
Network Working Group J. Richer, Ed.
Internet-Draft Bespoke Engineering
Intended status: Standards Track May 15, 2019
Expires: November 16, 2019

Transactional Authorization
draft-richer-transactional-authz-00

Abstract

 This document defines a mechanism for delegating authorization to a
 piece of software, and conveying that delegation to the software.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 RFC 2119 [RFC2119] RFC 8174 [RFC8174] when, and only when, they
 appear in all capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 16, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Richer Expires November 16, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft transactional-authz May 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Parties . 3
2. Transaction request . 3
2.1. Client . 4
2.2. Resource . 4
2.3. User . 5
2.4. Interact . 5
2.4.1. Redirect . 5
2.4.2. Device . 6

2.5. Keys . 6
2.5.1. Detatched JWS method 7
2.5.2. MTLS method . 7
2.5.3. DID method . 7

3. Interaction response . 8
3.1. Redirect interaction 8
3.2. Secondary device interaction 9

4. Wait response . 10
5. Interaction at the AS . 11
6. Error response . 11
7. Transaction continue request 11
8. Token response . 12
9. Handle references . 12
9.1. Validating handles 12
9.2. Transaction handles 13
9.3. Client handles . 13
9.4. Resource handles . 14
9.5. User handles . 14
9.6. Key handles . 15

10. Binding Keys . 16
10.1. Binding a key to a transaction 16
10.2. Validating detached JWS 16
10.3. Validating attached JWS 17
10.4. Validating MTLS . 17
10.5. Validating DID . 17

11. Using a Token . 17
12. Acknowledgements . 17
13. IANA Considerations . 18
14. Security Considerations 18
15. Privacy Considerations 18
16. Normative References . 18
Appendix A. Document History 19

Richer Expires November 16, 2019 [Page 2]

Internet-Draft transactional-authz May 2019

 Author's Address . 19

1. Parties

 The Authorization Server (AS) manages the transactions. It is
 defined by its transaction endpoint, a single URL that accepts a POST
 request with a JSON payload. The AS can also have other endpoints,
 including interaction endpoints.

 The Authorization Requester (AR) is a party calling the AS. It can
 be acting as either RC or RS. (TODO: there needs to be a better term
 for this.)

 The Resource Client (RC) requests tokens from the AS and uses tokens
 at the RS.

 The Resource Server (RS) accepts tokens from the RC and validates
 them (potentially at the AS).

 The Resource Owner (RO) authorizes the request from the RC to the RS

2. Transaction request

 To start a transaction, the RC makes a transaction request to the
 transaction endpoint of the AS. The RC creates a JSON document with
 up to five sections.

 client Information about the RC making the request, including
 display name, home page, logo, and other user-facing information.
 This section is RECOMMENDED.

 resources Information about the RS's the resulting token will be
 applied to, including locations, extents of access, types of data
 being accessed, and other API information. This section is
 REQUIRED.

 user Information about the RO as known to or provided to the RC, in
 the form of assertions or references to external data. This
 section is OPTIONAL.

 interact Information about how the RC is able to interact with the
 RO, including callback URI's and state. This section is REQUIRED
 if the client is capable of driving interaction with the user.

 keys Information about the keys known to the RC and able to be
 presented in future parts of the transaction. This section is
 REQUIRED. (Note: I can't think of a good reason for this to be
 optional.)

Richer Expires November 16, 2019 [Page 3]

Internet-Draft transactional-authz May 2019

 An AS MAY

2.1. Client

 This section provides descriptive details of the client software
 making the call.

 name Display name of the client software

 uri User-facing web page of the client software

 logo_uri Display image to represent the client software

 client: {

 name: "Display Name",
 uri: "https://example.com/client"

 }

 This can also be presented as a client handle reference.

2.2. Resource

 This section identifies the RS and describes what the RC wants to do
 with the API hosted at the RS. This section is an array of objects,
 each object representing a single resource set. That AS MUST
 interpret the request as being for all of the resources listed.

 actions The types of actions the RC will take at the RS

 locations URIs the RC will call at the RS

 data types of data available to the RC at the RS's API

 resources: [
 {
 actions: ["read", "write"],
 locations: ["https://exapmle.com/resource"]
 data: ["foo", "bar"]

 }
]

 This can also be presented as a set of resource handle references.

