
Network Working Group J. Richer, Ed.
Internet-Draft Bespoke Engineering
Intended status: Standards Track July 8, 2019
Expires: January 9, 2020

Transactional Authorization
draft-richer-transactional-authz-02

Abstract

 This document defines a mechanism for delegating authorization to a
 piece of software, and conveying that delegation to the software.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 RFC 2119 [RFC2119] RFC 8174 [RFC8174] when, and only when, they
 appear in all capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Richer Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft transactional-authz July 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Protocol . 3
1.1. Parties . 3
1.2. Sequence . 3

2. Transaction request . 3
2.1. Client . 4
2.2. Resource . 5
2.3. User . 5
2.4. Interact . 6
2.5. Keys . 7

3. Interaction response . 7
3.1. Redirect interaction 8
3.2. Callback response . 9
3.3. Secondary device interaction 9

4. Wait response . 10
5. Interaction at the AS . 11
6. Error response . 12
7. Transaction continue request 12
8. Token response . 13
8.1. Presenting Tokens to the RS 13

9. Handle references . 13
9.1. Presenting handles 14
9.2. Validating handles 14
9.3. Transaction handles 14
9.4. Client handles . 15
9.5. Resource handles . 15
9.5.1. Resource-first 16

9.6. User handles . 17
9.7. Key handles . 17

10. Binding Keys . 18
10.1. Binding a key to a transaction 18
10.2. Detached JWS . 19
10.3. Mutual TLS . 19
10.4. Validating DID . 19

11. Acknowledgements . 19
12. IANA Considerations . 19
13. Security Considerations 19
14. Privacy Considerations 20
15. Normative References . 20
Appendix A. Document History 21

 Author's Address . 21

Richer Expires January 9, 2020 [Page 2]

Internet-Draft transactional-authz July 2019

1. Protocol

 This protocol allows a piece of software to request delegated
 authorization to an API, protected by an authorization server usually
 on behalf of a resource owner.

1.1. Parties

 The Authorization Server (AS) manages the transactions. It is
 defined by its transaction endpoint, a single URL that accepts a POST
 request with a JSON payload. The AS MAY also have other endpoints,
 including interaction endpoints and user code endpoints, and these
 are introduced to the RC as needed during the transaction process.

 The Resource Client (RC) requests tokens from the AS and uses tokens
 at the RS.

 The Resource Server (RS) accepts tokens from the RC and validates
 them (potentially at the AS).

 The Resource Owner (RO) authorizes the request from the RC to the RS,
 often interactively at the AS.

1.2. Sequence

 1. The RC creates a transaction request and sends it to the AS

 2. The AS processes the transaction request and determines if the RO
 needs to interact

 3. If interaction is required, the AS interacts with the RO,
 possibly by directing the RC to send the RO there

 4. The RC continues the transaction at the AS

 5. The AS processes the transaction again, determining that a token
 can be issued

 6. The AS issues a token to the RC

 7. The RC uses the token with the RS

2. Transaction request

 To start a transaction, the RC makes a transaction request to the
 transaction endpoint of the AS. The RC creates a JSON [RFC8259]
 document with five primary sections, included as members of a root
 JSON object.

https://datatracker.ietf.org/doc/html/rfc8259

Richer Expires January 9, 2020 [Page 3]

Internet-Draft transactional-authz July 2019

 client Information about the RC making the request, including
 display name, home page, logo, and other user-facing information.
 This section is RECOMMENDED.

 resources Information about the RS's the resulting token will be
 applied to, including locations, extents of access, types of data
 being accessed, and other API information. This section is
 REQUIRED.

 user Information about the RO as known to or provided to the RC, in
 the form of assertions or references to external data. This
 section is OPTIONAL.

 interact Information about how the RC is able to interact with the
 RO, including callback URI's and state. This section is REQUIRED
 if the RC is capable of driving interaction with the user.

 keys Information about the keys known to the RC and able to be
 presented in future parts of the transaction. This section is
 REQUIRED. (Note: I can't think of a good reason for this to be
 optional.)

