
Network Working Group M. Richardson
Internet-Draft SSW
Intended status: Informational January 25, 2018
Expires: July 29, 2018

Considerations for stateful vs stateless join router in ANIMA bootstrap
draft-richardson-anima-state-for-joinrouter-02

Abstract

 This document explores a number of issues affecting the decision to
 use a stateful or stateless forwarding mechanism by the join router
 (aka join assistant) during the bootstrap process for ANIMA.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 29, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Richardson Expires July 29, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/draft-richardson-anima-state-for-joinrouter-02
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft anima-bootstrap-state January 2018

Table of Contents

1. Introduction . 2
1.1. Terminology . 2

2. Purpose of the Joiner Router/Join Assistant 2
3. Overview of suggested methods 3
3.1. method 1: Circuit Proxy method 3
3.2. method 2: NAPT66 method 3
3.3. method 3: HTTP Proxy method 4
3.4. method 4: CoAP/DTLS with relay mechanism 4
3.5. method 5: HTTP with IPIP tunnel 4
3.6. method 6: CoAP/DTLS with IPIP tunnel 5

4. Comparison of methods . 5
4.1. State required on Joining Router 6
4.2. Bandwidth required on Joining Router 6
4.2.1. Bandwidth considerations in constrained networks . . 7

4.3. State required on Registrar 8
5. Security Considerations 8
6. References . 8
6.1. Normative References 8
6.2. Informative References 10

 Author's Address . 10

1. Introduction

 The [I-D.pritikin-anima-bootstrapping-keyinfra] defines a process to
 securely enroll new devices in an existing network. It order to
 avoid providing globally reachable addresses to the prospective new
 network member, it assumes that a Join Router. The role of this
 router is common in this kind of architecture.

1.1. Terminology

 EAP [RFC5247], 802.1X and PANA [RFC5191] use the term Authenticator
 to refer this role.

 The Thread architecture [threadcommish] uses the term Joiner Router

 The 6tisch architecture ([I-D.ietf-6tisch-terminology]) uses the term
 JA, short for Join Assistant.

2. Purpose of the Joiner Router/Join Assistant

 This device is one layer-2 hop from the new device. In addition to
 whatever secured networks it might connect to, it runs a sufficiently
 unprotected network (either physical or wireless) such that a new
 device can connect at layer-2 without any specific credentials.

https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc5191

Richardson Expires July 29, 2018 [Page 2]

Internet-Draft anima-bootstrap-state January 2018

 The new node runs a discovery protocol as explained in
 [I-D.pritikin-anima-bootstrapping-keyinfra] to find an address for a
 registrar to which it can run the Enrollment over Secure Transport
 (EST, [RFC7030]. EST runs RESTfully over protocols such as HTTP.

 The new node does not have a globally routable address, so it can not
 speak directly outside the current link. This an intentional
 limitation so that the new node can neither be easily attacked from
 the general internet, nor can it attack arbitrary parts of the
 Internet.

 The Joiner Router provides a limited channel between the new node,
 and the Registrar. This document is about the various options and
 considerations that need to be considered when chosing this limited
 channel.

 An additional goal of this document is to outline which methods could
 be interchangeably be used by private negotiation between the Joining
 Router and the Registar, without the knowledge of the New Node.

3. Overview of suggested methods

3.1. method 1: Circuit Proxy method

 In response to discovery, the circuit proxy would return a link-local
 address on the joining router. The joining router would have a TCP
 (or UDP/CoAP) port open on that interface. It would accept
 connections on that port, and would turn around and create a new TCP
 connection to the registrar.

 While non-blocking I/O and threading mechanisms permit a single
 process to handle dozens to thousands of such connections, in effect
 a new circuit is created for each connection. As a new TCP
 connection is created to the registrar it might have a different
 address family (IPv4 vs IPv6), and it might have a different set of
 TCP options, MSS and windowing properties.