Richer Expires November 16, 2019 [Page 4]

Internet-Draft transactional-authz May 2019

2.3. User

 This section provides a verifiable assertion about the RO interacting
 with the client on behalf of the request.

 assertion The value of the assertion as a string.

 type The type of the assertion. Possible values include
 "oidc_id_token"...

 user: {

 assertion: "eyj0....",
 type: "oidc_id_token"

 }

 This can also be presented as a user handle reference.

2.4. Interact

 This section provides details of how the RC can interact with the RO.
 All interact requests MUST have the "type" field.

 type REQUIRED. Type of interaction. Can be "redirect" or "device".

 Each interaction type has its own parameters and behaviors, detailed
 below.

 This can also be presented as interaction handle reference.

2.4.1. Redirect

 A redirect type interaction has the RC send the RO to a URL at the AS
 and interact with the AS directly, using any number of interactions.
 Following the interaction, the RO is sent back to the RC using the
 "callback" URI.

 type MUST be "redirect"

 callback REQUIRED. URI to send the user to after interaction,
 SHOULD (MUST?) be unique per transaction and hosted or accessible
 by the RC. This URL MUST NOT contain any fragment component.
 This URL MUST be protected by HTTPS, hosted on a server local to
 the user's browser ("localhost"), or use an application-specific
 URL scheme. MAY be limited by the AS based on the client's
 information.

Richer Expires November 16, 2019 [Page 5]

Internet-Draft transactional-authz May 2019

 state REQUIRED. Unique value to be returned to the application as a
 query parameter on the callback URL, must be sufficiently random
 to be unguessable by an attacker. MUST be generated by the client
 for this transaction.

 interact: {
 type: redirect
 callback: https://client.foo/
 state: foo
 }

2.4.2. Device

 The device type interaction has the RC instruct the user to go to a
 URL at the AS using a secondary device. The user then interacts with
 the AS directly by entering a short code provided by the AS to the
 RC. Following the interaction, the RO is prompted by the AS to check
 their RC device, which can poll the AS until the authorization is
 complete.

 type MUST be "device"

 interact: {
 type: device
 }

2.5. Keys

 This section lists the keys that the client can present proof of
 ownership. Each key type has its own proofing mechanism and
 additional required parameters, listed in individual sections below.

 type Validation method for the key, must be one of "jwsd", "mtls/
 x509", or "did/zkp".

 All presented keys MUST be validated by the AS as per the Key
 Validation section.

 This can also be presented as a key handle reference. The key
 referenced by a handle MUST be validated by the AS.

 key: {

 handle: "3eru876tyhgr5678ikjhgt"

 }

https://client.foo/

Richer Expires November 16, 2019 [Page 6]

Internet-Draft transactional-authz May 2019

2.5.1. Detatched JWS method

 type MUST be "jwsd"

 jwks Value of the public key as a JWK Set JSON object [Note: should
 this be a single JWK instead? And do we want to bother with url-
 based references?]. MUST contain an "alg" field which is used to
 validate the signature. MUST contain the "kid" field to identify
 the key in the signed object.

 key: {

 type: jwsd,
 jwks: { keys: [alg: RS256, kty: ...] }

 }

2.5.2. MTLS method

 type MUST be "mtls"

 cert REQUIRED. String serialized value of the certificate
 thumbprint as per OAuth-MTLS.

 key: {

 type: mtls,
 cert: "MII...."

 }

2.5.3. DID method

 type MUST be "did"

 did The DID URL identifying the key (or keys) used to sign this
 request.

 key: {

 type: did,
 did: "did:v:foo...."

 }

Richer Expires November 16, 2019 [Page 7]

Internet-Draft transactional-authz May 2019

3. Interaction response

 When evaluating a transaction request, the AS can determine that it
 needs to have the RO present to interact with the AS before issuing a
 token. This interaction can include the RO logging in to the AS,
 authorizing the transaction, providing proof claims, determining if
 the transaction decision should be remembered for the future, and
 other items.

 The AS responds to the RC based on the type of interaction supported
 by the RC in the transaction request.

 This response can indicate a set of keys are bound to the transaction
 as in Key Binding. This response includes a transaction handle as in
 Transaction Handle.