 Each section consists of either a JSON object or an array of JSON
 objects, as described in the subsections below. Many sections MAY be
 represented by an appropriate handle instead as described in

Section 9. In such cases, the section is replaced entirely by the
 handle presentation, which is a single string instead of a JSON
 object. The RC MAY present additional sections as defined by
 extensions of this specification. The AS MUST ignore any sections
 that it does not understand.

2.1. Client

 This section provides descriptive details of the RC software making
 the call. This section is a JSON object, and all fields are
 OPTIONAL. The RC MAY send additional fields, and the AS MUST ignore
 all fields that it does not understand.

 name Display name of the RC software

 uri User-facing web page of the RC software

 logo_uri Display image to represent the RC software

Richer Expires January 9, 2020 [Page 4]

Internet-Draft transactional-authz July 2019

 client: {

 name: "Display Name",
 uri: "https://example.com/client"

 }

 The AS SHOULD use this information in presenting any authorization
 screens to the RO during interaction.

 The client information MAY instead be presented as a client handle
 reference Section 9.4.

2.2. Resource

 This section identifies what the RC wants to do with the API hosted
 at the RS. This section is a JSON array of objects, each object
 representing a single resource or resource set. That AS MUST
 interpret the request as being for all of the resources listed.

 actions The types of actions the RC will take at the RS

 locations URIs the RC will call at the RS

 data types of data available to the RC at the RS's API

 resources: [
 {
 actions: ["read", "write"],
 locations: ["https://exapmle.com/resource"]
 data: ["foo", "bar"]

 }
]

 This can also be presented as a set of resource handle references
Section 9.5, or a combination of handles and resource structures.

2.3. User

 This section provides a verifiable assertion about the person
 interacting with the RC on behalf of the request. This person MAY be
 the RO or MAY be another party.

 assertion The value of the assertion as a string.

 type The type of the assertion. Possible values include
 "oidc_id_token"...

Richer Expires January 9, 2020 [Page 5]

Internet-Draft transactional-authz July 2019

 user: {

 assertion: "eyj0....",
 type: "oidc_id_token"

 }

 This can also be presented as a user handle reference Section 9.6.

2.4. Interact

 This section provides details of how the RC can interact with the RO.
 All interact requests MUST have the "type" field.

 type REQUIRED. Type of interaction. MAY be "redirect" or "device".
 The "redirect" type indicates that the RO is capable of sending
 the user to an arbitrary URL to be returned from the AS. The
 "device" type indicates that the RC is capable of communicating a
 short, human-readable code to the RO, which the RO can enter
 interactively to the AS.

 callback OPTIONAL. IF the RC is capable of receiving inbound
 messages from the RO's browser, this indicates the URI to send the
 RO to after interaction. This URI SHOULD (MUST?) be unique per
 transaction and MUST be hosted or accessible by the RC. This URI
 MUST NOT contain any fragment component. This URI MUST be
 protected by HTTPS, be hosted on a server local to the user's
 browser ("localhost"), or use an application-specific URI scheme.
 The allowable URIs MAY be limited by the AS based on the RC's
 presented key information.

 state REQUIRED if the "callback" parameter is used. Unique value to
 be returned to the application as a query parameter on the
 callback URL, must be sufficiently random to be unguessable by an
 attacker. MUST be generated by the RC for this transaction.

 Each interaction type has its own parameters and behaviors, detailed
 below.

 This section MUST NOT be represented by a handle reference. (Note:
 this decision is largely due to the "state" and "callback" being
 variable per transaction. We could allow a handle but restrict it to
 device-only -- but in that case, it's simpler and shorter to just
 send the device type.)

Richer Expires January 9, 2020 [Page 6]

Internet-Draft transactional-authz July 2019

2.5. Keys

 This section lists the keys that the RC can present proof of
 ownership. The RC MUST send at least one key. The RC MAY send more
 than one key, but only one key of each type. (Note: Do we want to
 have multiple keys of various types instead?)

 jwks Value of the public key as a JWK Set JSON object [Note: should
 this be a single JWK instead? And do we want to bother with url-
 based references?]. MUST contain an "alg" field which is used to
 validate the signature. MUST contain the "kid" field to identify
 the key in the signed object. This key type MUST be proved using
 either the detached JWS or HTTP-Signing mechanisms.

 cert String serialized value of the certificate thumbprint as per
 OAuth-MTLS. This key type MUST be proved using Mutual TLS.

 did The DID URL identifying the key (or keys) used to sign this
 request. This key type MUST be proved using [[note -- how?]]