3.2. method 2: NAPT66 method

 In response to discovery, the NAT66 would return a link-local address
 on the joining router. The joining router would establish a NAPT66
 mapping between the address/port combination on the join side, with
 an address/port on the ACP side. The port would be randomly
 allocated.

 The join router would then do a stateful mapping between the pair of
 link-local addresses and ports, and the ACP GUA and registrar
 addresses and ports. This method is mostly identical to what is

https://datatracker.ietf.org/doc/html/rfc7030

Richardson Expires July 29, 2018 [Page 3]

Internet-Draft anima-bootstrap-state January 2018

 sometimes called a "port forward"; but is used from the inside to the
 outside, rather than the converse.

3.3. method 3: HTTP Proxy method

 In response to discovery, the proxy would reply with a link-local
 address and port combination, and possibly also a URL for the
 registrar.

 The new node would then establish an HTTP connection to the proxy,
 and would use the HTTP CONNECT method with the given URL to establish
 a connection to the proper registrar. See [RFC7231] section-4.3.6.

 Potentially a new node might attempt to other resources than the
 intended registar. This could be a permitted activity if the
 connection is to the new node's vendor MASA, but it will in general
 be difficult to know what URLs are expected, and which are not.

 The HTTP proxy would put the normal HTTP proxy headers in, such as
 the VIA header, which may well help the registrar determine where the
 New Node has joined.

3.4. method 4: CoAP/DTLS with relay mechanism

 In reponse to discovery, the proxy would respond with a link-local
 address and port combination.

 The new node would then initiate a DTLS session over UDP for the
 purpose of running CoAP on top of it. See [RFC7252] section 9.1.

 The Join Router would then use a mechanism such as envisioned by
 [I-D.kumar-dice-dtls-relay] to mark the real origin of the packets.
 (Note that this ID did not get to the point of actually specifying
 the bytes on the wire). Alternatively, the [threadcommish] specifies
 a way to encapsulate DTLS (that would contain CoAP packets) packets
 into CoAP, along with a clear origin for the packets.

3.5. method 5: HTTP with IPIP tunnel

 In reponse to discovery, the proxy would respond with a link-local
 address and port combination. The new node would then initiate a
 regular HTTPS session with the given address and port as in methods 1
 and 2.

 Rather than create a circuit proxy or NAT66 mapping, the joining
 router would instead encapsulate the packet in an IPIP header and
 send it to the registrar.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252#section-9.1

Richardson Expires July 29, 2018 [Page 4]

Internet-Draft anima-bootstrap-state January 2018

 The registrar (or a device with the registrar's IP in front of it)
 must then implement the IPIP decapsulation, along with some way to
 accept the connection to the link-local address of the Joining
 Router, and route packets back again. The technology to do this is
 either one of NAT66, or the typical "transparent" application layer
 proxy technology of the mid-1990s. See [transparentproxy] for a
 description in an expired patent. The mechanism is simply to #if 0
 out the "is dest-IP local" test. This is also supported by as
 transparent proxying in linux and squid, see [transparentsquid], and
 is also available on BSD systems' pf and ipf. Also see: [RFC1919]

 An issue that arises in IPv6 with link-local addresses is if the
 joining router has more than non-loopback interface. On such a
 system, link-local addresses must be qualified by the interface
 identifier, usually represented as the SMI if_index to software.
 This is a serious concern, as even on IoT-type/mesh devices where
 there is only a single radio, there will in general be two logical
 networks: one secured as part of the production network, and a second
 one for joining nodes. Alternatives to IPIP encapsulation have so-
 far been motivated by the need to store this additional context.

 A solution to this problem is to simply have the joining router send
 the IPIP traffic from an IPv6 address that is unique to the interface
 on which the traffic originates. That is, even if the join network
 will use link-local addresses, the joining router should allocate
 additional stable private addresses (via SLACC + [RFC7217] for each
 interface on which it runs the join protocol. The number of these
 addresses scales with the number of logical interfaces, not the
 number of clients that are joining>

3.6. method 6: CoAP/DTLS with IPIP tunnel

 In reponse to discovery, the proxy would respond with a link-local
 address and port combination. The new node would then initiate a
 regular CoAP/DTLS session with the given address and port as in
 method 4.

