
Workgroup: T2TRG Research Group

Internet-Draft:

draft-richardson-t2trg-idevid-

considerations-06

Published: 3 February 2022

Intended Status: Informational

Expires: 7 August 2022

Authors: M. Richardson

Sandelman Software Works

A Taxonomy of operational security considerations for manufacturer

installed keys and Trust Anchors

Abstract

This document provides a taxonomy of methods used by manufacturers

of silicon and devices to secure private keys and public trust

anchors. This deals with two related activities: how trust anchors

and private keys are installed into devices during manufacturing,

and how the related manufacturer held private keys are secured

against disclosure.

This document does not evaluate the different mechanisms, but rather

just serves to name them in a consistent manner in order to aid in

communication.
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1. Introduction

An increasing number of protocols derive a significant part of their

security by using trust anchors [RFC4949] that are installed by

manufacturers. Disclosure of the list of trust anchors does not

usually cause a problem, but changing them in any way does. This

includes adding, replacing or deleting anchors. [RFC6024] deals with

how trust anchor stores are managed, while this document deals with

how the associated PKI which is anchor is managed.

Many protocols also leverage manufacturer installed identities.

These identities are usually in the form of [ieee802-1AR] Initial

Device Identity certificates (IDevID). The identity has two

components: a private key that must remain under the strict control

of a trusted part of the device, and a public part (the

certificate), which (ignoring, for the moment, personal privacy

concerns) may be freely disclosed.

There also situations where identities are tied up in the provision

of symmetric shared secrets. A common example is the SIM card

([_3GPP.51.011]), it now comes as a virtual SIM, but which is

usually not provisioned at the factory. The provision of an initial,

per-device default password also falls into the category of

symmetric shared secret.

It is further not unusual for many devices (particularly

smartphones) to also have one or more group identity keys. This is

used, for instance, in [fidotechnote] to make claims about being a

particular model of phone (see [I-D.richardson-rats-usecases]). The

key pair that does this is loaded into large batches of phones for

privacy reasons.

The trust anchors are used for a variety of purposes. Trust anchors

are used to verify:

the signature on a software update (as per [I-D.ietf-suit-

architecture]),

a TLS Server Certificate, such as when setting up an HTTPS

connection,

the [RFC8366] format voucher that provides proof of an ownership

change.

Device identity keys are used when performing enrollment requests

(in [RFC8995], and in some uses of [I-D.ietf-emu-eap-noob]. The

device identity certificate is also used to sign Evidence by an

Attesting Environment (see [I-D.ietf-rats-architecture]).
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These security artifacts are used to anchor other chains of

information: an EAT Claim as to the version of software/firmware

running on a device ([I-D.birkholz-suit-coswid-manifest]), an EAT

claim about legitimate network activity (via [I-D.birkholz-rats-

mud], or embedded in the IDevID in [RFC8520]).

Known software versions lead directly to vendor/distributor signed

Software Bill of Materials (SBOM), such as those described by [I-

D.ietf-sacm-coswid] and the NTIA/SBOM work [ntiasbom] and CISQ/OMG

SBOM work underway [cisqsbom].

In order to manage risks and assess vulnerabilities in a Supply

Chain, it is necessary to determine a degree of trustworthiness in

each device. A device may mislead audit systems as to its

provenance, about its software load or even about what kind of

device it is (see [RFC7168] for a humorous example).

In order to properly assess the security of a Supply Chain it is

necessary to understand the kinds and severity of the threats which

a device has been designed to resist. To do this, it is necessary to

understand the ways in which the different trust anchors and

identities are initially provisioned, are protected, and are

updated.

To do this, this document details the different trust anchors

(TrAnc) and identities (IDs) found in typical devices. The privacy

and integrity of the TrAncs and IDs is often provided by a

different, superior artifact. This relationship is examined.

While many might desire to assign numerical values to different

mitigation techniques in order to be able to rank them, this

document does not attempt to do that, as there are too many other

(mostly human) factors that would come into play. Such an effort is

more properly in the purview of a formal ISO9001 process such as

ISO14001.

1.1. Terminology

This document is not a standards track document, and it does not

make use of formal requirements language.

