workgroup: GNAP
Internet-Draft:
draft-richer-transactional-authz-10
Published: 2 September 2020
Intended Status: Standards Track
Expires: 6 March 2021
Authors: J. Richer, Ed.

Bespoke Engineering

XYZ: Grant Negotiation Access Protocol

Abstract

This document defines a mechanism for delegating authorization to a
piece of software, and conveying that delegation to the software.
This delegation can include access to a set of APIs as well as
information passed directly to the software.

This document is input into the GNAP working group and should be
referred to as "XYZ" to differentiate it from other proposals.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [REC2119] [REC8174] when, and only when, they appear in all
capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 March 2021.
Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Table of Contents

1. Protocol

1.1 Roles

1.2. Sequences
1.2.1 Redirect-based Interaction
1.2.2 User-code-based Interaction
1.2.3. Asynchronous Authorization
1.2.4 Software-only Authorization

1.2.5. Refreshing an Expired Access Token

2. Reguesting Access
2.1. Requesting Resources
2.1.1. Requesting a Single Access Token
2.1.2. Requesting Resources By Reference
2.1.3. Requesting Multiple Access Tokens
2.2. Reguesting User Information
2.3. Identifying the Client Key
2.3.1. Authenticating the Client
2.3.2. Identifying the Client Key By Reference
2.4 Identifying the User
2.4.1. Identifying the User by Reference
2.5 Interacting with the User
2.5.1 Redirect to an Arbitrary URL
2.5.2. Open an Application-specific URL
2.5.3. Receive a Callback After Interaction
2.5.4 Display a Short User Code
2.5.5. Extending Interaction Capabilities
2.6 Providing Displayable Client Information
2.7. Declaring Client Capabilities
2.8. Referencing an Existing Grant Reguest
2.9 Requesting OpenID Connect Claims
2.10. Extending The Grant Request
3. Grant Response
3.1 Request Continuation Handle
3.2 Access Tokens
3.2.1. Single Access Token
3.2.2. Multiple Access Tokens
3.3. Interaction Capabilities

ol

.3.1. Redirection to an arbitrary URL

https://trustee.ietf.org/license-info

3.3.2. Launch of an application URL
3.3.3. Callback to a Client URL
3.3.4 Display of a Short User Code
3.3.5. Extending Interaction Capability Responses
3.4 Returning User Information
3.5 Returning Dynamically-bound Reference Handles
3.6. Error response
3.7 Extending the Response
4. Interaction at the AS
4.1. Interaction at a Redirected URI
4.2. Interaction at the User Code URI
4.3. Interaction through an Application URI
4.4. Post-Interaction Completion
4.4.1. Completing Interaction with a Callback URI
4.4.2. Completing Interaction with a Pushback URI
4.4.3. Calculating the interaction hash
5. Continuing a Grant Request
5.1. Continuing after a Finalized Interaction
5.2. Continuing after Tokens are Issued
6. Token Management
6.1. Rotating the Access Token
6.2. Revoking the Access Token
7. Using Access Tokens
8. Binding Keys
8.1 Detached JWS
8.2. Attached JWS
8.3. Mutual TLS
8.4. DPoP
8.5 HTTP Signing
8.6 OAuth PoP
9. Discovery
10. Resource Servers

10.1. Introspecting a Token
10.2. Deriving a downstream token
10.3. Registering a Resource Handle
10.4. Requesting a Resources With Insufficient Access
Acknowledgements
IANA Considerations
Security Considerations
Privacy Considerations
. Normative References
Appendix A. Document History
Appendix B. Component Data Models
Appendix C. Example Protocol Flows
C.1. Redirect-Based User Interaction
C.2. Secondary Device Interaction
Appendix D. No User Involvement
D.1. Asynchronous Authorization
D.2. Applying OAuth 2 Scopes and Client IDs

T T G T
BEERE

Author's Address

1. Protocol

This protocol allows a piece of software to request delegated
authorization to an API, protected by an authorization server
usually on behalf of a resource owner. The user operating the
software may interact with the authorization server to authenticate,
provide consent, and authorize the request.

The process by which the delegation happens is known as a grant, and
the GNAP protocol allows for the negotiation of the grant process
over time by multiple parties

1.1. Roles

The Authorization Server (AS) manages the requested delegations for
the RO. The AS issues tokens and directly delegated information to
the RC. The AS is defined by its grant endpoint, a single URL that
accepts a POST request with a JSON payload. The AS could also have
other endpoints, including interaction endpoints and user code
endpoints, and these are introduced to the RC as needed during the
delegation process.

The Resource Client (RC, aka "client") requests tokens from the AS
and uses tokens at the RS. The RC is identified by its key, and can
be known to the AS prior to the first request. The AS determines
which policies apply to a given client.

The Resource Server (RS) accepts tokens from the RC and validates
them (potentially at the AS). The RS serves delegated resources on
behalf of the RO.

The Resource Owner (RO) authorizes the request from the RC to the
RS, often interactively at the AS.

The Requesting Party (RQ, aka "user") operates the RC and may be the
same party as the RO in many circumstances.

1.2. Sequences

The GNAP protocol can be used in a variety of ways to allow the core
delegation process to take place. Many portions of this process are
conditionally present depending on the context of the deployments,
and not every step in this overview will happen in all
circumstances.

Note that a connection between roles in this process does not
necessarily indicate that a specific protocol message is sent across
the wire between the components fulfilling the roles in question, or

that a particular step is required every time. In some
circumstances, the information needed at a given stage is
communicated out-of-band or is pre-configured between the components
or entities performing the roles. For example, one entity can fulfil
multiple roles, and so explicit communication between the roles is
not necessary within the protocol flow.

B + R +
| Requesting | ~~~~~~~~~~~ ~ ~ | Resource |
| Party (RQ) | | Owner (RO) |
B SR, + B U, +

+ +

+ +

(A) (B)

+ +

+ +
[R + + R +
|Resource|-------------- (1)------- +----- >| Resource |
| Client | + | Server |
| (RC) | LEEEEEEEEEEEEEEE + I (RS) I
| |--(2)->| Authorization | | |
I [<-(3)--| Server I I I
I I I (AS) I I I
I |--(4)->| I I I
I |<-(5)--| I I I
I I I |<-(7)--1 I
I I UEEEEEEEEEEEEEEE + I I
I I I I
I |------mmmmmmm (6)------------- >| I
[R + R +

Legend

+ + + indicates a possible interaction with a human
————— indicates an interaction between protocol roles
~ ~ ~ indicates a potential equivalence or communication between rol

*(A) The RQ interacts with the RC to indicate a need for resources
on behalf of the RO. This could identify the RS the RC needs to
call, the resources needed, or the RO that is needed to approve
the request. Note that the RO and RQ are often the same entity in
practice.

*(1) The RC attempts to call the RS (Section 10.4) to determine
what access is needed. The RS informs the RC that access can be
granted through the AS.

*(2) The RC creates requests access at the AS (Section 2).

*(3) The AS processes the request and determines what is needed to
fulfill the request. The AS sends its response to the RC (Section
3).

*(B) If interaction is required, the AS interacts with the RO
(Section 4) to gather authorization. The interactive component of
the AS can function using a variety of possible mechanisms
including web page redirects, applications, challenge/response
protocols, or other methods. The RO approves the request for the
RC being operated by the RQ. Note that the RO and RQ are often
the same entity in practice.

*(4) The RC continues the grant at the AS (Section 5).

*(5) If the AS determines that access can be granted, it returns a
response to the RC (Section 3) including an access token (Section
3.2) for calling the RS and any directly returned information
(Section 3.4) about the RO.

*(6) The RC uses the access token (Section 7) to call the RS.

*(7) The RS determines if the token is sufficient for the request
by examining the token, potentially calling the AS (Section
10.1).

The following sections and Appendix C contain specific guidance on
how to use the GNAP protocol in different situations and
deployments.

1.2.1. Redirect-based Interaction

In this example flow, the RC is a web application that wants access
to resources on behalf of the current user, who acts as both the
requesting party (RQ) and the resource owner (RO). Since the RC is
capable of directing the user to an arbitrary URL and receiving
responses from the user's browser, interaction here is handled
through front-channel redirects using the user's browser. The RC
uses a persistent session with the user to ensure the same user that
is starting the interaction is the user that returns from the
interaction.