 The RC MUST provide proof of possession of all presented
 keysSection 10. All presented keys MUST be validated by the AS as
 per the Key Validation section.

 This section MAY also be presented as a key handle reference
Section 9.7. The keys referenced by a handle MUST be validated by

 the AS.

 The following non-normative example shows all three key methods:

 key: {

 jwks: { keys: [alg: RS256, kty: ...] },
 cert: "MII....",
 did: "did:v:foo...."

 }

3. Interaction response

 When evaluating a transaction request, the AS MAY determine that it
 needs to have the RO present to interact with the AS before issuing a
 token. This interaction can include the RO logging in to the AS,
 authorizing the transaction, providing proof claims, determining if
 the transaction decision should be remembered for the future, and
 other items.

Richer Expires January 9, 2020 [Page 7]

Internet-Draft transactional-authz July 2019

 The AS responds to the RC based on the type of interaction supported
 by the RC in the transaction request.

 This response can indicate a set of keys are bound to the transaction
 as in Key Binding. This response includes a transaction handle as
 described in Section 9.3.

3.1. Redirect interaction

 If the RC supports a "redirect" style interaction, the AS creates a
 unique interaction URL and returns it to the RC. This URL MUST be
 associated with a single pending transaction.

 interaction_url The interaction URL that the RC will direct the RO
 to. This URL MUST be unique to this transaction request. The URL
 SHOULD contain a random portion of sufficient entropy so as not to
 be guessable by the user. The URL MUST NOT contain the
 transaction handle or any RC identifying information. This URL
 MUST be protected by HTTPS. This URL MUST NOT contain any
 fragment component.

 handle The transaction handle to use in the continue request once
 the RO has been returned to the RC via the callback URL. See the
 section on transaction handlesSection 9.3.

 {

 interaction_url: "https://server.example.com/interact/123asdfklj",
 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 type: "bearer"
 }
 }

 When the RC receives this response, it MUST launch the system
 browser, redirect the RO through an HTTP 302 response, display the
 URL through a scannable barcode, or otherwise send the RO to the
 interaction URL. The RC MUST NOT modify the interaction URL or
 append anything to it, including any query parameters, fragments, or
 special headers.

 The interaction URL MUST be reachable from the RO's browser, though
 note that the RO MAY open the interaction URL on a separate device
 from the RC itself. The interaction URL MUST be accessible from an
 HTTP GET request, and MUST be protected by HTTPS or equivalent means.

 Upon receiving an incoming request at the interaction URL, the AS
 MUST determine the transaction associated with this unique URL. If

Richer Expires January 9, 2020 [Page 8]

Internet-Draft transactional-authz July 2019

 the transaction is not found, an error is returned to the end user
 through the browser and the AS MUST NOT attempt to redirect to a
 callback URL. When interacting with the RO, the AS MAY perform any
 of the behaviors in the User Interaction section Section 5.

3.2. Callback response

 If the RC has supplied a callback URL in its interact request
Section 2.4, the AS returns the user to the RC by redirecting the

 RO's browser to the RC's callback URL presented at the start of the
 transaction, with the addition of two query parameters.

 state REQUIRED. The (hashed?) value of the state parameter sent by
 the RC in the initial interaction request Section 2.4.

 interact_handle REQUIRED. A shared secret associated with this
 interaction. This value MUST be sufficiently random so as not to
 be guessable by an attacker. This value MUST be associated by the
 AS with the underlying transaction that is associated to with this
 interaction.

 Upon processing this request to the callback URL, the RC MUST match
 the state value to the value it sent in the original transaction
 request. The RC then sends a transaction continuation request with
 the transaction handle returned in the interaction response and the
 (hash of?) the interaction handle returned as a query parameter to
 the callback URL.