This section will be expanded to include needed terminology as

required.

The words Trust Anchor are contracted to TrAnc rather than TA, in

order not to confuse with [I-D.ietf-teep-architecture]'s "Trusted

Application".

This document defines a number of hyphenated terms, and they are

summarized here:
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device-generated:

infrastructure-generated:

mechanically-installed:

mechanically-transferred:

network-transferred:

device/infrastructure-co-generated:

a private or symmetric key which is generated on

the device

a private or symmetric key which is

generated by some system, likely located at the factory that

built the device

when a key or certificate is programmed

into non-volatile storage by an out-of-band mechanism such as

JTAG [JTAG]

when a key or certificate is transferred

into a system via private interface, such as serial console, JTAG

managed mailbox, or other physically private interface

when a key or certificate is transferred into

a system using a network interface which would be available after

the device has shipped. This applies even if the network is

physically attached using a bed-of-nails [BedOfNails].

when a private or symmetric key

is derived from a secret previously synchronized between the

silicon vendor and the factory using a common algorithm.

2. Applicability Model

There is a wide variety of devices to which this analysis can apply.

(See [I-D.bormann-lwig-7228bis].) This document will use a J-group

processor as a sample. This class is sufficiently large to

experience complex issues among multiple CPUs, packages and

operating systems, but at the same time, small enough that this

class is often deployed in single-purpose IoT-like uses. Devices in

this class often have Secure Enclaves (such as the "Grapeboard"),

and can include silicon manufacturer controlled processors in the

boot process (the Raspberry PI boots under control of the GPU).

Almost all larger systems (servers, laptops, desktops) include a

Baseboard Management Controller (BMC), which ranges from a M-Group

Class 3 MCU, to a J-Group Class 10 CPU (see, for instance [openbmc]

which uses a Linux kernel and system inside the BMC). As the BMC

usually has complete access to the main CPU's memory, I/O hardware

and disk, the boot path security of such a system needs to be

understood first as being about the security of the BMC.

2.1. A reference manufacturing/boot process

In order to provide for immutability and privacy of the critical

TrAnc and IDs, many CPU manufacturers will provide for some kind of

private memory area which is only accessible when the CPU is in
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certain privileged states. See the Terminology section of [I-D.ietf-

teep-architecture], notably TEE, REE, and TAM, and also section 4,

Architecture.

The private memory that is important is usually non-volatile and

rather small. It may be located inside the CPU silicon die, or it

may be located externally. If the memory is external, then it is

usually encrypted by a hardware mechanism on the CPU, with only the

key kept inside the CPU.

The entire mechanism may be external to the CPU in the form of a

hardware-TPM module, or it may be entirely internal to the CPU in

the form of a firmware-TPM. It may use a custom interface to the

rest of the system, or it may implement the TPM 1.2 or TPM 2.0

specifications. Those details are important to performing a full

evaluation, but do not matter much to this model (see initial-

enclave-location below).

During the manufacturing process, once the components have been

soldered to the board, the system is usually put through a system-

level test. This is often done as a "bed-of-nails" test 

[BedOfNails], where the board has key points attached mechanically

to a test system. A [JTAG] process tests the System Under Test, and

then initializes some firmware into the still empty flash storage.

It is now common for a factory test image to be loaded first: this

image will include code to initialize the private memory key

described above, and will include a first-stage bootloader and some

kind of (primitive) Trusted Application Manager (TAM). (The TAM is a

piece of software that lives within the trusted execution

environment.)

Embedded in the stage one bootloader will be a Trust Anchor that is

able to verify the second-stage bootloader image.

After the system has undergone testing, the factory test image is

erased, leaving the first-stage bootloader. One or more second-stage

bootloader images are installed. The production image may be

installed at that time, or if the second-stage bootloader is able to

install it over the network, it may be done that way instead.

There are many variations of the above process, and this section is

not attempting to be prescriptive, but to be provide enough

illustration to motivate subsequent terminology.

The process may be entirely automated, or it may be entirely driven

by humans working in the factory, or a combination of the above.
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These steps may all occur on an access-controlled assembly line, or

the system boards may be shipped from one place to another (maybe

another country) before undergoing testing.