 Identically to method 5, the joining router would encapsulate the
 packet in an IPIP header and send it to the registrar.

 This method is otherwise identical to method 4 and method 5.

4. Comparison of methods

 The Circuit Proxy and NAT66 methods are mostly indistinguishable from
 an outside observer. Careful probing with exotic TCP options, or
 strange MSS values would reveal which is used, but this will
 otherwise be invisible to a new node.

https://datatracker.ietf.org/doc/html/rfc1919
https://datatracker.ietf.org/doc/html/rfc7217

Richardson Expires July 29, 2018 [Page 5]

Internet-Draft anima-bootstrap-state January 2018

 Method 3 (http-proxy) and methods 1 (circuit), 2(nat66), and 5(ipip)
 could be made indistinguishable to the new node if methods 1,2, and 5
 also included the URL, and instead of running TLS immediately, always
 used the CONNECT method first. That is, the registar would accept to
 "proxy" to itself.

 While it is possible to proxy between HTTP and CoAP forms in a
 mechanical fashion, it is not possible to map between DTLS and TLS
 mechanisms without access to the private keys of both ends.
 Therefore it is not possible to accept DTLS/CoAP packets on the
 Joining Router and turn them into an HTTPS session to a registrar
 that accepts only HTTPS. It is reasonable for a registrar to speak
 both CoAP and HTTP: this could be done inside the server itself, or
 could be part of an HTTPS/DTLS front end that normalized both
 protocols into HTTP. There are channel binding issues that must be
 addressed within the registrar, but they are well understood in the
 multi-tier web framework industry.

4.1. State required on Joining Router

 Methods 1(circuit), 2(nat66), and 3(proxy) require state on the
 joining router for each client. Method 3(proxy) will tend to require
 the most processing and state as it requires re-assembly of TCP
 packets sufficient to interpret HTTP and perform the CONNECT
 operation. Methods 3 and 1 both require two TCP socket structures,
 which are on the order of hundred bytes each.

 Method 2(nat66) can require as little as space for 4 IPv6 addresses,
 plus two TCP port numbers, a total of 68 bytes per client system.
 Usually there will be some index or hash overhead. Many devices may
 be able to do this operation for a data-plane (production) network
 interface at wire speed using a hardware CAM. Joiner Router
 functionality may not always be able to make use of hardware, as
 being part of the ACP, it may be implemented entirely in the control
 plane CPU.

 Method 4 (dtls-relay), 5(ipip-http) and 6(ipip-coap) do not require
 any additional per-client state to be maintained by the joining
 router.

4.2. Bandwidth required on Joining Router

 All the IPIP methods have an additional header cost of 40 bytes for
 an IPv6 header between the Joining Router and the Registrar.

 The DTLS relay method (whether inside DTLS or via CoAP extension),
 has the cost of an additional CoAP header or DTLS extension,
 estimated to be around 16 bytes.

Richardson Expires July 29, 2018 [Page 6]

Internet-Draft anima-bootstrap-state January 2018

 The TLS or DTLS headers pass between the New Node and the Registrar
 in all cases. The DTLS header is bigger than the TLS header, but
 this is slightly compensated by the UDP vs TCP header cost of 8 vs 20
 bytes. The DTLS header is providing much of what the TCP header was
 providing.

 The HTTP proxy mechanism has an initial packet cost to send the
 CONNECT header.

 In Autonomic networks the backhaul from Joining Router to Registrar
 will be over the ACP. The ACP is not generally as well provisioned
 as the production data-plane network, but in non-constrained (see

[RFC7228] section 2.2 and 2.3) situations, it would be IPv6 tunneled
 over IPsec across well-provisioned ethernet. The ACP likely capable
 of at least 1Mb/s of traffic without significant issues.