-------- + B +----

RC | | AS | | RO

I I I |+

|< (1) + Start Session + + + + + + + + + + + + + + + +| RQ

I I | (Use
|--(2)--- Request Access --------- > | |

|<-(3)-- Interaction Needed ------- |

|+ (4) + + Redirect to Interact + + + + + + + + + + >
I I

I <+ (5) +>|
| | AuthN |
I I I
I <+ (6) +>|
I

I

| Authz |
| |

< (7) + Redirect to Client + + + + + + + + + + + + + |
| | LEEEE

--(8)--- Continue Request ------- >|

1. The RC establishes a verifiable session to the user, in the

role of the RQ.

2. The RC requests access to the resource (Section 2). The RC

indicates that it can redirect to an arbitrary URL (Section
2.5.1) and receive a callback from the browser (Section 2.5.3).
The RC stores verification information for its callback in the
session created in (1).

3. The AS determines that interaction is needed and responds

(Section 3) with a URL to send the user to (Section 3.3.1) and
information needed to verify the callback (Section 3.3.3) in
(7). The AS also includes information the RC will need to
continue the request (Section 3.1) in (8). The AS associates
this continuation information with an ongoing request that will
be referenced in (4), (6), and (8).

4, The RC stores the verification and continuation information

from (3) in the session from (1). The RC then redirects the
user to the URL (Section 4.1) given by the AS in (3). The
user's browser loads the interaction redirect URL. The AS loads
the pending request based on the incoming URL generated in (3).

5. The user authenticates at the AS, taking on the role of the RO.

6. As the RO, the user authorizes the pending request from the RC.

7. When the AS is done interacting with the user, the AS redirects
the user back (Section 4.4.1) to the RC using the callback URL
provided in (2). The callback URL is augmented with an
interaction reference that the AS associates with the ongoing
request created in (2) and referenced in (4). The callback URL
is also augmented with a hash of the security information
provided in (2) and (3). The RC loads the verification
information from (2) and (3) from the session created in (1).
The RC calculates a hash (Section 4.4.3) based on this
information and continues only if the hash validates.

8. The RC loads the continuation information from (3) and sends
the interaction reference from (7) in a request to continue the
request (Section 5.1). The AS validates the interaction
reference ensuring that the reference is associated with the
request being continued.

9. If the request has been authorized, the AS grants access to the
information in the form of access tokens (Section 3.2) and
direct subject information (Section 3.4) to the RC.

An example set of protocol messages for this method can be found in
Appendix C.1.

.2. User-code-based Interaction

In this example flow, the RC is a device that is capable of
presenting a short, human-readable code to the user and directing
the user to enter that code at a known URL. The RC is not capable of
presenting an arbitrary URL to the user, nor is it capable of
accepting incoming HTTP requests from the user's browser. The RC
polls the AS while it is waiting for the RO to authorize the
request. The user's interaction is assumed to occur on a secondary
device. In this example it is assumed that the user is both the RQ
and RO, though the user is not assumed to be interacting with the RC
through the same web browser used for interaction at the AS.

-------- + Fommmm oot R

RC | | AS | | RO
|--(1)--- Request Access --------- >| | |+
| | | | RQ
|<-(2)-- Interaction Needed ------- | | | (Use

|

|+ (3) + + Display User Code + + + + + + + + + + + + >|
I I I I

I |<+ (4) +>|

| | Code |
--(8)--- Continue Request (A) --->| | |

I |<+ (5) +>|
<-(9)-- Not Yet Granted (Wait) ---| | AuthN |

I I I
[<+ (6) +>|
| Authz |
I I
[<+ (7) +>|
| Completed|
I I

oo

|
|
|
|
|
|
--(10)-- Continue Request (B) --->|
|

1. The RC requests access to the resource (Section 2). The RC
indicates that it can display a user code (Section 2.5.4).

2. The AS determines that interaction is needed and responds
(Section 3) with a user code to communicate to the user
(Section 3.3.4). This could optionally include a URL to direct
the user to, but this URL should be static and so could be
configured in the RC's documentation. The AS also includes
information the RC will need to continue the request (Section
3.1) in (8) and (10). The AS associates this continuation
information with an ongoing request that will be referenced in
(4), (6), (8), and (10).

3. The RC stores the continuation information from (2) for use in
(8) and (10). The RC then communicates the code to the user
(Section 4.1) given by the AS in (2).

4. The user's directs their browser to the user code URL. This URL
is stable and can be communicated via the client's
documentation, the AS documentation, or the client software
itself. The client does not provide a mechanism to launch the
user's browser at this URL. The user enters the code

communicated in (3) to the AS. The AS validates this code
against a current request in process.

5. The user authenticates at the AS, taking on the role of the RO.
6. As the RO, the user authorizes the pending request from the RC.

7. When the AS is done interacting with the user, the AS indicates
to the user that the request has been completed.

8. Meanwhile, the RC loads the continuation information stored at
(3) and continues the request (Section 5). The AS determines
which ongoing access request is referenced here and checks its
state.

9. If the access request has not yet been authorized by the RO in
(6), the AS responds to the RC to continue the request (Section

3.1) at a future time through additional polling. This response
can include refreshed credentials as well as information
regarding how long the RC should wait before calling again. The
RC replaces its stored continuation information from the
previous response (2).

10. The RC continues to poll the AS (Section 5) with the new
continuation information in (9).

11. If the request has been authorized, the AS grants access to the
information in the form of access tokens (Section 3.2) and
direct subject information (Section 3.4) to the RC.

An example set of protocol messages for this method can be found in
Appendix C.2.

1.2.3. Asynchronous Authorization

In this example flow, the RQ and RO roles are fulfilled by different
parties, and the RO does not interact with the RC. The AS reaches
out asynchronously to the RO during the request process to gather
the RO's authorization for the RC's request. The RC polls the AS
while it is waiting for the RO to authorize the request.

-------- + E g ——— +----
| RO
|
|
|

<+ (3) +>|

AuthN |
|

<+ (4) +>|

|--(1)--- Request Access --------- >
| |
|<-(2)-- Not Yet Granted (Wait) ---|
| |
| |
|--(6)--- Continue Request (A) --->|
| |
|<-(7)-- Not Yet Granted (Wait) ---| Authz |
I | |
I |<+ (5) +>|
| |Completed|
I | |

oo o

1. The RC requests access to the resource (Section 2). The RC does
not send any interactions capabilities to the server,
indicating that it does not expect to interact with the RO. The
RC can also signal which RO it requires authorization from, if
known, by using the user request section (Section 2.4).

2. The AS determines that interaction is needed, but the RC cannot
interact with the RO. The AS responds (Section 3) with the
information the RC will need to continue the request (Section
3.1) in (6) and (8), including a signal that the RC should wait
before checking the status of the request again. The AS
associates this continuation information with an ongoing
request that will be referenced in (3), (4), (5), (6), and (8).

3. The AS determines which RO to contact based on the request in
(1), through a combination of the user request (Section 2.4),
the resources request (Section 2.1), and other policy
information. The AS contacts the RO and authenticates them.

4. The RO authorizes the pending request from the RC.

5. When the AS is done interacting with the user, the AS indicates
to the user that the request has been completed.

6. Meanwhile, the RC loads the continuation information stored at
(3) and continues the request (Section 5). The AS determines
which ongoing access request is referenced here and checks its
state.

7. If the access request has not yet been authorized by the RO in
(6), the AS responds to the RC to continue the request (Section
3.1) at a future time through additional polling. This response
can include refreshed credentials as well as information
regarding how long the RC should wait before calling again. The
RC replaces its stored continuation information from the
previous response (2).

8. The RC continues to poll the AS (Section 5) with the new
continuation information in (7).

9. If the request has been authorized, the AS grants access to the
information in the form of access tokens (Section 3.2) and
direct subject information (Section 3.4) to the RC.

An example set of protocol messages for this method can be found in
Appendix D.1.

1.2.4. Software-only Authorization

In this example flow, the AS policy allows the RC to make a call on
its own behalf, without the need for a RO to be involved at runtime
to approve the decision. The Since there is no explicit RO, the RC

does not interact with an RO.

|
|--(1)--- Request Access --------- > | |
I | |
|
|

|<-(2)---- Grant Access ----------- |

1. The RC requests access to the resource (Section 2). The RC does
not send any interactions capabilities to the server.

2. The AS determines that the request is been authorized, the AS
grants access to the information in the form of access tokens
(Section 3.2) and direct subject information (Section 3.4) to
the RC.

An example set of protocol messages for this method can be found in
Appendix D.