Some systems are intended to be shipped in a tamper-proof state, but

it is usually not desirable that bed-of-nails testing be possible

without tampering, so the initialization process is usually done

prior to rendering the system tamper-proof. An example of a one-way

tamper-proof, weather resistant treatment might to mount the system

board in a case and fill the case with resin.

Quality control testing may be done prior to as well as after the

application of tamper-proofing, as systems which do not pass

inspection may be reworked to fix flaws, and this should ideally be

impossible once the system has been made tamper-proof.

3. Types of Trust Anchors

Trust Anchors (TrAnc) are fundamentally public keys with

authorizations implicitly attached through the code that references

them.

They are used to validate other digitally signed artifacts.

Typically, these are chains of PKIX certificates leading to an End-

Entity certificate (EE).

The chains are usually presented as part of an externally provided

object, with the term "externally" to be understood as being as

close as untrusted flash, to as far as objects retrieved over a

network.

There is no requirement that there be any chain at all: the trust

anchor can be used to validate a signature over a target object

directly.

The trust anchors are often stored in the form of self-signed

certificates. The self-signature does not offer any cryptographic

assurance, but it does provide a form of error detection, providing

verification against non-malicious forms of data corruption. If

storage is at a premium (such as inside-CPU non-volatile storage)

then only the public key itself need to be stored. For a 256-bit

ECDSA key, this is 32 bytes of space.

When evaluating the degree of trust for each trust anchor there are

four aspects that need to be determined:

can the trust anchor be replaced or modified?

can additional trust anchors be added?
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can trust anchors be removed?

how is the private key associated with the trust anchor,

maintained by the manufacturer, maintained?

The first three things are device specific properties of how the

integrity of the trust anchor is maintained.

The fourth property has nothing to do with the device, but has to do

with the reputation and care of the entity that maintains the

private key.

Different anchors have different authorizations associated with

them.

These are:

3.1. Secured First Boot Trust Anchor

This anchor is part of the first-stage boot loader, and it is used

to validate a second-stage bootloader which may be stored in

external flash. This is called the initial software trust anchor.

3.2. Software Update Trust Anchor

This anchor is used to validate the main application (or operating

system) load for the device.

It can be stored in a number of places. First, it may be identical

to the Secure Boot Trust Anchor.

Second, it may be stored in the second-stage bootloader, and

therefore its integrity is protected by the Secured First Boot Trust

Anchor.

Third, it may be stored in the application code itself, where the

application validates updates to the application directly (update in

place), or via a double-buffer arrangement. The initial (factory)

load of the application code initializes the trust arrangement.

In this situation the application code is not in a secured boot

situation, as the second-stage bootloader does not validate the

application/operating system before starting it, but it may still

provide measured boot mechanism.

3.3. Trusted Application Manager anchor

This anchor is the secure key for the [I-D.ietf-teep-architecture]

Trusted Application Manager (TAM). Code which is signed by this

anchor will be given execution privileges as described by the
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manifest which accompanies the code. This privilege may include

updating anchors.

3.4. Public WebPKI anchors

These anchors are used to verify HTTPS certificates from web sites.

These anchors are typically distributed as part of desktop browsers,

and via desktop operating systems.

The exact set of these anchors is not precisely defined: it is

usually determined by the browser vendor (e.g., Mozilla, Google,

Apple, Safari, Microsoft), or the operating system vendor (e.g.,

Apple, Google, Microsoft, Ubuntu). In most cases these vendors look

to the CA/Browser Forum [CABFORUM] for inclusion criteria.

3.5. DNSSEC root

This anchor is part of the DNS Security extensions. It provides an

anchor for securing DNS lookups. Secure DNS lookups may be important

in order to get access to software updates. This anchor is now

scheduled to change approximately every 3 years, with the new key

announced several years before it is used, making it possible to

embed keys that will be valid for up to five years.

This trust anchor is typically part of the application/operating

system code and is usually updated by the manufacturer when they do

updates. However, a system that is connected to the Internet may

update the DNSSEC anchor itself through the mechanism described in 

[RFC5011].

