
Network Working Group J. Richer, Ed.
Internet-Draft The MITRE Corporation
Intended status: Experimental April 23, 2012
Expires: October 25, 2012

Alternate Encoding for OAuth 2 Token Responses
draft-richer-oauth-xml-01

Abstract

 This document describes a method of representing the JSON structured
 responses from the OAuth 2 Token Endpoint into XML and form encoded
 responses.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 25, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Richer Expires October 25, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft oauth-xml April 2012

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Content Negotiation . 3
2.1. Form Parameter . 3
2.2. Accept Header . 4

3. Encoding . 4
3.1. XML . 4
3.2. Form Encoding . 5

4. Examples . 5
4.1. Standard OAuth Token 5

5. IANA Considerations . 6
6. Security Considerations 6
7. Acknowledgements . 6
8. Normative References . 6
Appendix A. General XML Encoding Rules 7
A.1. Objects and Members 7
A.2. Type Identifiers . 7
A.3. Strings and Numbers 7
A.4. Arrays . 8
A.5. Namespace . 8
A.6. Information Loss . 8
A.7. Examples . 8

Appendix B. General Form Encoding Rules 10
B.1. Objects and Members 10
B.2. Strings and Numbers 11
B.3. Arrays . 11
B.4. Information Loss . 11
B.5. Examples . 12

 Author's Address . 12

Richer Expires October 25, 2012 [Page 2]

Internet-Draft oauth-xml April 2012

1. Introduction

 The OAuth 2 Protocol [I-D.ietf-oauth-v2] defines a standard JSON
 [RFC4627] encoding for structured return values from the Token
 Endpoint in section 5.1 of the specification when used with most
 flows. Additionally, the OAuth 2 specification defines a URI
 fragment encoding for tokens issued from the Authorization Endpoint
 in the Implicit Grant flow using "application/x-www-form-url-encoded"
 encoding in section 4.2.2.

 When OAuth is being used as part of an API that is built around
 different encoding technologies, such as XML [W3C.CR-xml11-20021015],
 it is not desirable for application developers to have to parse JSON
 encoded objects just to handle authorization step. This extension
 describes a means for the client to request an alternative format for
 respones from the Token Endpoint and methods for the Token Endpoint
 to encode its responses as XML documents and form-encoded parameters.
 This extension makes no claim on responses from the Authorization
 Endpoint or other endpoints defined in OAuth2, its extensions, or
 profiles.

2. Content Negotiation

 To request an alternate encoding from the OAuth 2 Token Endpoint, the
 client indicates the desired encoding through one of the following
 methods. Authorization Servers SHOULD support all methods but MUST
 support at least one so that supporting clients can be configured to
 request the right format. Particular formats available from a given
 Authorization Server MUST be documented and MAY be discoverable
 through some other means.

2.1. Form Parameter

 In this method, the client sends the following OPTIONAL form
 parameter in any request to the Token Endpoint to indicate its
 encoding preference.

 format
 OPTIONAL. The format parameter specifies the client's desired
 format for responses from the token endpoint. Valid values are
 "json", "xml", and "form", though other extensions MAY define
 other valid values.

 If the value of the parameter is set to "xml" and the authorization
 server supports XML encoding, the authorization server MUST respond
 to a valid token request with an HTTP 200 response, a content type of
 "application/xml", and HTTP body content as described in Section 3.1.

https://datatracker.ietf.org/doc/html/rfc4627

Richer Expires October 25, 2012 [Page 3]

Internet-Draft oauth-xml April 2012

 If the value of the parameter is set to "form" and the authorization
 server supports form encoding, the authorization server MUST respond
 to a valid token request with an HTTP 200 response, a content type of
 "application/x-www-form-encoded", and an HTTP body content as
 described in Section 3.2.

 If the value of this parameter is "json" or the parameter is omitted
 entirely, the authorization server MUST respond to a valid token
 reqeust as defined in OAuth 2 [I-D.ietf-oauth-v2].

2.2. Accept Header

 In this method, the client sends an HTTP "Accept" header to indicate
 to the Authorization Server what encodings it prefers as described in
 the HTTP specification [REF].

 If the value of the header includes "application/xml" and the
 authorization server supports XML encoding, the authorization server
 MUST respond to a valid token request with an HTTP 200 response, a
 content type of "application/xml", and HTTP body content as described
 in Section 3.1.

 If the value of the header includes "application/x-www-form-encoded"
 and the authorization server supports form encoding, the
 authorization server MUST respond to a valid token request with an
 HTTP 200 response, a content type of
 "application/x-www-form-url-encoded", and an HTTP body content as
 described in Section 3.2.

 If the value of the header is "application/json" or no accept
 preference is otherwise given, the authorization server MUST respond
 to a valid token reqeust as defined in OAuth 2 [I-D.ietf-oauth-v2].

3. Encoding

 All alternate forms of encoding MUST account for all elements of a
 token as specified in OAuth2.