1.2.5. Refreshing an Expired Access Token

In this example flow, the RC receives an access token to access a
resource server through some valid GNAP process. The RC uses that
token at the RS for some time, but eventually the access token

expires. The RC then gets a new access token by rotating the expired
access token at the AS using the token's management URL.

|
|<-(6)--- Rotated Token ------------------- |

Fommm oo + oo oo +
[RC | | AS |
| |--(1)--- Request AccesSs ----------------- > | |
I I I I
[|<-(2)--- Grant Access -------------------- |

I | I I
| | oo + |
| |--(3)--- Access Resource --->| RS [| |
I I I (. I
| |<-(4)--- Error Response ----- | [|

| | oo + |
I I I I
[|--(5)--- Rotate Token ------------------- > | |
I I I
I I
I I

1. The RC requests access to the resource (Section 2).

2. The AS grants access to the resource (Section 3) with an access
token (Section 3.2) usable at the RS. The access token response
includes a token management URI.

3. The RC presents the token (Section 7) to the RS. The RS
validates the token and returns an appropriate response for the
APT.

4. When the access token is expired, the RS responds to the RC
with an error.

5. The RC calls the token management URI returned in (2) to rotate
the access token (Section 6.1). The RC presents the access
token as well as the appropriate key.

6. The AS validates the rotation request including the signature
and keys presented in (5) and returns a new access token
(Section 3.2.1). The response includes a new access token and
can also include updated token management information, which
the RC will store in place of the values returned in (2).

2. Requesting Access

To start a request, the client sends JSON [REC8259] document with an
object as its root. Each member of the request object represents a
different aspect of the client's request.

A non-normative example of a grant request is below:

"resources": [

{
"type": "photo-api",
"actions": [
"read",
"write",
"dolphin"
]l
"locations": [
"https://server.example.net/",
"https://resource.local/other"
]l
"datatypes": [
"metadata",
"images"
]
+
"dolphin-metadata"
1
"key": {
"proof": "jwsd",
"Jwk": {
"kty": "RSA",
"e": "AQAB",
"kid": "xyz-1",
"alg": "RS256",
"n": "kOB5rR4JvOGMeL...."
}
}/

"interact": {
"redirect": true,
"callback": {
"method": "redirect",
"uri": "https://client.example.net/return/123455",
"nonce": "LKLTI25DK82FX4T4QFzC"

}
}I
"display": {
"name": "My Client Display Name",
"uri": "https://example.net/client"
}I
"capabilities": ["ext1", "ext2"],
"subject": {

"sub_ids": ["iss-sub", "email"],
"assertions": ["oidc_id_token"]

The request MUST be sent as a JSON object in the body of the HTTP
POST request with Content-Type application/json, unless otherwise
specified by the signature mechanism.

2.1. Requesting Resources

If the client is requesting one or more access tokens for the
purpose of accessing an API, the client MUST include a resources
element. This element MUST be an array (for a single access token)
or an object (for multiple access tokens), as described in the
following sections.

2.1.1. Requesting a Single Access Token

When requesting a single access token, the client MUST send a
resources element containing a JSON array. The elements of the JSON
array represent rights of access that the client is requesting in
the access token. The requested access is the sum of all elements
within the array. These request elements MAY be sent by value as an
object or by reference as a string. A single resources array MAY
contain both object and string type resource requests.

The client declares what access it wants to associated with the
resulting access token using objects that describe multiple
dimensions of access. Each object contains a type property that
determines the type of API that the client is calling. The value of
this field is under the control of the AS and it MAY determine which
other fields allowed in the object. While it is expected that many
APIs will have its own properties, a set of common properties are
defined here. Specific API implementations SHOULD NOT re-use these
fields with different semantics or syntax.

[[Editor's note: this will align with OAuth 2 RAR, but the details
of how it aligns are TBD]].

actions The types of actions the RC will take at the RS as an array
of strings. The values of the strings are determined by the API
being protected.

locations The location of the RS as an array of strings. These
strings are typically URIs, and are determined by the API being
protected.

datatypes Kinds of data available to the RC at the RS's API as an
array of strings. The values of the strings are determined by the
API being protected.

identifier A string identifier indicating a specific resource at
the RS. The value of the string is determined by the API being
protected.

The following non-normative example shows the use of both common and
API-specific elements.

"resources": [
{

"type": "photo-api",

"actions": [
"read",
"write",
"dolphin"

1

"locations": [
"https://server.example.net/",
"https://resource.local/other"

1

"datatypes": [
"metadata",
"images"

"type": "financial-transaction",
"actions": [

"withdraw"
]I
"identifier": "account-14-32-32-3",
"currency": "UsD"

2.1.2. Requesting Resources By Reference

Instead of sending an object describing the requested resource
(Section 2.1.1), a client MAY send a string known to the AS or RS
representing the access being requested. Each string SHOULD
correspond to a specific expanded object representation at the AS.

[[Editor's note: we could describe more about how the expansion
would work. For example, expand into an object where the value of
the "type" field is the value of the string. Or we could leave it
open and flexible, since it's really up to the AS/RS to interpret.
1]

"resources": [
"read", "dolphin-metadata", "some other thing"

This value is opaque to the client and MAY be any valid JSON string,
and therefore could include spaces, unicode characters, and properly
escaped string sequences.

This functionality is similar in practice to OAuth 2's scope
parameter [RFC6749], where a single string represents the set of
access rights requested by the client. As such, the reference string
could contain any valid OAuth 2 scope value as in Appendix D.2. Note
that the reference string here is not bound to the same character
restrictions as in OAuth 2's scope definition.

A single "resources" array MAY include both object-type and string-
type resource items.

"resources": [
{
"type": "photo-api",
"actions": [
"read",
"write",
"dolphin"

]/

"locations": [
"https://server.example.net/",
"https://resource.local/other"

]I

"datatypes": [

"metadata",
"images"

+

"read", "dolphin-metadata",
{
"type": "financial-transaction",
"actions": [
"withdraw"
1
"identifier": "account-14-32-32-3",
"currency": "UsD"

+

"some other thing"

.1.3. Requesting Multiple Access Tokens

When requesting multiple access tokens, the resources element is a
JSON object. The names of the JSON object elements are token
identifiers chosen by the client, and MAY be any valid string. The
values of the JSON object are JSON arrays representing a single

access token request, as specified in requesting a single access
token (Section 2.1.1).

The following non-normative example shows a request for two separate
access tokens, tokenl and token2.

"resources": {
"tokenli": [
{
"type": "photo-api",
"actions": [
"read",
"write",
"dolphin"
1
"locations": [
"https://server.example.net/",
"https://resource.local/other"
1
"datatypes": [
"metadata",

"images"
1
i
"dolphin-metadata"
]I
"token2": [
{
"type": "walrus-access",
"actions": [
"foo",
"bar"
1,
"locations": [
"https://resource.other/"
1
"datatypes": [
"data",
"pictures",
"walrus whiskers"
]
}

2.2. Requesting User Information

If the client is requesting information about the current user from
the AS, it sends a subject element as a JSON object. This object MAY

contain the following fields (or additional fields defined in a
registry TBD (Section 12)).

sub_ids An array of subject identifier subject types requested for
the user, as defined by [I-D.ietf-secevent-subject-identifiers].

assertions An array of requested assertion formats defined by a
registry TBD (Section 12).

"subject": {
"sub_ids": ["iss-sub", "email"],
"assertions": ["oidc-id-token", "saml"]

If the AS knows the identifier for the current user and has
permission to do so [[editor's note: from the user's consent or
data policy or ...]], the AS MAY return the user's information in
its response (Section 3.4).

The "sub_ids" and "assertions" request fields are independent of
each other, and a returned assertion MAY omit a requested subject
identifier.

[[Editor's note: we're potentially conflating these two fields in
the same structure, so perhaps these should be split. There's also a
difference between user information and authentication event
information. 1]

2.3. Identifying the Client Key

When sending an initial request to the AS, the client MUST identify
itself by including the key field in the request and by signing the
request as described in Section 8. This key MAY be sent by value or
by reference.

When sent by value, the key MUST be a public key in at least one
supported format and MUST contain a proof property that matches the
proofing mechanism used in the request. If the key is sent in
multiple formats, all the keys MUST be the same. The key presented
in this field MUST be the key used to sign the request.

proof The form of proof that the RC will use when presenting the
key to the AS. The valid values of this field and the processing
requirements for each are detailed in Section 8. This field is
REQUIRED.

jwk Value of the public key as a JSON Web Key. MUST contain an
"alg" field which is used to validate the signature. MUST contain
the "kid" field to identify the key in the signed object.

cert
PEM serialized value of the certificate used to sign the
request, with optional internal whitespace.

cert#256 The certificate thumbprint calculated as per OAuth-MTLS
[REC8705] in base64 URL encoding.

