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Abstract

   This document explores a number of issues affecting the decision to
   use a stateful or stateless forwarding mechanism by the join router
   (aka join assistant) during the bootstrap process for ANIMA.
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1.  Introduction

   The [I-D.pritikin-anima-bootstrapping-keyinfra] defines a process to
   securely enroll new devices in an existing network.  It order to
   avoid providing globally reachable addresses to the prospective new
   network member, it assumes that a Join Router.  The role of this
   router is common in this kind of architecture.

1.1.  Terminology

   EAP [RFC5247], 802.1X and PANA [RFC5191] use the term Authenticator
   to refer this role.

   The Thread architecture [threadcommish] uses the term Joiner Router

   The 6tisch architecture ([I-D.ietf-6tisch-terminology]) uses the term
   JA, short for Join Assistant.

2.  Purpose of the Joiner Router/Join Assistant

   This device is one layer-2 hop from the new device.  In addition to
   whatever secured networks it might connect to, it runs a sufficiently
   unprotected network (either physical or wireless) such that a new
   device can connect at layer-2 without any specific credentials.

https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc5191
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   The new node runs a discovery protocol as explained in
   [I-D.pritikin-anima-bootstrapping-keyinfra] to find an address for a
   registrar to which it can run the Enrollment over Secure Transport
   (EST, [RFC7030].  EST runs RESTfully over protocols such as HTTP.

   The new node does not have a globally routable address, so it can not
   speak directly outside the current link.  This an intentional
   limitation so that the new node can neither be easily attacked from
   the general internet, nor can it attack arbitrary parts of the
   Internet.

   The Joiner Router provides a limited channel between the new node,
   and the Registrar.  This document is about the various options and
   considerations that need to be considered when chosing this limited
   channel.

   An additional goal of this document is to outline which methods could
   be interchangeably be used by private negotiation between the Joining
   Router and the Registar, without the knowledge of the New Node.

3.  Overview of suggested methods

3.1.  method 1: Circuit Proxy method

   In response to discovery, the circuit proxy would return a link-local
   address on the joining router.  The joining router would have a TCP
   (or UDP/CoAP) port open on that interface.  It would accept
   connections on that port, and would turn around and create a new TCP
   connection to the registrar.

   While non-blocking I/O and threading mechanisms permit a single
   process to handle dozens to thousands of such connections, in effect
   a new circuit is created for each connection.  As a new TCP
   connection is created to the registrar it might have a different
   address family (IPv4 vs IPv6), and it might have a different set of
   TCP options, MSS and windowing properties.

3.2.  method 2: NAPT66 method

   In response to discovery, the NAT66 would return a link-local address
   on the joining router.  The joining router would establish a NAPT66
   mapping between the address/port combination on the join side, with
   an address/port on the ACP side.  The port would be randomly
   allocated.

   The join router would then do a stateful mapping between the pair of
   link-local addresses and ports, and the ACP GUA and registrar
   addresses and ports.  This method is mostly identical to what is

https://datatracker.ietf.org/doc/html/rfc7030
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   sometimes called a "port forward"; but is used from the inside to the
   outside, rather than the converse.

3.3.  method 3: HTTP Proxy method

   In response to discovery, the proxy would reply with a link-local
   address and port combination, and possibly also a URL for the
   registrar.

   The new node would then establish an HTTP connection to the proxy,
   and would use the HTTP CONNECT method with the given URL to establish
   a connection to the proper registrar.  See [RFC7231] section-4.3.6.

   Potentially a new node might attempt to other resources than the
   intended registar.  This could be a permitted activity if the
   connection is to the new node's vendor MASA, but it will in general
   be difficult to know what URLs are expected, and which are not.

   The HTTP proxy would put the normal HTTP proxy headers in, such as
   the VIA header, which may well help the registrar determine where the
   New Node has joined.

3.4.  method 4: CoAP/DTLS with relay mechanism

   In reponse to discovery, the proxy would respond with a link-local
   address and port combination.

   The new node would then initiate a DTLS session over UDP for the
   purpose of running CoAP on top of it.  See [RFC7252] section 9.1.