3.1. XML

 For a full description of the transformation rules, see Appendix A
 (Appendix A).

 The response MUST use a single XML root element with a node name of
 "oauth" to represent the anonymous root JSON object specified in the
 OAuth JSON response.

Richer Expires October 25, 2012 [Page 4]

Internet-Draft oauth-xml April 2012

 The response SHOULD NOT include a default namespace.

 All elements of the JSON object MUST be encoded as XML elements, with
 values encoded as CDATA within each element.

3.2. Form Encoding

 For a full description of the transformation rules, see Appendix B
 (Appendix B).

 The form encoding MUST follow the same encoding rules as defined in
Section 4.2.2 of OAuth2.

 All values of the JSON response MUST be encoded as key-value pairs.

4. Examples

 Below are examples of encoding different OAuth JSON objects with XML.
 All line breaks are for display purposes only.

4.1. Standard OAuth Token

 A standard OAuth JSON-encoded token response (example from OAuth2
 Core):

 HTTP/1.1 200 OK
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "example_parameter":"example_value"
 }

Richer Expires October 25, 2012 [Page 5]

Internet-Draft oauth-xml April 2012

 Can be encoded in as the following XML response document:

 HTTP/1.1 200 OK
 Content-Type: application/xml
 Cache-Control: no-store

 <oauth>
 <access_token>2YotnFZFEjr1zCsicMWpAA</access_token>
 <token_type>example</token_type>
 <expires_in>3600</expires_in>
 <refresh_token>tGzv3JOkF0XG5Qx2TlKWIA</refresh_token>
 <example_parameter>example_value</example_parameter>
 </oauth>

 The same response can be encoded in form encoding a follows:

 HTTP/1.2 200 OK
 Content-Type: application/x-www-form-encoded
 Cache-Control: no-store

 access_token=2YotnFZFEjr1zCsicMWpAA&token_type=example&
 expires_in=3600&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA&
 example_parameter=example_value

5. IANA Considerations

 This document makes no request of IANA.

6. Security Considerations

 There are no additional security considerations.

7. Acknowledgements

 Thanks to Eve Maler, Joseph Holsten, Tim Brody, and the OAuth Working
 Group for feedback.

8. Normative References

 [I-D.ietf-oauth-v2]

Richer Expires October 25, 2012 [Page 6]

Internet-Draft oauth-xml April 2012

 Hammer-Lahav, E., Recordon, D., and D. Hardt, "The OAuth
 2.0 Authorization Protocol", draft-ietf-oauth-v2-23 (work
 in progress), January 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [W3C.CR-xml11-20021015]
 Cowan, J., "Extensible Markup Language (XML) 1.1", W3C
 CR CR-xml11-20021015, October 2002.

Appendix A. General XML Encoding Rules

 This Appendix defines encodings for different parts of the JSON data
 model in XML equivalents to facilitate structured extensions to the
 OAuth2 JSON token response. Since this JSON response MAY include
 elements such as JSON objects or arrays, a server wishing to support
 such extended responses and XML encoding MUST use these encoding
 rules to translate them.

A.1. Objects and Members

 JSON objects SHALL be encoded by using XML Elements. The object
 itself SHALL be represented by the root elment of an XML subtree.
 All members of the object SHALL be represented by sub-elements of the
 root element. The key of the member pair SHALL be the node name of
 the XML Element, and the value of the member pair SHALL be encoded as
 the content of the XML Element.

A.2. Type Identifiers

 All elements MAY have an OPTIONAL "type" attribute, which has a valid
 value of "object", "string", "number", or "array". These attributes
 can be used to differentiate between otherwise potentially ambiguous
 encodings (Appendix A.6), though the most common cases will not need
 them.

A.3. Strings and Numbers

 Strings and numbers SHALL be encoded as CDATA within their enclosing
 element. These values MUST be properly escaped XML CDATA, and MAY be
 represented using <[CDATA[...]]> encoding.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-23
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627

Richer Expires October 25, 2012 [Page 7]

Internet-Draft oauth-xml April 2012

A.4. Arrays

 Arrays SHALL be represented using repeated, sibling XML Element nodes
 (nodes with the same node name). The order of the array is encoded
 using document order of the array elements.

A.5. Namespace

 This extension does not define a required namespace for the OAuth XML
 encoding, and a supporting server SHOULD not use a namespace.

A.6. Information Loss

 This encoding scheme is intended to give a clear an intuitive mapping
 between JSON and XML data structures. However, the mapping between
 the two formats is not exact and some information loss may occur, and
 round-trip translation between the two formats MUST NOT be depended
 upon.

 1. Both strings and numbers (Appendix A.3) in JSON are represented
 as CDATA in XML. Without type identifiers (Appendix A.2) there
 is no clear way to differentiate between the two in the XML
 encoding.