There are concerns that there may be a chicken and egg situation for

devices that have remained in a powered off state (or disconnected

from the Internet) for some period of years. That upon being

reconnected, that the device would be unable to do DNSSEC

validation. This failure would result in them being unable to obtain

operating system updates that would then include the updates to the

DNSSEC key.

3.6. What else?

TBD?

4. Types of Identities

Identities are installed during manufacturing time for a variety of

purposes.

Identities require some private component. Asymmetric identities

(e.g., RSA, ECDSA, EdDSA systems) require a corresponding public
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component, usually in the form of a certificate signed by a trusted

third party.

This certificate associates the identity with attributes.

The process of making this coordinated key pair and then installing

it into the device is called identity provisioning.

4.1. Manufacturer installed IDevID certificates

[ieee802-1AR] defines a category of certificates that are installed

by the manufacturer, which contain at the least, a device unique

serial number.

A number of protocols depend upon this certificate.

[RFC8572] and [RFC8995] introduce mechanisms for new devices

(called pledges) to be onboarded into a network without

intervention from an expert operator. A number of derived

protocols such as [I-D.ietf-anima-brski-async-enroll], [I-D.ietf-

anima-constrained-voucher], [I-D.richardson-anima-voucher-

delegation], [I-D.friel-anima-brski-cloud] extend this in a

number of ways.

[I-D.ietf-rats-architecture] depends upon a key provisioned into

the Attesting Environment to sign Evidence.

[I-D.ietf-suit-architecture] may depend upon a key provisioned

into the device in order to decrypt software updates. Both

symmetric and asymmetric keys are possible. In both cases, the

decrypt operation depends upon the device having access to a

private key provisioned in advance. The IDevID can be used for

this if algorithm choices permit. ECDSA keys do not directly

support encryption in the same way that RSA does, for instance,

but the addition of ECIES can solve this. There may be other

legal considerations why the IDevID might not be used, and a

second key provisioned.

TBD

4.1.1. Operational Considerations for Manufacturer IDevID Public Key

Infrastructure

The manufacturer has the responsibility to provision a key pair into

each device as part of the manufacturing process. There are a

variety of mechanisms to accomplish this, which this document will

overview.
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There are three fundamental ways to generate IDevID certificates for

devices:

generating a private key on the device, creating a Certificate

Signing Request (or equivalent), and then returning a

certificate to the device.

generating a private key outside the device, signing the

certificate, and the installing both into the device.

deriving the private key from a previously installed secret

seed, that is shared with only the manufacturer.

There is a fourth situation where the IDevID is provided as part of

a Trusted Platform Module (TPM), in which case the TPM vendor may be

making the same tradeoffs.

The document [I-D.moskowitz-ecdsa-pki] provides some practical

instructions on setting up a reference implementation for ECDSA keys

using a three-tier mechanism.

4.1.2. Key Generation process

4.1.2.1. On-device private key generation

Generating the key on-device has the advantage that the private key

never leaves the device. The disadvantage is that the device may not

have a verified random number generator. [factoringrsa] is an

example of a successful attack on this scenario.

There are a number of options of how to get the public key securely

from the device to the certification authority.

This transmission must be done in an integral manner, and must be

securely associated with the assigned serial number. The serial

number goes into the certificate, and the resulting certificate

needs to be loaded into the manufacturer's asset database.

One way to do the transmission is during a factory Bed of Nails test

(see [BedOfNails]) or Boundary Scan. When done via a physical

connection like this, then this is referred to as a device-generated / 

mechanically-transferred method.

There are other ways that could be used where a certificate signing

request is sent over a special network channel when the device is

powered up in the factory. This is referred to as the device-

generated / network-transferred method.

Regardless of how the certificate signing request is sent from the

device to the factory, and how the certificate is returned to the
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device, a concern from production line managers is that the assembly

line may have to wait for the certification authority to respond

with the certificate.

After the key generation, the device needs to set a flag such that

it no longer will generate a new key / will accept a new IDevID via

the factory connection. This may be a software setting, or could be

as dramatic as blowing a fuse.