Additional key types are defined in a registry TBD (Section 12).

[[Editor's note: we will eventually want to have fetchable keys, I
would guess. Things like DID for key identification are going to be
important.]]

This non-normative example shows a single key presented in multiple
formats using a single proofing mechanism.

"key": {
"proof": "httpsig",
"jwk": {
"kty": "RSA",
"e": "AQAB",
"kid": "xyz-1",
"alg": "RS256",
"n": "kOB5rR4JvOGMeLaY6_It_r30Rwdf8ci_JtffXyaSx8xY..
3

"cert": "MIIEHDCCAwSgAWIBAgIBATANBgkghkiGOwOBAQSFA..."

The RC MUST prove possession of any presented key by the proof
mechanism associated with the key in the request. Proof types are
defined in a registry TBD (Section 12) and an initial set are of
methods are described in Section 8. Continuation requests (Section
5) MUST use the same key and proof method as the initial request.

[[Editor's note: additional client attestation frameworks will
eventually need to be addressed here beyond the presentation of the
key. For example, the organization the client represents, or a
family of client software deployed in a cluster, or the posture of
the device the client is installed on. These all need to be
separable from the client's key and the key identifier. 1]]

.1. Authenticating the Client

If the presented key is known to the AS and is associated with a
single instance of a client, the process of presenting a key and
proving possession of that key is usually sufficient to authenticate
the client to the AS. The AS MAY associate policies with the client
software identified by this key, such as limiting which resources
can be requested and which interaction methods can be used. For
example, only specific clients with certain known keys might be

trusted with access tokens without the AS interacting directly with
the user as in Appendix D.

The presentation of a key is of vital importance to the protocol as
it allows the AS to strongly associate multiple requests from the
same RC with each other. This value exists whether the AS knows the
key ahead of time or not, and as such the AS MAY allow for clients
to make requests with unknown keys. This pattern allows for
ephemeral clients, such as single-page applications, and many-
instance clients, such as mobile applications, to generate their own
key pairs and use them within the protocol without having to go
through a separate registration step. The AS MAY limit which
capabilities are made available to clients with unknown keys. For
example, the AS could have a policy saying that only previously-
registered clients can request particular resources.

2.3.2. Identifying the Client Key By Reference

If the client has a reference for its key, the client MAY send that
reference handle as a string. The format of this string is opaque to
the client.

"key": "7C7C4AZ9KHRS6X63AJA0"

If the key is passed by reference, the proofing mechanism associated
with that key reference MUST also be used by the client, as
described in Section 8.

If the AS does not recognize the key reference handle, the request
MUST be rejected with an error.

If the client identifies its key by reference, the referenced key
MAY be a symmetric key known to the AS. The client MUST NOT send a
symmetric key by value, as doing so would be a security violation.

[[Editor's note: In many ways, passing a key identifier by
reference is analogous to OAuth 2's "client_id" parameter [REC6749],
especially when coupled with a confidential client's authentication
process. See Appendix D.2 for an example.]]

2.4. Identifying the User

If the client knows the identity of the current user or one or more
identifiers for the user, the client MAY send that information to
the AS in the "user" field. The client MAY pass this information by
value or by reference.

sub_ids

An array of subject identifiers for the user, as defined by [I-
D.ietf-secevent-subject-identifiers].

assertions An object containing assertions as values keyed on the
assertion type defined by a registry TBD (Section 12). [[
Editor's note: should this be an array of objects with internal
typing like the sub_ids? Do we expect more than one assertion per
user anyway?]]

"user": {

"sub_ids": [{
"subject_type": "email",
"email": "user@example.com"

1

"assertions": {
"oidc_id_token": "eyj..."

}

}

Subject identifiers are hints to the AS in determining the current
user and MUST NOT be taken as declarative statements that a
particular user is present at the client. Assertions SHOULD be
validated by the AS. [[editor's note: assertion validation is
extremely specific to the kind of assertion in place]]

If the identified user does not match the user present at the AS
during an interaction step, the AS SHOULD reject the request.

[[Editor's note: we're potentially conflating identification
(sub_ids) and provable presence (assertions and a trusted reference
handle) in the same structure, so perhaps these should be split.]]

Additional user assertion formats are defined in a registry TBD
(Section 12). [[Editor's note: probably the same registry as
requesting formats to keep them aligned.]]

If the AS trusts the client to present user information, it MAY
decide, based on its policy, to skip interaction with the user, even
if the client provides one or more interaction capabilities.

2.4.1. Identifying the User by Reference

If the client has a reference for the current user at this AS, the
client MAY pass that reference as a string. The format of this
string is opaque to the client.

"user": "XUT2MFM1XBIKJKSDU8QM"

User reference identifiers are not intended to be human-readable
user identifiers or machine-readable verifiable assertions. For
either of these, use the regular user request instead.

If the AS does not recognize the user reference, it MUST return an
error.

2.5. Interacting with the User

If the client is capable of driving interaction with the user, the
client SHOULD declare the means that it can interact using the
"interact" field. This field is a JSON object with keys that declare
different interaction capabilities. A client MUST NOT declare an
interaction capability it does not support.

The client MAY send multiple capabilities in the same request. There
is no preference order specified in this request. An AS MAY respond
to any, all, or none of the presented interaction capabilities (Sect
ion 3.3) in a request, depending on its capabilities and what 1is
allowed to fulfill the request.

The following sections detail requests for interaction capabilities.
Additional interaction capabilities are defined in a registry TBD
(Section 12).

[[Editor's note: there need to be more examples (Appendix C) that
knit together the interaction capabilities into common flows, like
an authz-code equivalent. But it's important for the protocol design
that these are separate pieces to allow such knitting to take place.

1]

"interact": {
"redirect": true,
"user_code": true,
"callback": {
"method": "redirect",
"uri": "https://client.example.net/return/123455",
"nonce": "LKLTI25DK82FX4T4QFzC"

If the RC does not provide a suitable interaction mechanism, the AS
cannot contact the RO asynchronously, and the AS determines that
interaction is required, then the AS SHOULD return an error since
the RC will be unable to complete the request without authorization.

2.5.1. Redirect to an Arbitrary URL

If the client is capable of directing the user to a URL defined by
the AS at runtime, the client indicates this by sending the

"redirect" field with the boolean value "true". The means by which
the client will activate this URL is out of scope of this
specification, but common methods include an HTTP redirect,
launching a browser on the user's device, providing a scannable
image encoding, and printing out a URL to an interactive console.

"interact": {
"redirect": true

If this interaction capability is supported for this client and
request, the AS returns a redirect interaction response Section
3.3.1.

2.5.1.1. Redirect to an Arbitrary Shortened URL

If the client would prefer to redirect to a shortened URL defined by
the AS at runtime, the client indicates this by sending the
"redirect" field with an integer indicating the maximum character
length of the returned URL. The AS MAY use this value to decide
whether to return a shortened form of the response URL. If the AS
cannot shorten its response URL enough to fit in the requested size,
the AS SHOULD return an error. [[Editor's note: Or maybe just
ignore this part of the interaction request?]]

The means by which the client will activate this URL is out of scope
of this specification, but common methods include an HTTP redirect,
launching a browser on the user's device, providing a scannable
image encoding, and printing out a URL to an interactive console for
the user to copy and paste into a browser.

"interact": {
"redirect": 255

If this interaction capability is supported for this client and
request, the AS returns a redirect interaction response with short
URL Section 3.3.1.

2.5.2. Open an Application-specific URL

If the client can open a URL associated with an application on the
user's device, the client indicates this by sending the "app" field
with boolean value "true". The means by which the client determines
the application to open with this URL are out of scope of this
specification.

"interact": {
"app": true

If this interaction capability is supported for this client and
request, the AS returns an app interaction response with an app URL
payload Section 3.3.2.

[[Editor's note: this is similar to the "redirect" above today as
most apps use captured URLs, but there seems to be a desire for
splitting the web-based interaction and app-based interaction into
different URIs. There's also the possibility of wanting more in the
payload than can be reasonably put into the URL, or at least having
separate payloads.]]