 2. Arrays (Appendix A.4) in JSON are represented by repeated
 elements in XML. There is therefore no reliable way to
 distinguish between a single-element array and a standalone
 string or number value in the XML encoding, as both would be
 encoded the same way.

A.7. Examples

 Line breaks are for display purposes only.

 The example above, with type attributes (Appendix A.2) in place:

 HTTP/1.1 200 OK
 Content-Type: application/xml
 Cache-Control: no-store

 <oauth type="object">
 <access_token type="string">2YotnFZFEjr1zCsicMWpAA</access_token>
 <token_type type="string">example</token_type>
 <expires_in type="number">3600</expires_in>
 <refresh_token type="string">tGzv3JOkF0XG5Qx2TlKWIA</refresh_token>
 <example_parameter type="string">example_value</example_paramter>
 </oauth>

Richer Expires October 25, 2012 [Page 8]

Internet-Draft oauth-xml April 2012

 This example uses both objects and arrays to support a complicated,
 fictional example extension to the OAuth protocol:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "ext_value": "extension",
 "ext_list": [1, 2, "three"],
 "ext_object": {
 "member1": "value1",
 "memberlist": ["A", "B", "C"],
 "member3": 3,
 "memberobj": {
 "a": "first",
 "b": "second",
 "c": "third"
 }
 }
 }

Richer Expires October 25, 2012 [Page 9]

Internet-Draft oauth-xml April 2012

 The above is encoded into XML as follows (without using type
 attributes):

 HTTP/1.1 200 OK
 Content-Type: application/xml
 Cache-Control: no-store

 <oauth>
 <access_token>2YotnFZFEjr1zCsicMWpAA</access_token>
 <token_type>example</token_type>
 <expires_in>3600</expires_in>
 <refresh_token>tGzv3JOkF0XG5Qx2TlKWIA</refresh_token>
 <ext_value>extension</ext_value>
 <ext_list>1</ext_list>
 <ext_list>2</ext_list>
 <ext_list>three</ext_list>
 <ext_object>
 <member1>value1</member>
 <memberlist>A</memberlist>
 <memberlist>B</memberlist>
 <memberlist>C</memberlist>
 <member3>3</member3>
 <memberobj>
 <a>first
 second
 <c>third</c>
 </memberobj>
 </ext_object>
 </oauth>

Appendix B. General Form Encoding Rules

 This Appendix defines encodings for different parts of the JSON data
 model in form encoded equivalents to facilitate structured extensions
 to the OAuth2 JSON token response. Since this JSON response MAY
 include elements such as JSON objects or arrays, a server wishing to
 support such extended responses and form encoding MUST use these
 encoding rules to translate them. These encoding rules MAY be used
 to extend the response of the Authorization Endpoint in the Implicit
 flow.

B.1. Objects and Members

 JSON objects SHALL be represented by encoding all members as separate
 form parameters. Sub-objects SHALL be encoded by a dot-notation

Richer Expires October 25, 2012 [Page 10]

Internet-Draft oauth-xml April 2012

 syntax, with the member name of a sub-object being appended to the
 name of its containing object member, separated by a single period.

B.2. Strings and Numbers

 All String and Number values SHALL be encoded as simple string
 values.

B.3. Arrays

 Arrays SHALL be encoded by repeating the member name for each value
 in the array. The order of the array is encoded by the presentation
 order of the values in the response.

B.4. Information Loss

 This encoding scheme is intended to give a clear an intuitive mapping
 between JSON and form encoded data structures. However, the mapping
 between the two formats is not exact and some information loss may
 occur, and round-trip translation between the two formats MUST NOT be
 depended upon.

 1. Both strings and numbers (Appendix B.2) in JSON are represented
 as strings in the form encoding, and there is no clear way to
 differentiate between the two in the form encoding.

 2. Arrays (Appendix B.3) in JSON are represented by repeated
 elements in the form encoding. There is therefore no reliable
 way to distinguish between a single-element array and a
 standalone string or number value in the form encoding, as both
 would be encoded the same way.

Richer Expires October 25, 2012 [Page 11]

Internet-Draft oauth-xml April 2012

B.5. Examples

 This example encodes the fictionally extended OAuth token response
 above. Line breaks are for display purposes only.

 HTTP/1.1 200 OK
 Content-Type: application/x-www-form-encoded
 Cache-Control: no-store

 access_token=2YotnFZFEjr1zCsicMWpAA&token_type=example&
 expires_in=3600&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA&
 ext_value=extension&ext_list=1&ext_list=2&ext_list=three&
 ext_object.member1=value1&ext_object.memberlist=A&
 ext_object.memberlist=B&ext_object.memberlist=C&
 ext_object.member3=3&ext_object.memberobj.a=first&
 ext_object.memberobj.b=second&ext_object.memberobj.c=third

Author's Address

 Justin Richer (editor)
 The MITRE Corporation

 Email: jricher@mitre.org

Richer Expires October 25, 2012 [Page 12]