   The Join Router would then use a mechanism such as envisioned by
   [I-D.kumar-dice-dtls-relay] to mark the real origin of the packets.
   (Note that this ID did not get to the point of actually specifying
   the bytes on the wire).  Alternatively, the [threadcommish] specifies
   a way to encapsulate DTLS (that would contain CoAP packets) packets
   into CoAP, along with a clear origin for the packets.

3.5.  method 5: HTTP with IPIP tunnel

   In reponse to discovery, the proxy would respond with a link-local
   address and port combination.  The new node would then initiate a
   regular HTTPS session with the given address and port as in methods 1
   and 2.

   Rather than create a circuit proxy or NAT66 mapping, the joining
   router would instead encapsulate the packet in an IPIP header and
   send it to the registrar.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252#section-9.1
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   The registrar (or a device with the registrar's IP in front of it)
   must then implement the IPIP decapsulation, along with some way to
   accept the connection to the link-local address of the Joining
   Router, and route packets back again.  The technology to do this is
   either one of NAT66, or the typical "transparent" application layer
   proxy technology of the mid-1990s.  See [transparentproxy] for a
   description in an expired patent.  The mechanism is simply to #if 0
   out the "is dest-IP local" test.  This is also supported by as
   transparent proxying in linux and squid, see [transparentsquid], and
   is also available on BSD systems' pf and ipf.  Also see: [RFC1919]

   An issue that arises in IPv6 with link-local addresses is if the
   joining router has more than non-loopback interface.  On such a
   system, link-local addresses must be qualified by the interface
   identifier, usually represented as the SMI if_index to software.
   This is a serious concern, as even on IoT-type/mesh devices where
   there is only a single radio, there will in general be two logical
   networks: one secured as part of the production network, and a second
   one for joining nodes.  Alternatives to IPIP encapsulation have so-
   far been motivated by the need to store this additional context.

   A solution to this problem is to simply have the joining router send
   the IPIP traffic from an IPv6 address that is unique to the interface
   on which the traffic originates.  That is, even if the join network
   will use link-local addresses, the joining router should allocate
   additional stable private addresses (via SLACC + [RFC7217] for each
   interface on which it runs the join protocol.  The number of these
   addresses scales with the number of logical interfaces, not the
   number of clients that are joining>

3.6.  method 6: CoAP/DTLS with IPIP tunnel

   In reponse to discovery, the proxy would respond with a link-local
   address and port combination.  The new node would then initiate a
   regular CoAP/DTLS session with the given address and port as in
   method 4.

   Identically to method 5, the joining router would encapsulate the
   packet in an IPIP header and send it to the registrar.

   This method is otherwise identical to method 4 and method 5.

4.  Comparison of methods

   The Circuit Proxy and NAT66 methods are mostly indistinguishable from
   an outside observer.  Careful probing with exotic TCP options, or
   strange MSS values would reveal which is used, but this will
   otherwise be invisible to a new node.

https://datatracker.ietf.org/doc/html/rfc1919
https://datatracker.ietf.org/doc/html/rfc7217
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   Method 3 (http-proxy) and methods 1 (circuit), 2(nat66), and 5(ipip)
   could be made indistinguishable to the new node if methods 1,2, and 5
   also included the URL, and instead of running TLS immediately, always
   used the CONNECT method first.  That is, the registar would accept to
   "proxy" to itself.

   While it is possible to proxy between HTTP and CoAP forms in a
   mechanical fashion, it is not possible to map between DTLS and TLS
   mechanisms without access to the private keys of both ends.
   Therefore it is not possible to accept DTLS/CoAP packets on the
   Joining Router and turn them into an HTTPS session to a registrar
   that accepts only HTTPS.  It is reasonable for a registrar to speak
   both CoAP and HTTP: this could be done inside the server itself, or
   could be part of an HTTPS/DTLS front end that normalized both
   protocols into HTTP.  There are channel binding issues that must be
   addressed within the registrar, but they are well understood in the
   multi-tier web framework industry.

4.1.  State required on Joining Router

   Methods 1(circuit), 2(nat66), and 3(proxy) require state on the
   joining router for each client.  Method 3(proxy) will tend to require
   the most processing and state as it requires re-assembly of TCP
   packets sufficient to interpret HTTP and perform the CONNECT
   operation.  Methods 3 and 1 both require two TCP socket structures,
   which are on the order of hundred bytes each.