3.1. Redirect interaction

 If the RC supports a "redirect" style interaction, the AS creates a
 unique interaction URL and returns it to the RC. This URL MUST be
 associated with a single pending transaction.

 interaction_url The interaction URL that the RC will direct the RO
 to. This URL MUST be unique to this transaction request. The URL
 SHOULD contain a random portion of sufficient entropy so as not to
 be guessable by the user. The URL MUST NOT contain the
 transaction handle or any client identifying information. This
 URL MUST be protected by HTTPS. This URL MUST NOT contain any
 fragment component.

 handle The transaction handle to use in the continue request once
 the RO has been returned to the RC via the callback URL. See the
 section on transaction handles.

 {

 interaction_url: "https://server.example.com/interact/123asdfklj",
 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 }
 }

 When the RC receives this response, it sends the RO to the
 interaction URL. When interacting with the RO, the AS MAY perform
 any of the behaviors in the User Interaction section.

Richer Expires November 16, 2019 [Page 8]

Internet-Draft transactional-authz May 2019

 Once the RO has completed the interaction with the AS, the AS returns
 the user to the RC by redirecting the RO's browser to the RC's
 callback URL presented at the start of the transaction, with the
 state parameter appended to the callback URL as a query parameter in
 addition to an interaction handle to be returned to the AS in a
 transaction continuation request.

 state REQUIRED. The (hashed?) value of the state parameter sent by
 the client in the initial interaction request.

 interact_handle REQUIRED. A shared secret associated with this
 interaction. This value MUST be sufficiently random so as not to
 be guessable by an attacker. This value MUST be associated by the
 AS with the underlying transaction that is associated to with this
 interaction.

 Upon processing this request to the callback URL, the client MUST
 match the state value to the value it sent in the original
 transaction request. The RC then sends a transaction continuation
 request with the transaction handle returned in the interaction
 response and the (hash of?) the interaction handle returned as a
 query parameter to the callback URL.

 The client sends the hash of the interaction handle as the
 "interact_handle" field of the transaction continuation request.

{
 "handle": "80UPRY5NM33OMUKMKSKU",
 "interact_handle": "CuD9MrpSXVKvvI6dN1awtNLx-
HhZy46hJFDBicG4KoZaCmBofvqPxtm7CDMTsUFuvcmLwi_zUN70cCvalI6ENw"
}

 [Open Question: error conditions. If the user denies access or
 there's some other authorization error, do we return to the callback?
 What's the attack surface here? We could always return an error page
 to the browser and cancel the underlying transaction, effectively
 killing it at the AS.]

 If the AS cannot identify the source transaction from the source URL,
 it returns an HTTP 404 error page to the browser and optionally an
 error message to the user.

3.2. Secondary device interaction

 If the RC supports a "device" style interaction, the AS creates a
 unique interaction code and returns it to the RC along with a URL to
 give the user for interaction.

Richer Expires November 16, 2019 [Page 9]

Internet-Draft transactional-authz May 2019

 user_code A short code that the user can type into an authorization
 server. This string MUST be case-insensitive, MUST consist of
 only easily typeable characters (such as letters or numbers). The
 time in which this code will be accepted MUST be short lived.

 interaction_url The interaction URL that the RC will direct the RO
 to. This URL SHOULD be stable over time.

 wait The amount of time to wait before polling again, in integer
 seconds.

 handle The transaction handle to use in the continue request. See
 the section on transaction handles.

 {

 user_code: "ABCD1234"
 interaction_url: "https://server.example.com/device",
 wait: 30,
 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 }
 }

 When the RC receives this response, it MUST communicate the user code
 to the RO. If possible the RC SHOULD communicate the interaction URL
 to the user as well, although this can be a stable URL at the AS.

4. Wait response

 If the AS needs to do something that the RC has no part in before it
 can give a definitive response, the AS replies to the transaction
 request with a wait response. This tells the RC that it can poll the
 transaction after a set amount of time.

 This response can indicate a set of keys are bound to the transaction
 as in Key Binding. This response includes a transaction handle as in
 Transaction Handle.

 wait REQUIRED. The amount of time to wait before polling again, in
 integer seconds.

 handle REQUIRED. The transaction handle to use in the continue
 request. This MUST be a newly-created handle and MUST replace any
 existing handle for this transaction. See the section on
 transaction handles.