.3. Receive a Callback After Interaction

If the client is capable of receiving a message from the AS
indicating that the user has completed their interaction, the client
indicates this by sending the "callback" field. The value of this
field is an object containing the following members.

uri REQUIRED. Indicates the URI to send the RO to after
interaction. This URI MAY be unique per request and MUST be
hosted by or accessible by the RC. This URI MUST NOT contain any
fragment component. This URI MUST be protected by HTTPS, be
hosted on a server local to the user's browser ("localhost"), or
use an application-specific URI scheme. If the RC needs any state
information to tie to the front channel interaction response, it
MUST encode that into the callback URI. The allowable URIs and
URI patterns MAY be restricted by the AS based on the RC's
presented key information. The callback URI SHOULD be presented
to the RO during the interaction phase before redirect.

nonce REQUIRED. Unique value to be used in the calculation of the
"hash" query parameter sent to the callback URL, must be
sufficiently random to be unguessable by an attacker. MUST be
generated by the RC as a unique value for this request.

method REQUIRED. The callback method that the AS will use to
contact the client. Valid values include redirect Section 2.5.3.1
and push Section 2.5.3.2, with other values defined by a registry
TBD (Section 12).

hash_method OPTIONAL. The hash calculation mechanism to be used for
the callback hash in Section 4.4.3. Can be one of sha3 or sha2.
If absent, the default value is sha3. [[Editor's note: This
should be expandable via a registry of cryptographic options, and
it would be good if we didn't define our own identifiers here.
See also note about cryptographic functions in Section 4.4.3.]]

"interact": {
"callback": {
"method": "redirect",
"uri": "https://client.example.net/return/123455",
"nonce": "LKLTI25DK82FX4T4QFzC"

If this interaction capability is supported for this client and
request, the AS returns a nonce for use in validating the callback
response (Section 3.3.3). Requests to the callback URI MUST be
processed as described in Section 4.4, and the AS MUST require
presentation of an interaction callback reference as described in
Section 5.1.

Note that the means by which the user arrives at the AS is declared
separately from the user's return using this callback mechanism.

2.5.3.1. Receive an HTTP Callback Through the Browser

A callback method value of redirect indicates that the client will
expect a call from the user's browser using the HTTP method GET as
described in Section 4.4.1.

"interact": {
"callback": {
"method": "redirect",
"uri": "https://client.example.net/return/123455",
"nonce": "LKLTI25DK82FX4T4QFzC"

Requests to the callback URI MUST be processed as described in
Section 4.4.1.

Since the incoming request to the callback URL is from the user's
browser, the client MUST require the user to be present on the
connection.

2.5.3.2. Receive an HTTP Direct Callback

A callback method value of push indicates that the client will
expect a call from the AS directly using the HTTP method POST as
described in Section 4.4.2.

"interact": {
"callback": {
"method": "redirect",
"uri": "https://client.example.net/return/123455",
"nonce": "LKLTI25DK82FX4T4QFzC"

Requests to the pushback URI MUST be processed as described in
Section 4.4.2.

Since the incoming request to the pushback URL is from the AS and
not from the user's browser, the client MUST NOT require the user to
be present.

2.5.4. Display a Short User Code

If the client is capable of displaying or otherwise communicating a
short, human-entered code to the user, the client indicates this by
sending the "user_code" field with the boolean value "true". This
code is to be entered at a static URL that does not change at
runtime.

"interact": {

"user_code": true

If this interaction capability is supported for this client and
request, the AS returns a user code and interaction URL as specified
in Section 4.2.

2.5.5. Extending Interaction Capabilities

Additional interaction capabilities are defined in a registry TBD
(Section 12).

[[Editor's note: we should have guidance in here about how to
define other interaction capabilities. There's already interest in
defining message-based protocols and challenge-response protocols,
for example.]]

2.6. Providing Displayable Client Information
If the client has additional information to display to the user
during any interactions at the AS, it MAY send that information in
the "display" field. This field is a JSON object that declares

information to present to the user during any interactive sequences.

name Display name of the RC software

uri
User-facing web page of the RC software

logo_uri Display image to represent the RC software
"display": {

"name": "My Client Display Name",
"uri": "https://example.net/client"

Additional display fields are defined by a registry TBD (Section
12).

The AS SHOULD use these values during interaction with the user. The
AS MAY restrict display values to specific clients, as identified by
their keys in Section 2.3.

[[Editor's note: this might make sense to combine with the "key"
field, but some classes of more dynamic client vary those fields
separately from the key material. We should also consider things
like signed statements for client attestation, but that might fit
better into a different top-level field instead of this "display"
field.]]

2.7. Declaring Client Capabilities

If the client supports extension capabilities, it MAY present them
to the AS in the "capabilities" field. This field is an array of
strings representing specific extensions and capabilities, as
defined by a registry TBD (Section 12).

"capabilities": ["ext1", "ext2"]
2.8. Referencing an Existing Grant Request

If the client has a reference handle from a previously granted
request, it MAY send that reference in the "reference" field. This
field is a single string.

"existing_grant": "8OUPRY5NM330MUKMKSKU"

The AS MUST dereference the grant associated with the reference and
process this request in the context of the referenced one.

[[Editor's note: this basic capability is to allow for both step-up
authorization and downscoped authorization, but by explicitly
creating a new request and not modifying an existing one. What's the
best guidance for how an AS should process this?]]

2.9. Requesting OpenID Connect Claims

If the client and AS both support OpenID Connect's claims query
language as defined in [0IDC] Section 5.5, the client sends the
value of the OpenID Connect claims authorization request parameter
as a JSON object under the name oidc_claims.

"oidc_claims": {
"id_token" : {

"email" : { "essential" : true },
"email_verified" : { "essential" : true }
+
"userinfo" : {
"name" : { "essential" : true 1},
"picture" : null
}

The contents of the oidc_claims parameter have the same semantics as
they do in OpenID Connect, including all extensions such as
[OIDC4IA]. The AS MUST process the claims object in the same way
that it would with an OAuth 2 based authorization request.

Note that because this is an independent query object, the
oidc_claims value can augment or alter other portions of the
request, namely the resources and subject fields. This query
language uses the fields in the top level of the object to indicate
the target for any requested claims. For instance, the userinfo
target indicates that an access token would grant access to the
given claims at the UserInfo Endpoint, while the id_token target
indicates that the claims would be returned in an ID Token as
described in Section 3.4.

[[Editor's note: I'm not a fan of GNAP defining how OIDC would work
and would rather that work be done by the OIDF. However, I think it
is important for discussion to see this kind of thing in context
with the rest of the protocol, for now.]]

2.10. Extending The Grant Request
The request object MAY be extended by registering new items in a

registry TBD (Section 12). Extensions SHOULD be orthogonal to other
parameters. Extensions MUST document any aspects where the

[[Editor's note: we should have more guidance and examples on what
possible top-level extensions would look like. Things like an OIDC
"claims" request or a VC query, for example.]]

3. Grant Response

In response to a client's request, the AS responds with a JSON
object as the HTTP entity body.

In this example, the AS is returning an interaction URL (Section
3.3.1), a callback nonce (Section 3.3.3), and a continuation handle
(Section 3.1).

"interact": {
"redirect": "https://server.example.com/interact/4CF492MLVMSWIMK
"callback": "MBDOFXG4Y5CVJCX821LH"
}/
"continue": {
"handle": "8OUPRY5NM330MUKMKSKU",
"uri": "https://server.example.com/tx"

In this example, the AS is returning an access token (Section
3.2.1), a continuation handle (Section 3.1), and a subject
identifier (Section 3.4).

"access_token": {
"value": "OS9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO",
"proof": "bearer",
"manage": "https://server.example.com/token/PRY5NM330M4TB8N6BW70
3
"continue": {
"handle": "8OUPRY5NM330MUKMKSKU",
"uri": "https://server.example.com/continue"
3
"subject": {
"sub_ids": [{
"subject_type": "email",
"email": "user@example.com",

3]

3.1. Request Continuation Handle

If the AS determines that the request can be continued with
additional requests, it responds with the "continue" field. This
field contains a JSON object with the following properties.

handle REQUIRED. A unique reference for the grant request.

uri
REQUIRED. The URI at which the client can make continuation

requests. This URI MAY vary per client or ongoing request, or MAY
be stable at the AS.

wait RECOMMENDED. The amount of time in integer seconds the client
SHOULD wait after receiving this continuation handle and calling
the URI.

expires_in OPTIONAL. The number of seconds in which the handle will
expire. The client MUST NOT use the handle past this time. The
handle MAY be revoked at any point prior to its expiration.

{
"continue": {
"handle": "8OUPRY5NM330MUKMKSKU",
"uri": "https://server.example.com/continue",
"wait": 60
}
}

The client can use the values of this field as described in Section
5.

This field SHOULD be returned when interaction is expected, to allow
the client to follow up after interaction has been concluded.

3.2. Access Tokens

If the AS has successfully granted one or more access tokens, it
responds with one of these fields. The AS MUST NOT respond with both
fields.