 The RC sends (the hash of? example here is hashed) the interaction
 handle as the "interact_handle" field of the transaction continuation
 requestSection 7, using the transaction handle Section 7 returned in
 the most recent transaction response from the AS.

{
 "handle": "80UPRY5NM33OMUKMKSKU",
 "interact_handle": "CuD9MrpSXVKvvI6dN1awtNLx-
HhZy46hJFDBicG4KoZaCmBofvqPxtm7CDMTsUFuvcmLwi_zUN70cCvalI6ENw"
}

3.3. Secondary device interaction

 If the RC supports a "device" style interaction, the AS creates a
 unique interaction code and returns it to the RC. The RC
 communicates this code to the RO and instructs the RO to enter the
 code at a URL hosted by the AS.

 user_code REQUIRED. A short code that the user can type into an
 authorization server. This string MUST be case-insensitive, MUST
 consist of only easily typeable characters (such as letters or

Richer Expires January 9, 2020 [Page 9]

Internet-Draft transactional-authz July 2019

 numbers). The time in which this code will be accepted SHOULD be
 short lived, such as several minutes.

 user_code_url RECOMMENDED. The interaction URL that the RC will
 direct the RO to. This URL SHOULD be stable at the AS such that
 clients can be statically configured with it.

 wait RECOMMENDED. The amount of time to wait before polling again,
 in integer seconds.

 handle REQUIRED. The transaction handle to use in the continue
 request. See the section on transaction handlesSection 9.3.

 {

 user_code: "ABCD1234"
 user_code_url: "https://server.example.com/device",
 wait: 30,
 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 type: "bearer"
 }
 }

 When the RC receives this response, it MUST communicate the user code
 to the RO. If possible the RC SHOULD communicate the interaction URL
 to the user as well.

 When the RO enters the unique user code at the user code URL, the AS
 MUST determine which active transaction is associated with the user
 code. If a transaction is not found, the AS MUST return an error
 page to the user and MUST NOT attempt to redirect to a callback URL.
 The AS MAY use any mechanism to interact with the RO as listed in

Section 5.

 Note that this method is strictly for allowing the user to enter a
 code at a static URL. If the AS wishes to communicate a pre-composed
 URL to the RO containing both the user code and the URL at which to
 enter it, the AS MUST use the "interaction_url" Section 3.1 redirect
 mechanism instead as this allows the client to communicate an
 arbitrary interaction URL to the RO.

4. Wait response

 If the AS needs the RC to wait before it can give a definitive
 response to a transaction continue requestSection 7, the AS replies
 to the transaction request with a wait response. This tells the RC
 that it can poll the transaction after a set amount of time.

Richer Expires January 9, 2020 [Page 10]

Internet-Draft transactional-authz July 2019

 This response includes a transaction handle as in Transaction Handle
Section 9.3.

 wait REQUIRED. The amount of time to wait before polling again, in
 integer seconds.

 handle REQUIRED. The transaction handle to use in the continue
 request. This MUST be a newly-created handle and MUST replace any
 existing handle for this transaction. See the section on
 transaction handles.

 {

 wait: 30,
 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 type: "bearer"
 }

 }

5. Interaction at the AS

 When the RO is interacting with the AS at the interaction endpoint,
 the AS MAY perform whatever actions it sees fit, including but not
 limited to:

 o authenticate the RO

 o gather identity claims about the RO

 o gather consent and authorization from the RO

 o allow the RO to modify the parameters of the requested transaction
 (such as disallowing some requested resources)

 When the AS has concluded interacting with the RO, the AS MUST
 determine if the RC has registered a callback URL and state parameter
 for this transaction. If so, the AS MUST redirect the RO's browser
 to the callback URL as described in Section 3. If the AS detects an
 error condition, such as an unknown transaction, an untrustworthy
 callback URL, an untrustworthy client, or suspicious RO behavior, the
 AS MUST return an error to the RO's browser and MUST NOT redirect to
 the callback URL.

Richer Expires January 9, 2020 [Page 11]

Internet-Draft transactional-authz July 2019

6. Error response

 If the AS determines that the token cannot be issued for any reason,
 it responds to the RC with an error message. This message does not
 include a transaction handle, and the RC can no longer poll for this
 transaction. The RC MAY create a new transaction and start again.

 error The error code.