4.2.1. Bandwidth considerations in constrained networks

 In constrained-network situations, there are two situations to
 examine. The first scenario is where the Joining Router has an
 interface on a constrained-network, and a backhaul on a non-
 constrained network. For instance, when the Joining Router is the
 6LBR in a mesh-under situation, or is at the top of the DODAG in a
 route-over situation. In that situation, there are no significant
 constrained for the cost of backhauled packets, all constrained are
 on the join network side.

 The second scenario is where in the route-over network where the
 Joining Router is a 6LR within the mesh. In the situation the
 backhaul network path travels through one or more hops of a LLN, and
 packet size as well as throughput is constrained.

 Note that nothing in the discussion in this section is concerned with
 the capablities of the Joining Router: the device could well be
 powered and very capable, but currently not connected by any data-
 plane networks. For instance two physically adjacent HFRs might use
 Bluetooth or an in-chassis 802.15.4 sensor network (originally
 intended to collect temperature readings) to communicate in order to
 agree on an appropriate lambda for a 100G/bs fiber link.

 There are current efforts for optimizing ROLL route-over networks to
 compress the overhead of IPIP headers out. This is the "Example of
 Flow from not-RPL-aware-leaf to Internet" in section 5.7 of
 [I-D.robles-roll-useofrplinfo] and which
 [I-D.ietf-6lo-paging-dispatch] aims to compress.

https://datatracker.ietf.org/doc/html/rfc7228#section-2.2

Richardson Expires July 29, 2018 [Page 7]

Internet-Draft anima-bootstrap-state January 2018

4.3. State required on Registrar

 All methods require that the registrar maintain an HTTP or CoAP
 connection with the New Node for duration of each request. HTTP/1.1
 clients may use persistent connections if there are multiple request/
 responses.

 CoAP clients are inherently single-request/responses, but it is
 anticipated that CoAP Block-Transfer Mode [I-D.ietf-core-block]would
 be required by EST ([RFC7030]) to transfer the certificates and
 certificate chains, which are likely to be larger than a single UDP
 packet. The block-transfer mode is designed to be stateless for the
 server. It could be made more stateless if a 201 Location: header
 reply was issued in response to a POST for /simplereenroll.

 In both HTTP and CoAP cases, the registrar will first have
 established a TLS or DTLS session with the client. TLS sessions
 require on the order of a few hundred bytes of storage per client
 session. The new node will also have a similar expense during the
 enrollment process. This will take multiple round-trips in general,
 although the TLS session resumption protocol may be useful in a
 limited number of re-authentication cases.

5. Security Considerations

 STUFF

6. References

6.1. Normative References

 [I-D.ietf-6lo-paging-dispatch]
 Thubert, P. and R. Cragie, "6LoWPAN Paging Dispatch",

draft-ietf-6lo-paging-dispatch-05 (work in progress),
 October 2016.

 [I-D.ietf-6tisch-terminology]
 Palattella, M., Thubert, P., Watteyne, T., and Q. Wang,
 "Terminology in IPv6 over the TSCH mode of IEEE
 802.15.4e", draft-ietf-6tisch-terminology-09 (work in
 progress), June 2017.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",

draft-ietf-core-block-21 (work in progress), July 2016.

https://datatracker.ietf.org/doc/html/rfc7030
https://datatracker.ietf.org/doc/html/draft-ietf-6lo-paging-dispatch-05
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-terminology-09
https://datatracker.ietf.org/doc/html/draft-ietf-core-block-21

Richardson Expires July 29, 2018 [Page 8]

Internet-Draft anima-bootstrap-state January 2018

 [I-D.kumar-dice-dtls-relay]
 Kumar, S., Keoh, S., and O. Garcia-Morchon, "DTLS Relay
 for Constrained Environments", draft-kumar-dice-dtls-

relay-02 (work in progress), October 2014.