The risk is that if an attacker with physical access is able to put

the device back into an unconfigured mode, then the attacker may be

able to substitute a new certificate into the device. It is

difficult to construct a rationale for doing this, unless the

network initialization also permits an attacker to load or replace

trust anchors at the same time.

Devices are typically constructed in a fashion such that the device

is unable to ever disclose the private key via an external

interface. This is usually done using a secure-enclave provided by

the CPU architecture in combination with on-chip non-volatile

memory.

4.1.2.2. Off-device private key generation

Generating the key off-device has the advantage that the randomness

of the private key can be better analyzed. As the private key is

available to the manufacturing infrastructure, the authenticity of

the public key is well known ahead of time.

If the device does not come with a serial number in silicon, then

one should be assigned and placed into a certificate. The private

key and certificate could be programmed into the device along with

the initial bootloader firmware in a single step.

Aside from the change of origin for the randomness, a major

advantage of this mechanism is that it can be done with a single

write to the flash. The entire firmware of the device, including

configuration of trust anchors and private keys can be loaded in a

single write pass. Given some pipelining of the generation of the

keys and the creation of certificates, it may be possible to install

unique identities without taking any additional time.

The major downside to generating the private key off-device is that

it could be seen by the manufacturing infrastructure. It could be

compromised by humans in the factory, or the equipment could be

compromised. The use of this method increases the value of attacking

the manufacturing infrastructure.
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If private keys are generated by the manufacturing plant, and are

immediately installed, but never stored, then the window in which an

attacker can gain access to the private key is immensely reduced.

As in the previous case, the transfer may be done via physical

interfaces such as bed-of-nails, giving the infrastructure-generated / 

mechanically-transferred method.

There is also the possibility of having a infrastructure-generated / 

network-transferred key. There is a support for "server-generated"

keys in [RFC7030], [RFC8894], and [RFC4210]. All methods strongly

recommend encrypting the private key for transfer. This is difficult

to comply with here as there is not yet any private key material in

the device, so in many cases it will not be possible to encrypt the

private key.

4.1.2.3. Key setup based on 256 bit secret seed

A hybrid of the previous two methods leverages a symmetric key that

is often provided by a silicon vendor to OEM manufacturers.

Each CPU (or a Trusted Execution Environment [I-D.ietf-teep-

architecture], or a TPM) is provisioned at fabrication time with a

unique, secret seed, usually at least 256 bits in size.

This value is revealed to the OEM board manufacturer only via a

secure channel. Upon first boot, the system (probably within a TEE,

or within a TPM) will generate a key pair using the seed to

initialize a Pseudo-Random-Number-Generator (PRNG). The OEM, in a

separate system, will initialize the same PRNG and generate the same

key pair. The OEM then derives the public key part, signs it and

turns it into a certificate. The private part is then destroyed,

ideally never stored or seen by anyone. The certificate (being

public information) is placed into a database, in some cases it is

loaded by the device as its IDevID certificate, in other cases, it

is retrieved during the onboarding process based upon a unique

serial number asserted by the device.

This method appears to have all of the downsides of the previous two

methods: the device must correctly derive its own private key, and

the OEM has access to the private key, making it also vulnerable.

The secret seed must be created in a secure way and it must also be

communicated securely.

There are some advantages to the OEM however: the major one is that

the problem of securely communicating with the device is outsourced

to the silicon vendor. The private keys and certificates may be

calculated by the OEM asynchronously to the manufacturing process,

either done in batches in advance of actual manufacturing, or on

demand when an IDevID is demanded. Doing the processing in this way
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permits the key derivation system to be completely disconnected from

any network, and requires placing very little trust in the system

assembly factory. Operational security such as often incorrectly

presented fictionalized stories of a "mainframe" system to which

only physical access is permitted begins to become realistic. That

trust has been replaced with a heightened trust placed in the

silicon (integrated circuit) fabrication facility.

The downsides of this method to the OEM are: they must be supplied

by a trusted silicon fabrication system, which must communicate the

set of secrets seeds to the OEM in batches, and they OEM must store

and care for these keys very carefully. There are some operational

advantages to keeping the secret seeds around in some form, as the

same secret seed could be used for other things. There are some

significant downsides to keeping that secret seed around.