 {

 error: user_denied

 }

 TODO: we should have a more robust error mechanism. Current
 candidate list of errors:

 user_denied The RO denied the transaction request.

 too_fast The RC did not respect the timeout in the wait response.

 unknown_transaction The transaction continuation request referenced
 an unknown transaction.

 unknown_handle The request referenced an unknown handle.

7. Transaction continue request

 Once a transaction has begun, the AS associates that transaction with
 a transaction handleSection 9.3 which is returned to the RC in one of
 the transaction responses Section 3.1, Section 3.3, Section 4. This
 handle MUST be unique, MUST be associated with a single transaction,
 and MUST be one time use.

 The RC continues the transaction by making a request with the
 transaction handle in the body of the request. The RC MAY add
 additional fields to the transaction continuation request, such as
 the interaction handle return in the callback response Section 3.

 handle REQUIRED. The (hash of?) transaction handle indicating which
 transaction to continue.

 interaction_handle OPTIONAL. If the RC has received an interaction
 handle from the callback response of the interaction URL, the RC
 MUST include the (hash of?) that handle in its transaction
 continue request.

Richer Expires January 9, 2020 [Page 12]

Internet-Draft transactional-authz July 2019

 {

 handle: "tghji76ytghj9876tghjko987yh"

 }

 The RC MUST prove all keys initially sent in the transaction
 requestSection 2.5 as described in Section 10.

8. Token response

 access_token The access token that the RC uses to call the RS. The
 access token follows the handle structure described in Section 9.

 handle The transaction handle to use in the continue
 requestSection 7 to get a new access token once the one issued is
 no longer usable. See the section on transaction
 handlesSection 9.3.

 key: {

 access_token: {
 value: "08ur4kahfga09u23rnkjasdf",
 type: "bearer"
 },
 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 type: "bearer"
 }

 }

8.1. Presenting Tokens to the RS

 A bearer style access token MUST be presented using the Header method
 of OAuth 2 Bearer Tokens [RFC6750]. A sha3 style access token is
 hashed as described in Section 9.1 and presented using the Header
 method of OAuth 2 Bearer Tokens [RFC6750].

 An access token MAY be bound to any keys presented by the client
 during the transaction request. A bound access token MUST be
 presented with proof of the key as described in Section 10.

9. Handle references

 A handle in this protocol is a value presented from one party to
 another as proof that they are the appropriate party for part of the
 transaction. Handles can be used to reference the transaction as a

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750

Richer Expires January 9, 2020 [Page 13]

Internet-Draft transactional-authz July 2019

 whole, or one of its constituent parts. When a handle is used to
 represent a part of a transaction request, the handle presentation
 replaces the original value. In practical terms, this often means
 that the values of a transaction request are either an object (when
 the full value is used) or a single string (when the handle is used).

 value The value of the handle as a string.

 method The verification method, MUST be one of "bearer" or "sha3".

9.1. Presenting handles

 Bearer handles are presented by giving the exact string value of the
 handle in the appropriate place.

 SHA3 handles are validated by taking the SHA3 hash of the handle
 value and encoding it in Base64URL with no padding, and presenting
 the encoded value.

9.2. Validating handles

 Bearer handles are validated by doing an exact byte comparison of the
 string representation of the handle value.

 SHA3 handles are validated by taking the SHA3 hash of the handle
 value and encoding it in Base64URL with no padding, and comparing
 that using an exact byte comparison with the presented value.

9.3. Transaction handles

 Transaction handles are issued by the AS to the RC to allow the RC to
 continue a transaction after every step. A transaction handle MUST
 be discarded after it is used by both the AS and the RC. A
 transaction MUST have only a single handle associated with it at any
 time. If the AS determines that the RC can still continue the
 transaction after a handle has been used, a new transaction handle
 will be issued in its place. If the AS does not issue a transaction
 handle in its response to the RC, the RC MUST NOT continue that
 transaction.

 Transaction handles always represent the current state of the
 transaction which they reference.