   Method 2(nat66) can require as little as space for 4 IPv6 addresses,
   plus two TCP port numbers, a total of 68 bytes per client system.
   Usually there will be some index or hash overhead.  Many devices may
   be able to do this operation for a data-plane (production) network
   interface at wire speed using a hardware CAM.  Joiner Router
   functionality may not always be able to make use of hardware, as
   being part of the ACP, it may be implemented entirely in the control
   plane CPU.

   Method 4 (dtls-relay), 5(ipip-http) and 6(ipip-coap) do not require
   any additional per-client state to be maintained by the joining
   router.

4.2.  Bandwidth required on Joining Router

   All the IPIP methods have an additional header cost of 40 bytes for
   an IPv6 header between the Joining Router and the Registrar.

   The DTLS relay method (whether inside DTLS or via CoAP extension),
   has the cost of an additional CoAP header or DTLS extension,
   estimated to be around 16 bytes.
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   The TLS or DTLS headers pass between the New Node and the Registrar
   in all cases.  The DTLS header is bigger than the TLS header, but
   this is slightly compensated by the UDP vs TCP header cost of 8 vs 20
   bytes.  The DTLS header is providing much of what the TCP header was
   providing.

   The HTTP proxy mechanism has an initial packet cost to send the
   CONNECT header.

   In Autonomic networks the backhaul from Joining Router to Registrar
   will be over the ACP.  The ACP is not generally as well provisioned
   as the production data-plane network, but in non-constrained (see

[RFC7228] section 2.2 and 2.3) situations, it would be IPv6 tunneled
   over IPsec across well-provisioned ethernet.  The ACP likely capable
   of at least 1Mb/s of traffic without significant issues.

4.2.1.  Bandwidth considerations in constrained networks

   In constrained-network situations, there are two situations to
   examine.  The first scenario is where the Joining Router has an
   interface on a constrained-network, and a backhaul on a non-
   constrained network.  For instance, when the Joining Router is the
   6LBR in a mesh-under situation, or is at the top of the DODAG in a
   route-over situation.  In that situation, there are no significant
   constrained for the cost of backhauled packets, all constrained are
   on the join network side.

   The second scenario is where in the route-over network where the
   Joining Router is a 6LR within the mesh.  In the situation the
   backhaul network path travels through one or more hops of a LLN, and
   packet size as well as throughput is constrained.

   Note that nothing in the discussion in this section is concerned with
   the capablities of the Joining Router: the device could well be
   powered and very capable, but currently not connected by any data-
   plane networks.  For instance two physically adjacent HFRs might use
   Bluetooth or an in-chassis 802.15.4 sensor network (originally
   intended to collect temperature readings) to communicate in order to
   agree on an appropriate lambda for a 100G/bs fiber link.

   There are current efforts for optimizing ROLL route-over networks to
   compress the overhead of IPIP headers out.  This is the "Example of
   Flow from not-RPL-aware-leaf to Internet" in section 5.7 of
   [I-D.robles-roll-useofrplinfo] and which
   [I-D.ietf-6lo-paging-dispatch] aims to compress.

https://datatracker.ietf.org/doc/html/rfc7228#section-2.2
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4.3.  State required on Registrar

   All methods require that the registrar maintain an HTTP or CoAP
   connection with the New Node for duration of each request.  HTTP/1.1
   clients may use persistent connections if there are multiple request/
   responses.

   CoAP clients are inherently single-request/responses, but it is
   anticipated that CoAP Block-Transfer Mode [I-D.ietf-core-block]would
   be required by EST ([RFC7030]) to transfer the certificates and
   certificate chains, which are likely to be larger than a single UDP
   packet.  The block-transfer mode is designed to be stateless for the
   server.  It could be made more stateless if a 201 Location: header
   reply was issued in response to a POST for /simplereenroll.

   In both HTTP and CoAP cases, the registrar will first have
   established a TLS or DTLS session with the client.  TLS sessions
   require on the order of a few hundred bytes of storage per client
   session.  The new node will also have a similar expense during the
   enrollment process.  This will take multiple round-trips in general,
   although the TLS session resumption protocol may be useful in a
   limited number of re-authentication cases.

5.  Security Considerations

   STUFF
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