5. Public Key Infrastructures (PKI)

[RFC5280] describes the format for certificates, and numerous

mechanisms for doing enrollment have been defined (including: EST 

[RFC7030], CMP [RFC4210], SCEP [RFC8894]).

[RFC5280] provides mechanisms to deal with multi-level certification

authorities, but it is not always clear what operating rules apply.

The certification authority (CA) that is central to [RFC5280]-style

public key infrastructures can suffer three kinds of failures:

disclosure of a private key,

loss of a private key,

inappropriate signing of a certificate from an unauthorized

source.

A PKI which discloses one or more private certification authority

keys is no longer secure.

An attacker can create new identities, and forge certificates

connecting existing identities to attacker controlled public/private

keypairs. This can permit the attacker to impersonate any specific

device.

There is an additional kind of failure when the CA is convinced to

sign (or issue) a certificate which it is not authorized to do so.

See for instance [ComodoGate]. This is an authorization failure, and

while a significant event, it does not result in the CA having to be

re-initialized from scratch.
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This is distinguished from when a loss as described above renders

the CA completely useless and likely requires a recall of all

products that have ever had an IDevID issued from this CA.

If the PKI uses Certificate Revocation Lists (CRL)s, then an

attacker that has access to the private key can also revoke existing

identities.

In the other direction, a PKI which loses access to a private key

can no longer function. This does not immediately result in a

failure, as existing identities remain valid until their expiry time

(notAfter). However, if CRLs or OCSP are in use, then the inability

to sign a fresh CRL or OCSP response will result in all identities

becoming invalid once the existing CRLs or OCSP statements expire.

This section details some nomenclature about the structure of

certification authorities.

5.1. Number of levels of certification authorities

Section 6.1 of [RFC5280] provides a Basic Path Validation. In the

formula, the certificates are arranged into a list.

The certification authority (CA) starts with a Trust Anchor (TrAnc).

This is counted as the first level of the authority.

In the degenerate case of a self-signed certificate, then this a one

level PKI.

Is r
b t=c

X
S je
sue =
u X

The private key associated with the Trust Anchor signs one or more

certificates. When this first level authority trusts only End-Entity

(EE) certificates, then this is a two level PKI.
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authorities, and those certification authorities sign End-Entity

certificates, then this is a three level PKI.

2

-

b

r
b =

E
u s

Z S

Y
e
j A

Z 4

=

I s
b

-
I

b

I u 2
=

E

d

-
s e

b

X

r I

E
r Y
e

t

u

j

s s

E

Su

S c

n

E
=

e

t Z

r

u t

-
2

c

r

e

u
S

-
s

= S j

X s
S

1

o

E-
s u e

c =

A
X

c

- -
I

j t

o

E

1

t X
1 Y

Y s
b 3

s = u
u

t e

e

j

r

I i
e

- -
e Y

s

=

s
e t

e

=

r
C t

-
r

S

s

j

- E
u

u

C t

c

-
Y =

u e

ub

=
e

= r
b

I u

s

-
1

c

o

j =

a e

- -
s =

1 c

u

Z

In general, when arranged as a tree, with the End-Entity

certificates at the bottom, and the Trust Anchor at the top, then

the level is where the deepest EE certificates are, counting from

one.
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It is quite common to have a three-level PKI, where the root of the

CA is stored in a Hardware Security Module, while the level one

subordinate CA is available in an online form.

5.2. Protection of CA private keys

The private key for the certification authorities must be protected

from disclosure. The strongest protection is afforded by keeping

them in a offline device, passing Certificate Signing Requests

(CSRs) to the offline device by human process.

For examples of extreme measures, see [kskceremony]. There is

however a wide spectrum of needs, as exampled in [rootkeyceremony].

The SAS70 audit standard is usually used as a basis for the

Ceremony, see [keyceremony2].

This is inconvenient, and may involve latencies of days, possibly

even weeks to months if the offline device is kept in a locked

environment that requires multiple keys to be present.

There is therefore a tension between protection and convenience.

This is often mitigated by having some levels of the PKI be offline,

and some levels of the PKI be online.