 Transactions can be continued by the RC if the AS needs to interact
 with the ROSection 5 and the RC is expecting a callbackSection 3 or
 if the AS is still waiting on some external conditionSection 4 while
 the RC is polling. The transaction MAY also be continued after an

Richer Expires January 9, 2020 [Page 14]

Internet-Draft transactional-authz July 2019

 access token is issued Section 8 as a means of refreshing an access
 token with the same rights associated with the transaction.

9.4. Client handles

 RC handles stand in for the client section of the initial transaction
 requestSection 2.1. The AS MAY issue a client handle to a RC as part
 of a static registration process, analogous to a client ID in OAuth
 2, allowing the RC to be associated with an AS-side configuration
 that does not change at runtime. Such static processes SHOULD be
 bound to a set of keys known only to the RC software.

 Client handles MAY be issued by the RS in response to a transaction
 request. The AS MAY associate the client handle to the interact,
 resource, and key handles issued in the same response, requiring them
 to be used together. When the RC receives this handle, it MAY
 present the handle in future transaction requests instead of sending
 its information again.

 {

 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 },
 client_handle: {
 value: "absc2948afgdkjnasdf9082ur3kjasdfasdf89",
 method: "bearer"
 }

 }

 The RC sends its handle in lieu of the client block of the
 transaction request:

 {

 client: "absc2948afgdkjnasdf9082ur3kjasdfasdf89"

 }

9.5. Resource handles

 Resource handles stand in for the detailed resource request in the
 transaction requestSection 2.2. Resource handles MAY be created by
 the authorization server as static stand-ins for specific resource
 requests, analogous to OAuth2 scopes.

Richer Expires January 9, 2020 [Page 15]

Internet-Draft transactional-authz July 2019

 Resource handles MAY be issued by the RS in response to a transaction
 request. In such cases, the resource handle returned represents the
 total of all resources

 {

 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 },
 resource_handle: {
 value: "foo",
 method: "bearer"
 }

 }

 The RC sends its handle in lieu of the resource block of the future
 transaction request:

 {

 resources: ["foo"]

 }

 Handles and object values MAY be combined in a single request.

 {

 resources: [
 "foo",
 {
 actions: ["read", "write"],
 locations: ["https://exapmle.com/resource"]
 data: ["foo", "bar"]
 }
]

 }

9.5.1. Resource-first

 [[Strawman idea:]]

 In order to facilitate dynamic API protection, an RS MAY pre-register
 a resource handle in response to an unauthorized request from the RC.
 In this scenario, the RS creates a transaction request with no client

Richer Expires January 9, 2020 [Page 16]

Internet-Draft transactional-authz July 2019

 information but describing the resources being protected [[Note: this
 is currently at odds with the required format above, perhaps this
 should be a special mode or flag? We could still use the "keys"
 section here though.]] The AS returns a resource handle to the RS,
 which then communicates both the resource handle and the AS
 transaction endpoint to the RC. The RC then begins its transaction
 as normal, using the resource handle as one of perhaps several
 resources it requests.

9.6. User handles

 User handles MAY be issued by the AS in response to validating a
 specific RO during a transaction and stand in for the user section of
 a transaction requestSection 2.3. This handle MAY refer to the RO
 that interacted with the AS, the user presented by claims in the
 transaction request, or a combination of these. This handle can be
 used in future transactions to represent the current user, analogous
 to the persistent claims token of UMA 2.

 {

 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 },
 user_handle: {
 value: "absc2948afgdkjnasdf9082ur3kjasdfasdf89",
 method: "bearer"
 }

 }

 The RC sends its handle in lieu of the user block of the transaction
 request:

 {

 user: "absc2948afgdkjnasdf9082ur3kjasdfasdf89"

 }

9.7. Key handles

 Key handles stand in for the keys section of the initial transaction
 requestSection 2.5. The AS MAY issue a key handle to a RC as part of
 a static registration process, allowing the RC to be associated with
 an AS-side configuration that does not change at runtime.

Richer Expires January 9, 2020 [Page 17]

Internet-Draft transactional-authz July 2019

 Key handles MAY be issued by the AS in response to a transaction
 request. The AS SHOULD bind this handle to the client, resource, and
 user handles issued in the same response. When the RC receives this
 handle, it MAY present the handle in future transaction requests
 instead of sending its information again.