 [I-D.pritikin-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., and S.
 Bjarnason, "Bootstrapping Key Infrastructures", draft-

pritikin-anima-bootstrapping-keyinfra-02 (work in
 progress), July 2015.

 [I-D.robles-roll-useofrplinfo]
 Robles, I., Richardson, M., and P. Thubert, "When to use

RFC 6553, 6554 and IPv6-in-IPv6", draft-robles-roll-
useofrplinfo-02 (work in progress), October 2015.

 [RFC1919] Chatel, M., "Classical versus Transparent IP Proxies",
RFC 1919, DOI 10.17487/RFC1919, March 1996,

 <https://www.rfc-editor.org/info/rfc1919>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5191] Forsberg, D., Ohba, Y., Ed., Patil, B., Tschofenig, H.,
 and A. Yegin, "Protocol for Carrying Authentication for
 Network Access (PANA)", RFC 5191, DOI 10.17487/RFC5191,
 May 2008, <https://www.rfc-editor.org/info/rfc5191>.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",

RFC 5247, DOI 10.17487/RFC5247, August 2008,
 <https://www.rfc-editor.org/info/rfc5247>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <https://www.rfc-editor.org/info/rfc7217>.

https://datatracker.ietf.org/doc/html/draft-kumar-dice-dtls-relay-02
https://datatracker.ietf.org/doc/html/draft-kumar-dice-dtls-relay-02
https://datatracker.ietf.org/doc/html/draft-pritikin-anima-bootstrapping-keyinfra-02
https://datatracker.ietf.org/doc/html/draft-pritikin-anima-bootstrapping-keyinfra-02
https://datatracker.ietf.org/doc/html/rfc6553
https://datatracker.ietf.org/doc/html/draft-robles-roll-useofrplinfo-02
https://datatracker.ietf.org/doc/html/draft-robles-roll-useofrplinfo-02
https://datatracker.ietf.org/doc/html/rfc1919
https://www.rfc-editor.org/info/rfc1919
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5191
https://www.rfc-editor.org/info/rfc5191
https://datatracker.ietf.org/doc/html/rfc5247
https://www.rfc-editor.org/info/rfc5247
https://datatracker.ietf.org/doc/html/rfc7030
https://www.rfc-editor.org/info/rfc7030
https://datatracker.ietf.org/doc/html/rfc7217
https://www.rfc-editor.org/info/rfc7217

Richardson Expires July 29, 2018 [Page 9]

Internet-Draft anima-bootstrap-state January 2018

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

6.2. Informative References

 [threadcommish]
 Thread Group, "Thread Commissioning", Jul 2015,
 <http://threadgroup.org/Portals/0/documents/whitepapers/

Thread%20Commissioning%20white%20paper_v2_public.pdf>.

 [transparentproxy]
 Hung Vu, "CA Patent 2,136,150: Apparatus and method for
 providing a secure gateway for communication and data
 exchanges between networks", 1994,
 <https://www.google.ca/patents/CA2136150C?cl=en>.

 [transparentsquid]
 Daniel Kiracofe, "Transparent Proxy with Linux and Squid
 mini-HOWTO v1.15", August 2002,
 <http://www.tldp.org/HOWTO/TransparentProxy-5.html>.

Author's Address

 Michael C. Richardson
 Sandelman Software Works
 470 Dawson Avenue
 Ottawa, ON K1Z 5V7
 CA

 Email: mcr+ietf@sandelman.ca
 URI: http://www.sandelman.ca/

https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Commissioning%20white%20paper_v2_public.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Commissioning%20white%20paper_v2_public.pdf
https://www.google.ca/patents/CA2136150C?cl=en
http://www.tldp.org/HOWTO/TransparentProxy-5.html
http://www.sandelman.ca/

Richardson Expires July 29, 2018 [Page 10]