There is usually a need to maintain backup copies of the critical

keys. It is often appropriate to use secret splitting technology

such as Shamir Secret Sharing among a number of parties [shamir79]

This mechanism can be setup such that some threshold k (less than

the total n) of shares are needed in order to recover the secret.

5.3. Supporting provisioned anchors in devices

IDevID-type Identity (or Birth) Certificates which are provisioned

into devices need to be signed by a certification authority

maintained by the manufacturer. During the period of manufacture of

new product, the manufacturer needs to be be able to sign new

Identity Certificates.

During the anticipated lifespan of the devices the manufacturer

needs to maintain the ability for third parties to validate the

Identity Certificates. If there are Certificate Revocation Lists

(CRLs) involved, then they will need to re-signed during this

period. Even for devices with a short active lifetime, the lifespan

of the device could very long if devices are kept in a warehouse for

many decades before being activated.

Trust anchors which are provisioned in the devices will have

corresponding private keys maintained by the manufacturer. The trust

anchors will often anchor a PKI which is going to be used for a

particular purpose. There will be End-Entity (EE) certificates of
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initial-enclave-location:

initial-enclave-integrity-key:

initial-enclave-privacy-key:

first-stage-initialization:

first-second-stage-gap:

identity-pki-level:

this PKI which will be used to sign particular artifacts (such as

software updates), or messages in communications protocols (such as

TLS connections). The private keys associated with these EE

certificates are not stored in the device, but are maintained by the

manufacturer. These need even more care than the private keys stored

in the devices, as compromise of the software update key compromises

all of the devices, not just a single device.

6. Evaluation Questions

This section recaps the set of questions that may need to be

answered. This document does not assign valuation to the answers.

6.1. Integrity and Privacy of on-device data

Is the location of the initial software

trust anchor internal to the CPU package? Some systems have a

software verification public key which is built into the CPU

package, while other systems store that initial key in a non-

volatile device external to the CPU.

If the first-stage bootloader is

external to the CPU, and if it is integrity protected, where is

the key used to check the integrity?

If the first-stage data is external to

the CPU, is it kept confidential by use of encryption?

The number of people involved in the

first stage initialization. An entirely automated system would

have a number zero. A factory with three 8 hour shifts might have

a number that is a multiple of three. A system with humans

involved may be subject to bribery attacks, while a system with

no humans may be subject to attacks on the system which are hard

to notice.

If a board is initialized with a first-

stage bootloader in one location (factory), and then shipped to

another location, there may situations where the device can not

be locked down until the second step.

6.2. Integrity and Privacy of device identify infrastructure

For IDevID provisioning, which includes a private key and matching

certificate installed into the device, the associated public key

infrastructure that anchors this identity must be maintained by the

manufacturer.

how deep are the IDevID certificates that are

issued?
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identity-time-limits-per-subordinate:

identity-number-per-subordinate:

identity-anchor-storage:

pki-level:

pki-algorithms:

pki-level-locked:

pki-breadth:

pki-lock-policy:

pki-anchor-storage:

how long is each subordinate

CA maintained before a new subordinate CA key is generated? There

may be no time limit, only a device count limit.

how many identities are signed by

a particular subordinate CA before it is retired? There may be no

numeric limit, only a time limit.

how is the root CA key stored? How many

people are needed to recover the private key?

6.3. Integrity and Privacy of included trust anchors

For each trust anchor (public key) stored in the device, there will

be an associated PKI. For each of those PKI the following questions

need to be answered.

how deep is the EE that will be evaluated (the trust

root is at level 1)

what kind of algorithms and key sizes will be

considered to valid

(a Boolean) is the level where the EE cert will

be found locked by the device, or can levels be added or deleted

by the PKI operator without code changes to the device.

how many different non-expired EE certificates is the

PKI designed to manage?

can any EE certificate be used with this trust

anchor to sign? Or, is there some kind of policy OID or Subject

restriction? Are specific subordinate CAs needed that lead to the

EE?

how is the private key associated with this

trust root stored? How many people are needed to recover it?

7. Privacy Considerations

many yet to be detailed

8. Security Considerations

This entire document is about security considerations.

9. IANA Considerations

This document makes no IANA requests.
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