Richer Expires November 16, 2019 [Page 10]

Internet-Draft transactional-authz May 2019

 {

 wait: 30,
 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 }

 }

5. Interaction at the AS

 When the RO is interacting with the AS at the interaction endpoint,
 the AS MAY perform whatever actions it sees

6. Error response

 If the AS determines that the token cannot be issued for any reason,
 it responds to the client with an error message. This message does
 not include a transaction handle, and the RC can no longer poll for
 this transaction. The RC MAY create a new transaction and start
 again.

 error The error code.

 {

 error: user_denied

 }

 TODO: we should have a robust error mechanism.

7. Transaction continue request

 Once a transaction has begun, the AS associates that transaction with
 a transaction handle which is returned to the RC in one of the
 transaction responses. This handle MUST be unique, MUST be
 associated with a single transaction, and MUST be one time use.

 The RC continues the transaction by making a request with the
 transaction handle in the body of the request. The RC MAY add
 additional fields depending on the type of interaction and
 authorization process in play.

 transaction The (hash of?) transaction handle to use in the continue
 request.

Richer Expires November 16, 2019 [Page 11]

Internet-Draft transactional-authz May 2019

 interaction_handle The (hash of?) interaction handle returned to the
 RC's callback URL from the interaction endpoint.

 {

 transaction: "tghji76ytghj9876tghjko987yh"

 }

8. Token response

 access_token The access token that the RC uses to call the RS.

 access_token_keys List of keys that the access token is bound to
 using the methods in key validation. If not specified, the access
 token is a bearer token.

 handle The transaction handle to use in the continue request to get
 a new access token once the one issued is no longer usable. See
 the section on transaction handles.

 key: {

 access_token: "08ur4kahfga09u23rnkjasdf",
 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 }

 }

9. Handle references

 Many parts of this protocol are referenced through the use of handles
 as stand-ins for actual values, including transactions themselves as
 well as portions of transactions.

 value The value of the handle as a string.

 method The verification method, MUST be one of "bearer" or "sha3".

9.1. Validating handles

 Bearer handles are validated by doing an exact byte comparison of the
 string representation of the handle value.

 SHA3 handles are validated by taking the SHA3 hash of the handle
 value and encoding it in Base64URL with no padding.

Richer Expires November 16, 2019 [Page 12]

Internet-Draft transactional-authz May 2019

9.2. Transaction handles

 Transaction handles are issued by the AS to the RC to allow the RC to
 continue a transaction after every step. A transaction handle MUST
 be discarded after it is used. If the AS determines that the RC can
 continue the transaction, a new transaction handle will be issued in
 its place.

9.3. Client handles

 Client handles stand in for the client section of the initial
 transaction request. The AS MAY issue a client handle to a client as
 part of a static registration process, analogous to a client ID,
 allowing the client to be associated with an AS-side configuration
 that does not change at runtime. Such static processes SHOULD be
 bound to a set of keys known only to the client software.

 Client handles MAY be issued by the RS in response to a transaction
 request. The AS MAY bind this handle to the interact, resource, and
 key handles issued in the same response. When the RC receives this
 handle, it MAY present the handle in future transaction requests
 instead of sending its information again.

 {

 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 },
 client_handle: {
 value: "absc2948afgdkjnasdf9082ur3kjasdfasdf89",
 method: "bearer"
 }

 }

 The RC sends its handle in lieu of the client block of the
 transaction request:

 {

 client: {
 handle: "absc2948afgdkjnasdf9082ur3kjasdfasdf89"
 }

 }

Richer Expires November 16, 2019 [Page 13]

Internet-Draft transactional-authz May 2019

9.4. Resource handles

 Resource handles stand in for the detailed resource request in the
 transaction request. Resource handles MAY be created by the
 authorization server as static stand-ins for specific resource
 requests, analogous to OAuth2 scopes.

 Resource handles MAY be issued by the RS in response to a transaction
 request. When the RC receives this handle, it MAY present the handle
 in future transaction requests instead of sending its information
 again.

 {

 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 },
 resource_handle: {
 value: "foo",
 method: "bearer"
 }

 }

 The RC sends its handle in lieu of the resource block of the
 transaction request:

 {

 resource: {
 handle: "foo"
 }

 }

9.5. User handles

 User handles MAY be issued by the AS in response to validating a
 specific RO during a transaction. This handle can be used in future
 transactions to represent the current user, analogous to the
 persistent claims token.