[[Editor's note: I really don't like the dichotomy between
"access_token" and "multiple_access_tokens" and their being mutually
exclusive, and I think we should design away from this pattern
toward something less error-prone.]]

3.2.1. Single Access Token

If the client has requested a single access token and the AS has
granted that access token, the AS responds with the "access_token"
field. The value of this field is an object with the following
properties.

value REQUIRED. The value of the access token as a string. The
value is opaque to the client. The value SHOULD be limited to
ASCII characters to facilitate transmission over HTTP headers and
elements without additional encoding.

proof
REQUIRED. The proofing presentation mechanism used for
presenting this access token to an RS. See the section on using
access tokens (Section 7) for details on possible values to this
field and their requirements.

manage OPTIONAL. The management URI for this access token. If
provided, the client MAY manage its access token as described in
managing an access token lifecycle (Section 6). This URI MUST NOT
include the access token value and MAY be different for each
access token.

resources OPTIONAL. A description of the rights associated with
this access token, as defined in requesting resource access
(Section 3.2.1). If included, this MUST reflect the rights
associated with the issued access token. These rights MAY vary
from what was requested by the client.

expires_in OPTIONAL. The number of seconds in which the access will
expire. The client MUST NOT use the access token past this time.
The access token MAY be revoked at any point prior to its
expiration.

key The key that the token is bound to, REQUIRED if the token 1is
sender-constrained. The key MUST be in a format described in
Section 2.3. [[Editor's note: this isn't quite right, since the
request section includes a "proof" field that we already have
here. A possible solution would be to only have a "key" field as
defined above and its absence indicates a bearer token?]]

"access_token": {

"value":
"proof":
"manage":

"0S9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO",

"bearer",

"resources": [

{

iy

"type": "photo-api",
"actions": [
"read",
"write",
"dolphin"
1
"locations": [
"https://server.example.net/",
"https://resource.local/other"
1
"datatypes": [
"metadata",
"images"

"read", "dolphin-metadata"

3.2.2. Multiple Access Tokens

If the client has requested multiple access tokens and the AS has
granted at least one of them,
"multiple_access_tokens" field. The value of this field is a JSON
object, and the property names correspond to the token identifiers
chosen by the client in the multiple access token request (Section
2.1.3). The values of the properties of this object are access

"https://server.example.com/token/PRY5NM330M4TB8N6BW70

the AS responds with the

tokens as described in Section 3.2.1.

"multiple_access_tokens": {

"token1": {
"value": "OS9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO",
"proof": "bearer",
"manage": "https://server.example.com/token/PRY5NM330M4TB8N6
+
"token2": {
"value": "UFGLO2FDAFG7VGZZPJ3IZEMN21EVU71FHCARP4J1",
"proof": "bearer"

Each access token
client's request.

corresponds to the named resources arrays in the
The AS MAY not issue one or more of the requested

access tokens. In such cases all of the issued access tokens are
included without the omitted token. The multiple access token
response MUST be used when multiple access tokens are requested,
even if only one access token is issued.

If the client requested a single access token (Section 2.1.1), the
AS MUST NOT respond with multiple access tokens.

Each access token MAY have different proofing mechanisms. If used,
each access token MUST have different management URIS.

3.3. Interaction Capabilities

If the client has indicated a capability to interact with the user
in its request (Section 2.5), and the AS has determined that
interaction is both supported and necessary, the AS responds to the
client with any of the following values in the interact field of the
response. There is no preference order for interaction capabilities
in the response, and it is up to the client to determine which ones
to use.

The AS MUST NOT respond with any interaction capability that the
client did not indicate in its request.

3.3.1. Redirection to an arbitrary URL

If the client indicates that it can redirect to an arbitrary URL
(Section 2.5.1) and the AS supports this capability for the client's
request, the AS responds with the "redirect" field, which is a
string containing the URL to direct the user to. This URL MUST be
unique for the request and MUST NOT contain any security-sensitive
information.

"interact": {
"redirect": "https://server.example.com/interact/4CF492MLVMSWIOMK

The client sends the user to the URL to interact with the AS. The
client MUST NOT alter the URL in any way. The means for the client
to send the user to this URL is out of scope of this specification,
but common methods include an HTTP redirect, launching the system
browser, displaying a scannable code, or printing out the URL in an
interactive console.

3.3.2. Launch of an application URL

If the client indicates that it can launch an application URL
(Section 2.5.2) and the AS supports this capability for the client's
request, the AS responds with the "app" field, which is a string
containing the URL to direct the user to. This URL MUST be unique

for the request and MUST NOT contain any security-sensitive
information.

"interact": {
"app": "https://app.example.com/launch?tx=4CF492MLV"

The client launches the URL as appropriate on its platform, and the
means for the client to launch this URL is out of scope of this
specification. The client MUST NOT alter the URL in any way. The
client MAY attempt to detect if an installed application will
service the URL being sent.

[[Editor's note: This will probably need to be expanded to an
object to account for other parameters needed in app2app use cases,
like addresses for distributed storage systems, server keys, and the
like. Details TBD as people build this out.]]

3.3.3. Callback to a Client URL

If the client indicates that it can receive a post-interaction
callback on a URL (Section 2.5.3) and the AS supports this
capability for the client's request, the AS responds with a
"callback" field containing a nonce that the client will use in
validating the callback as defined in Section 4.4.1.

"interact": {
"callback": "MBDOFXG4Y5CVJCX821LH"

When the user completes interaction at the AS, the AS MUST call the
client's callback URL using the method indicated in the callback
request (Section 2.5.3) as described in Section 4.4.1.

If the AS returns a "callback" nonce, the client MUST NOT continue a
grant request before it receives the associated interaction
reference on the callback URI.

3.3.4. Display of a Short User Code

If the client indicates that it can display a short user-typeable
code (Section 2.5.4) and the AS supports this capability for the

client's request, the AS responds with a "user_code" field. This

field is an object that contains the following members.

code REQUIRED. A unique short code that the user can type into an
authorization server. This string MUST be case-insensitive, MUST
consist of only easily typeable characters (such as letters or
numbers). The time in which this code will be accepted SHOULD be

short lived, such as several minutes. It is RECOMMENDED that this
code be no more than eight characters in length.

url RECOMMENDED. The interaction URL that the RC will direct the RO
to. This URL MUST be stable at the AS such that clients can be
statically configured with it.

"interact": {
"user_code": {
"code": "A1BC-3DFF",
"url": "https://srv.ex/device"

The client MUST communicate the "code" to the user in some fashion,
such as displaying it on a screen or reading it out audibly. The
client SHOULD also communicate the URL if possible.

The code is a one-time-use credential that the AS uses to identify
the pending request from the RC. When the user enters this code into
the AS, the AS MUST determine the pending request that it was
associated with. If the AS does not recognize the entered code, the
AS MUST display an error to the user.

As this interaction capability is designed to facilitate interaction
via a secondary device, it is not expected that the client redirect
the user to the URL given here at runtime. Consequently, the URL
needs to be stable enough that a client could be statically
configured with it, perhaps referring the user to the URL via
documentation instead of through an interactive means. If the client
is capable of communicating an arbitrary URL to the user, such as
through a scannable code, the client can use the '"redirect" (Section
2.5.1) capability for this purpose.

3.3.5. Extending Interaction Capability Responses

Extensions to this specification can define new interaction
capability responses in a registry TBD (Section 12).

3.4. Returning User Information

If information about the current user is requested and the AS grants
the client access to that data, the AS returns the approved
information in the "subject" response field. This field is an object
with the following OPTIONAL properties.

sub_ids An array of subject identifiers for the user, as defined by
[I-D.ietf-secevent-subject-identifiers]. [[Editor's note:
privacy considerations are needed around returning identifiers.

1]

assertions
An object containing assertions as values keyed on the
assertion type defined by a registry TBD (Section 12). [[
Editor's note: should this be an array of objects with internal
typing like the sub_ids? Do we expect more than one assertion per
user anyway?]]

updated_at Timestamp in integer seconds indicating when the
identified account was last updated. The client MAY use this
value to determine if it needs to request updated profile
information through an identity API.

"subject": {
"sub_ids": [{
"subject_type": "email",
"email": "user@example.com",
Iy
"assertions": {
"oidc_id_token": "eyj..."
}
}

Extensions to this specification MAY define additional response
properties in a registry TBD (Section 12).

