasskin

Document History

This section is to be removed before publishing as an RFC.

draft-richanna-http-message-signatures

-00

Converted to xml2rfc v3 and reformatted to comply with RFC

style guides.

Removed Signature auth-scheme definition and related

content.

Removed conflicting normative requirements for use of

algorithm parameter. Now MUST NOT be relied upon.

Removed Extensions appendix.

Rewrote abstract and introduction to explain context and

need, and challenges inherent in signing HTTP messages.

Rewrote and heavily expanded algorithm definition,

retaining normative requirements.

Added definitions for key terms, referenced RFC 7230 for

HTTP terms.

Added examples for canonicalization and signature

generation steps.

Rewrote Signature header definition, retaining normative

requirements.

Added default values for algorithm and expires parameters.

Rewrote HTTP Signature Algorithms registry definition.

Added change control policy and registry template. Removed

suggested URI.

Added IANA HTTP Signature Parameter registry.

Added additional normative and informative references.

¶

¶

* ¶

- ¶

o

¶

o

¶

o

¶

o ¶

o

¶

o

¶

o

¶

o

¶

o

¶

o ¶

o

¶

o ¶

o ¶

Added Topics for Working Group Discussion section, to be

removed prior to publication as an RFC.

Authors' Addresses

Annabelle Backman (editor)

Amazon

P.O. Box 81226

Seattle, WA 98108-1226

United States of America

Email: richanna@amazon.com

URI: https://www.amazon.com/

Justin Richer

Bespoke Engineering

Email: ietf@justin.richer.org

URI: https://bspk.io/

Manu Sporny

Digital Bazaar

203 Roanoke Street W.

Blacksburg, VA 24060

United States of America

Phone: +1 540 961 4469

Email: msporny@digitalbazaar.com

URI: https://manu.sporny.org/

o

¶

mailto:richanna@amazon.com
https://www.amazon.com/
mailto:ietf@justin.richer.org
https://bspk.io/
tel:+1%20540%20961%204469
mailto:msporny@digitalbazaar.com
https://manu.sporny.org/

	Signing HTTP Messages
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Discussion
	1.2. HTTP Message Transformations
	1.3. Safe Transformations
	1.4. Conventions and Terminology

	2. Identifying and Canonicalizing Content
	2.1. HTTP Header Fields
	2.1.1. Canonicalization Examples

	2.2. Signature Creation Time
	2.3. Signature Expiration Time
	2.4. Target Endpoint
	2.4.1. Canonicalization Examples

	3. HTTP Message Signatures
	3.1. Signature Metadata
	3.2. Creating a Signature
	3.2.1. Choose and Set Signature Metadata Properties
	3.2.2. Create the Signature Input
	3.2.3. Sign the Signature Input

	3.3. Verifying a Signature
	3.3.1. Enforcing Application Requirements

	4. The 'Signature' HTTP Header
	4.1. Signature Header Parameters
	4.2. Example

	5. IANA Considerations
	5.1. HTTP Signature Algorithms Registry
	5.1.1. Registration Template
	5.1.2. Initial Contents
	hs2019
	rsa-sha1
	rsa-sha256
	hmac-sha256
	ecdsa-sha256

	5.2. HTTP Signature Parameters Registry
	5.2.1. Registration Template
	5.2.2. Initial Contents

	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Examples
	A.1. Example Keys
	A.1.1. rsa-test

	A.2. Example keyId Values
	A.3. Test Cases
	A.3.1. Signature Generation
	A.3.1.1. hs2019 signature over minimal recommended content
	A.3.1.2. hs2019 signature covering all header fields

	A.3.2. Signature Verification
	A.3.2.1. Minimal Required Signature Header
	A.3.2.2. Minimal Recommended Signature Header
	A.3.2.3. Minimal Signature Header using rsa-256

	Appendix B. Topics for Working Group Discussion
	B.1. Issues
	B.1.1. Confusing guidance on algorithm and key identification
	B.1.2. Lack of definition of keyId hurts interoperability
	B.1.3. Algorithm Registry duplicates work of JWA
	B.1.4. Algorithm Registry should not be initialized with deprecated entries
	B.1.5. No percent-encoding normalization of path/query
	B.1.6. Misleading name for headers parameter
	B.1.7. Changes to whitespace in header field values break verification
	B.1.8. Multiple Set-Cookie headers are not well supported
	B.1.9. Covered Content list is not signed
	B.1.10. Algorithm is not signed
	B.1.11. Verification key identifier is not signed
	B.1.12. Max values, precision for Integer String and Decimal String not defined
	B.1.13. keyId parameter value could break list syntax
	B.1.14. Creation Time and Expiration Time do not allow for clock skew
	B.1.15. Should require lowercased header field names as identifiers
	B.1.16. Reconcile Date header and Creation Time
	B.1.17. Remove algorithm-specific rules for content identifiers
	B.1.18. Add guidance for signing compressed headers
	B.1.19. Transformations to Via header field value break verification
	B.1.20. Case changes to case-insensitive header field values break verification
	B.1.21. Need more examples for Signature header
	B.1.22. Expiration not needed

	B.2. Features
	B.2.1. Define more content identifiers
	B.2.2. Multiple signature support
	B.2.3. Support for incremental signing of header field value list items
	B.2.4. Support expected authority changes
	B.2.5. Support for signing specific cookies

	Acknowledgements
	Document History
	Authors' Addresses