Richer Expires November 16, 2019 [Page 14]

Internet-Draft transactional-authz May 2019

 {

 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 },
 user_handle: {
 value: "absc2948afgdkjnasdf9082ur3kjasdfasdf89",
 method: "bearer"
 }

 }

 The RC sends its handle in lieu of the user block of the transaction
 request:

 {

 user: {
 handle: "absc2948afgdkjnasdf9082ur3kjasdfasdf89"
 }

 }

9.6. Key handles

 Key handles stand in for the keys section of the initial transaction
 request. The AS MAY issue a key handle to a client as part of a
 static registration process, allowing the client to be associated
 with an AS-side configuration that does not change at runtime.

 Key handles MAY be issued by the RS in response to a transaction
 request. The AS SHOULD bind this handle to the client, resource, and
 user handles issued in the same response. When the RC receives this
 handle, it MAY present the handle in future transaction requests
 instead of sending its information again.

Richer Expires November 16, 2019 [Page 15]

Internet-Draft transactional-authz May 2019

 {

 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 },
 key_handle: {
 value: "absc2948afgdkjnasdf9082ur3kjasdfasdf89",
 method: "bearer"
 }

 }

 The RC sends its handle in lieu of the client block of the
 transaction request:

 {

 key: {
 handle: "absc2948afgdkjnasdf9082ur3kjasdfasdf89"
 }

 }

 When the AS receives a key handle, it MUST validate that the keys
 referenced by the handle are bound to the current transaction
 request.

10. Binding Keys

 Any keys presented by the RC to the AS or RS MUST be validated as
 part of the transaction in which they are presented. Any keys bound
 to the transaction are indicated by the bound_keys section of the
 transaction response. Any keys referenced in this section MUST be
 used with all future transaction requests.

10.1. Binding a key to a transaction

 Keys are bound to a transaction by including a bound_keys field in
 the transaction response alongside the transaction handle. Any
 further keys used for binding

10.2. Validating detached JWS

 To sign a request to the transaction endpoint, the RC takes the
 serialized body of the request and signs it using detached JWS. The
 header of the JWS MUST contain the kid field of the key bound to this

Richer Expires November 16, 2019 [Page 16]

Internet-Draft transactional-authz May 2019

 client during this transaction. The header MUST contain an alg field
 appropriate for the key identified by kid and MUST NOT be none. The

 The RC presents the signature in the JWS-Signature HTTP Header field.
 [Note: this is a custom header field, do we need this?]

 JWS-Signature: eyj0....

 When the AS receives the JWS-Signature header, it MUST parse its
 contents as a detached JWS object. The HTTP Body is used as the
 payload for purposes of validating the JWS, with no transformations.

10.3. Validating attached JWS

 [Note: if we do an attached JWS we end up having two different data
 types to deal with at the AS, is this ok?]

 To sign a request to the transaction endpoint with an attached JWS,
 the RC takes the body of the request as the JWS payload and wraps the
 request in a JWS object.

10.4. Validating MTLS

 The RC presents its client certificate during TLS negotiation with
 the server. The AS or RS takes the thumbprint of the client
 certificate presented during mutual TLS negotiation and compares that
 thumbprint to the thumbprint presented by the RC application.

10.5. Validating DID

 The RC signs the request using [some HTTP signing mechanism] and its
 private key, and attaches the signature to the HTTP request using [a
 header method?]. [Note: is DID just a key-lookup mechanism here or
 should we use a different kind of crypto method as well?]

11. Using a Token

 Bearer access tokens issued through this method can be used with the
 authorization header method found in RFC6750. Other access tokens
 are validated by the RS in accordance with the methods in the Binding
 Keys section.

12. Acknowledgements

https://datatracker.ietf.org/doc/html/rfc6750

Richer Expires November 16, 2019 [Page 17]

Internet-Draft transactional-authz May 2019

13. IANA Considerations

 This specification creates one registry and registers several values
 into existing registries.

14. Security Considerations

15. Privacy Considerations

16. Normative References

 [OpenID] Sakimura, N., Bradley, J., and M. Jones, "OpenID Connect
 Core 1.0", November 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259

Richer Expires November 16, 2019 [Page 18]

Internet-Draft transactional-authz May 2019

Appendix A. Document History

 - 00

 o Initial submission.

Author's Address

 Justin Richer (editor)
 Bespoke Engineering

 Email: ietf@justin.richer.org

Richer Expires November 16, 2019 [Page 19]