3.5. Returning Dynamically-bound Reference Handles

Many parts of the client's request can be passed as either a value
or a reference. Some of these references, such as for the client's
keys or the resources, can sometimes be managed statically through
an admin console or developer portal provided by the AS or RS. If
desired, the AS MAY also generate and return some of these
references dynamically to the client in its response to facilitate
multiple interactions with the same software. The client SHOULD use
these references in future requests in lieu of sending the
associated data value. These handles are intended to be used on
future requests.

Dynamically generated handles are string values that MUST be
protected by the client as secrets. Handle values MUST be
unguessable and MUST NOT contain any sensitive information. Handle
values are opaque to the client. [[Editor's note: these used to be
objects to allow for expansion to future elements, like a management
URI or different presentation types or expiration, but those weren't
used in practice. Is that desirable anymore or is collapsing them
like this the right direction?]]

All dynamically generated handles are returned as fields in the root
JSON object of the response. This specification defines the

following dynamic handle returns, additional handles can be defined
in a registry TBD (Section 12).

key_handle A value used to represent the information in the key
object that the client can use in a future request, as described
in Section 2.3.2.

user_handle A value used to represent the current user. The client
can use in a future request, as described in Section 2.4.1.

This non-normative example shows two handles along side an issued
access token.

{
"user_handle": "XUT2MFM1XBIKJKSDU8QM",
"key_handle": "7C7C4AZ9KHRS6X63AJA0",
"access_token": {
"value": "OS9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO",
"proof": "bearer"
}
}

3.6. Error response

If the AS determines that the request cannot be issued for any
reason, it responds to the RC with an error message.

error The error code.

"error": "user_denied"

The error code is one of the following, with additional values
available in a registry TBD (Section 12):

user_denied The RO denied the request.

too_fast The RC did not respect the timeout in the wait response.
unknown_handle The request referenced an unknown handle.

[[Editor's note: I think we will need a more robust error
mechanism, and we need to be more clear about what error states are

allowed in what circumstances. Additionally, is the "error"
parameter exclusive with others in the return?]]

3.7. Extending the Response

Extensions to this specification MAY define additional fields for
the grant response in a registry TBD (Section 12).

[[Editor's note: what guidance should we give to designers on this?

1]

4. Interaction at the AS

If the client indicates that it is capable of driving interaction
with the user in its request (Section 2.5), and the AS determines
that interaction is required and responds to one or more of the
client's interaction capabilities, the client SHOULD initiate one of
the returned interaction capabilities in the response (Section 3.3).

When the RO is interacting with the AS, the AS MAY perform whatever
actions it sees fit, including but not limited to:

*authenticate the user as RO

*gather consent and authorization from the RO for access to
requested resources or the

*allow the RO to modify the parameters of the request (such as
disallowing some requested resources or specifying an account or
record)

[[Editor's note: there are some privacy and security considerations
here but for the most part we don't want to be overly prescriptive
about the UX, I think. 1]

4.1. Interaction at a Redirected URI

When the user is directed to the AS through the "redirect" (Section
3.3.1) capability, the AS can interact with the user through their
web browser to authenticate the user as an RO and gather their
consent. Note that since the client does not add any parameters to
the URL, the AS MUST determine the grant request being referenced
from the URL value itself. If the URL cannot be associated with a
currently active request, the AS MUST display an error to the user
and MUST NOT attempt to redirect the user back to any client.

The interaction URL MUST be reachable from the RO's browser, though
note that the RO MAY open the URL on a separate device from the RC
itself. The interaction URL MUST be accessible from an HTTP GET
request, and MUST be protected by HTTPS or equivalent means.

4.2. Interaction at the User Code URI

When the user is directed to the AS through the "user code" (Section
3.3.4) capability, the AS can interact with the user through their
web browser to collect the user code, authenticate the user as an
RO, and gather their consent. Note that since the URL itself is
static, the AS MUST determine the grant request being referenced
from the user code value itself. If the user code cannot be
associated with a currently active request, the AS MUST display an
error to the user and MUST NOT attempt to redirect the user back to
any client.

The user code URL MUST be reachable from the RO's browser, though
note that the RO MAY open the URL on a separate device from the RC
itself. The user code URL MUST be accessible from an HTTP GET
request, and MUST be protected by HTTPS or equivalent means.

4.3. Interaction through an Application URI

When the user successfully launches an application through the "app"
capability (Section 3.3.2), the AS interacts with the user through
that application to authenticate the user as the RO and gather their
consent. The details of this interaction are out of scope for this
specification.

[[Editor's note: Should we have anything to say about an app
sending information to a back-end to get details on the pending
request?]]

4.4. Post-Interaction Completion

Upon completing an interaction with the user, if a "callback"
(Section 3.3.3) capability is available with the current request,
the AS MUST follow the appropriate method at the end of interaction
to allow the client to continue. If neither capability is available,
the AS SHOULD instruct the user to return to their client software
upon completion. Note that these steps still take place in most
error cases, such as when the user has denied access. This allows
the client to potentially recover from the error state without
restarting.

[[Editor's note: there might be some other kind of push-based
notification or callback that the client can use, or an out-of-band
non-HTTP protocol. The AS would know about this if supported and
used, but the guidance here should be written in such a way as to
not be too restrictive in the next steps that it can take. Still,
it's important that the AS not expect or even allow clients to poll
if the client has stated it can take a callback of some form,
otherwise that sets up a potential session fixation attack vector
that the client is trying to and able to avoid.]]

The AS MUST calculate a hash value as described in Section 4.4.3.
The client will use this value to validate the return call from the
AS.

The AS MUST create an interaction reference and associate that
reference with the current interaction and the underlying pending
request. This value MUST be sufficiently random so as not to be
guessable by an attacker.

The AS then MUST send the hash and interaction reference based on
the interaction finalization capability as described in the
following sections.

4.4.1. Completing Interaction with a Callback URI

When using the '"callback" interaction capability (Section 3.3.3)
with the redirect method, the AS signals to the client that
interaction is complete and the request can be continued by
directing the user (in their browser) back to the client's callback
URL sent in the callback request (Section 2.5.3.1).

The AS secures this callback by adding the hash and interaction
reference as query parameters to the client's callback URL.

hash REQUIRED. The interaction hash value as described in Section
4.4.3.

interact_ref REQUIRED. The interaction reference generated for this
interaction.

The means of directing the user to this URL are outside the scope of
this specification, but common options include redirecting the user
from a web page and launching the system browser with the target
URL.

https://client.example.net/return/123455
?hash=p287jsq0Y2KK3WS__a42tavNC641dGTBroywswWxT4md_jZQ1R2HZT8BOWYHcLmMObM
&interact_ref=4IFWWIKYBC2PQ6U56NL1

When receiving the request, the client MUST parse the query
parameters to calculate and validate the hash value as described in
Section 4.4.3. If the hash validates, the client sends a
continuation request to the AS as described in Section 5.1 using the
interaction reference value received here.

4.4.2. Completing Interaction with a Pushback URI

When using the '"callback" interaction capability (Section 3.3.3)
with the push method, the AS signals to the client that interaction
is complete and the request can be continued by sending an HTTP POST

request to the client's callback URL sent in the callback request
(Section 2.5.3.2).

The entity message body is a JSON object consisting of the following
two elements:

hash REQUIRED. The interaction hash value as described in Section
4.4.3.

interact_ref REQUIRED. The interaction reference generated for this
interaction.

POST /push/554321 HTTP/1.1
Host: client.example.net
Content-Type: application/json

"hash": "p28jsqOY2KK3WS__a42tavNC641dGTBroywswWxT4md_jZQ1R2HZT8BOWYHCLM
"interact_ref": "4IFWWIKYBC2PQ6US56NL1"

When receiving the request, the client MUST parse the JSON object
and validate the hash value as described in Section 4.4.3. If the
hash validates, the client sends a continuation request to the AS as
described in Section 5.1 using the interaction reference value
received here.

4.4.3. Calculating the interaction hash

The "hash" parameter in the request to the client's callback URL
ties the front channel response to an ongoing request by using
values known only to the parties involved. This prevents several
kinds of session fixation attacks against the client.

To calculate the "hash" value, the party doing the calculation first
takes the "nonce" value sent by the RC in the interaction section of
the initial request (Section 2.5.3), the AS's nonce value from the
callback response (Section 3.3.3), and the "interact_ref" sent to
the client's callback URL. These three values are concatenated to
each other in this order using a single newline character as a
separator between the fields. There is no padding or whitespace
before or after any of the lines, and no trailing newline character.

VILOG6A4CAYLBXHTROKRO
MBDOFXG4Y5CVJCX821LH
4IFWWIKYBC2PQ6USG6NL1

The party then hashes this string with the appropriate algorithm
based on the "hash_method" parameter of the "callback". If the

"hash_method" value is not present in the RC's request, the
algorithm defaults to "sha3".