 {

 handle: {
 value: "tghji76ytghj9876tghjko987yh",
 method: "bearer"
 },
 key_handle: {
 value: "absc2948afgdkjnasdf9082ur3kjasdfasdf89",
 method: "bearer"
 }

 }

 The RC sends its handle in lieu of the client block of the
 transaction request:

 {

 key: "absc2948afgdkjnasdf9082ur3kjasdfasdf89"

 }

 When the AS receives a key handle, it MUST validate that the keys
 referenced by the handle are bound to the current transaction
 request.

10. Binding Keys

 Any keys presented by the RC to the AS or RS MUST be validated as
 part of the transaction in which they are presented. Any keys bound
 to the transaction are indicated by the bound_keys section of the
 transaction response. Any keys referenced in this section MUST be
 used with all future transaction requests.

10.1. Binding a key to a transaction

 All keys presented by the RC in the transaction requestSection 2 MUST
 be proved in all transaction continuation requestsSection 7 for that
 transaction. The AS MUST validate all keys presented by the RC or
 referenced in the transaction.

Richer Expires January 9, 2020 [Page 18]

Internet-Draft transactional-authz July 2019

10.2. Detached JWS

 To sign a request to the transaction endpoint, the RC takes the
 serialized body of the request and signs it using detached JWS
 [RFC7797]. The header of the JWS MUST contain the kid field of the
 key bound to this RC during this transaction. The header MUST
 contain an alg field appropriate for the key identified by kid and
 MUST NOT be none.

 The RC presents the signature in the JWS-Signature HTTP Header field.
 [Note: this is a custom header field, do we need this?]

 JWS-Signature: eyj0....

 When the AS receives the JWS-Signature header, it MUST parse its
 contents as a detached JWS object. The HTTP Body is used as the
 payload for purposes of validating the JWS, with no transformations.

10.3. Mutual TLS

 The RC presents its client certificate during TLS negotiation with
 the server (either AS or RS). The AS or RS takes the thumbprint of
 the client certificate presented during mutual TLS negotiation and
 compares that thumbprint to the thumbprint presented by the RC
 application.

10.4. Validating DID

 [[Note: validation of DID-based keys could potentially be either
 detached JWS or MTLS, depending on the type of key used, or some
 other validation mechanism.]] The RC signs the request using [some
 HTTP signing mechanism] and its private key, and attaches the
 signature to the HTTP request using [a header method?]. [Note: is
 DID just a key-lookup mechanism here or should we use a different
 kind of crypto method as well?]

11. Acknowledgements

12. IANA Considerations

 This specification creates one registry and registers several values
 into existing registries.

13. Security Considerations

 All requests have to be over TLS or equivalent. Many handles act as
 shared secrets, though they can be combined with a requirement to
 provide proof of a key as well.

https://datatracker.ietf.org/doc/html/rfc7797

Richer Expires January 9, 2020 [Page 19]

Internet-Draft transactional-authz July 2019

14. Privacy Considerations

 Handles are passed between parties and therefore should be stateful
 and not contain any internal structure or information, which could
 leak private data.

15. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/bcp195>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

 [RFC7797] Jones, M., "JSON Web Signature (JWS) Unencoded Payload
 Option", RFC 7797, DOI 10.17487/RFC7797, February 2016,
 <https://www.rfc-editor.org/info/rfc7797>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/bcp195
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://datatracker.ietf.org/doc/html/rfc7797
https://www.rfc-editor.org/info/rfc7797
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Richer Expires January 9, 2020 [Page 20]

Internet-Draft transactional-authz July 2019

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

Appendix A. Document History

 - 02

 o Minor editorial cleanups.

 - 01

 o Made JSON multimodal for handle requests.

 o Major updates to normative language and references throughout
 document.

 o Allowed interaction to split between how the user gets to the AS
 and how the user gets back.

 - 00

 o Initial submission.

Author's Address

 Justin Richer (editor)
 Bespoke Engineering

 Email: ietf@justin.richer.org

https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259

Richer Expires January 9, 2020 [Page 21]