[[Editor's note: these hash algorithms should be pluggable, and
ideally we shouldn't redefine yet another crypto registry for this
purpose, but I'm not convinced an appropriate one already exists.
Furthermore, we should be following best practices here whether it's
a plain hash, a keyed MAC, an HMAC, or some other form of
cryptographic function. I'm not sure what the defaults and options
ought to be, but SHA512 and SHA3 were picked based on what was
available to early developers.]]

4.4.3.1. SHA3

The "sha3" hash method consists of hashing the input string with the
512-bit SHA3 algorithm. The byte array is then encoded using URL
Safe Base64 with no padding. The resulting string is the hash value.

pP28jsqOY2KK3WS__a42tavNC641dGTBroywswWxT4md_jZQ1R2HZT8BOWYHcLmMObM7XHPAdJZz
4.4.3.2. SHA2

The "sha2" hash method consists of hashing the input string with the
512-bit SHA2 algorithm. The byte array is then encoded using URL
Safe Base64 with no padding. The resulting string is the hash value.

62SbcD3Xs7L40rjgALA-ymQujoh2LB2hPJyX9vlcr1H6ecChZ8BNKKG_HrOKP_Bp3j84rh4mC
5. Continuing a Grant Request

If the client receives a continuation element in its response
Section 3.1, the client can make an HTTP POST call to the
continuation URI with a JSON object. The client MUST send the handle
reference from the continuation element in its request as a top-
level JSON parameter.

"handle": "tghji7e6ytghj9876tghjko987yh"

The client MAY include other parameters as described here or as
defined a registry TBD (Section 12).

[[Editor's note: We probably want to allow other parameters, like
modifying the resources requested or providing more user
information. We'll certainly have some kinds of specific challenge-
response protocols as there's already been interest in that kind of
thing, and the continuation request is the place where that would
fit. 1]

If a "wait" parameter was included in the continuation response, the
client MUST NOT call the continuation URI prior to waiting the
number of seconds indicated. If no "wait" period is indicated, the
client SHOULD wait at least 5 seconds [[Editor's note: what's a
reasonable amount of time so as not to DOS the server??]].

The response from the AS is a JSON object and MAY contain any of the
elements described in Section 3, with some variations:

If the AS determines that the client can make a further continuation
request, the AS MUST include a new '"continue" response element
(Section 3.1). The returned handle value MUST NOT be the same as
that used to make the continuation request, and the continuation URI
MAY remain the same. If the AS does not return a new "continue"
response element, the client MUST NOT make an additional
continuation request. If a client does so, the AS MUST return an
error.

If the AS determines that the client still needs to drive
interaction with the user, the AS MAY return appropriate responses
for any of the interaction mechanisms (Section 3.3) the client
indicated in its initial request (Section 2.5). Unique values such
as interaction URIs and nonces SHOULD be re-generated and not re-
used.

The client MUST present proof of the same key identified in the
initial request (Section 2.3) by signing the request as described in
Section 8. This requirement is in place whether or not the AS had
previously registered the client's key as described in Section
2.3.1.

5.1. Continuing after a Finalized Interaction

If the client has received an interaction reference from a
"callback" (Section 4.4.1) message, the client MUST include the
"interaction_ref" in its continuation request. The client MUST
validate the hash before making the continuation request, but note
that the client does not send the hash back to the AS in the

request.

{
"handle": "tghji7eéytghj9876tghjko987yh",
"interact_ref": "4IFWWIKYBC2PQ6U56NL1"

}

5.2. Continuing after Tokens are Issued

A request MAY be continued even after access tokens have been
issued, so long as the handle is valid. The AS MAY respond to such a
continuation request with new access tokens as described in Section

3.2 based on the client's original request. The AS SHOULD revoke
existing access tokens. If the AS determines that the client can
make a further continuation request in the future, the AS MUST
include a new "continue" response element (Section 3.1). The
returned handle value MUST NOT be the same as that used to make the
continuation request, and the continuation URI MAY remain the same.
If the AS does not return a new "continue" response element, the
client MUST NOT make an additional continuation request. If a client
does so, the AS MUST return an error.

6. Token Management

If an access token response includes the "manage" parameter as
described in Section 3.2.1, the client MAY call this URL to manage
the access token with any of the actions defined in the following
sections. Other actions are undefined by this specification.

The access token being managed acts as the access element for its
own management API. The client MUST present proof of an appropriate
key along with the access token.

If the token is sender-constrained (i.e., not a bearer token), it
MUST be sent with the appropriate binding for the access token
(Section 7).

If the token is a bearer token, the client MUST present proof of the
same key identified in the initial request (Section 2.3) as
described in Section 8.

The AS MUST validate the proof and assure that it is associated with
either the token itself or the client the token was issued to, as
appropriate for the token's presentation type.

6.1. Rotating the Access Token

The client makes an HTTP POST to the token management URI, sending
the access token in the appropriate header and signing the request
with the appropriate key.

POST /token/PRY5NM330M4TB8N6BW70ZB8CDFONP219RP1L HTTP/1.1
Host: server.example.com

Authorization: GNAP 0S9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO
Detached-JwWS: eyjo....

The AS validates that the token presented is associated with the
management URL, that the AS issued the token to the given client,
and that the presented key is appropriate to the token. The access
token MAY be expired, and in such cases the AS SHOULD honor the
rotation request to the token management URL. The AS MAY store

different lifetimes for the use of the token in rotation vs. its use
at an RS.

If the token is validated and the key is appropriate for the
request, the AS will invalidate the current access token associated
with this URL, if possible, and return a new access token response
as described in Section 3.2.1. The value of the access token MUST
NOT be the same as the current value of the access token used to
access the management API. The response MAY include an updated
access token management URL as well, and if so, the client MUST use
this new URL to manage the new access token.

{
"access_token": {
"value": "FP6A8H6HY37MH13CK76LBZ6Y1UADG6VEUPEERSH2",
"proof": "bearer",
"manage": "https://server.example.com/token/PRY5NM330M4TB8N6BW70
"resources": [
{
"type": "photo-api",
"actions": [
"read",
"write",
"dolphin"
1
"locations": [
"https://server.example.net/",
"https://resource.local/other"
1
"datatypes": [
"metadata",
"images"
]
}I
"read", "dolphin-metadata"
]
}
}

6.2. Revoking the Access Token

The client makes an HTTP DELETE request to the token management URI,
signing the request with its key.

DELETE /token/PRY5NM330M4TB8N6BW70ZB8CDFONP219RP1L HTTP/1.1
Host: server.example.com

Authorization: GNAP O0S9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO
Detached-JWS: eyjo....

If the token was issued to the client identified by the key, the AS
will invalidate the current access token associated with this URL,
if possible, and return an HTTP 204 response code.

204 No Content
7. Using Access Tokens

The method the RC uses to send an access token to the RS depends on
the value of the "proof" parameter in the access token response
(Section 3.2.1).

If this value is "bearer", the access token is sent using the HTTP
Header method defined in [RFC6750].

Authorization: Bearer O0S9M2PMHKURG64TB8N6BW70ZB8CDFONP219RP1LTO

If the "proof" value is any other string, the access token is sent
using the HTTP authorization scheme "GNAP" along with a key proof as
described in Section 8 for the key bound to the access token. For
example, a "jwsd"-bound access token is sent as follows:

Authorization: GNAP 0S9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO
Detached-JWS: eyjo....

[[Editor's note: I don't actually like the idea of using only one
header type for differently-bound access tokens, but instead these
values should somehow reflect the key binding types. Maybe there can
be multiple fields after the "GNAP" keyword using structured
headers? Or a set of derived headers like GNAP-mtls? This might also
be better as a separate specification, like OAuth 2.]]

8. Binding Keys
Any keys presented by the RC to the AS or RS MUST be validated as
part of the request in which they are presented. The type of binding
used is indicated by the proof parameter of the key section in the
initial request Section 2.3. Values defined by this specification
are as follows:
jwsd A detached JWS signature header
jws Attached JwWS payload
mtls Mutual TLS certificate verification

dpop OAuth Demonstration of Proof-of-Possession key proof header

httpsig HTTP Signing signature header

oauthpop
OAuth PoP key proof authentication header

Additional values can be defined by a registry TBD (Section 12).

The keys presented by the RC in the Section 2 MUST be proved in all
continuation requests Section 5 and token management requests
Section 6. The AS MUST validate all keys presented by the RC
(Section 2.3) or referenced in an ongoing transaction at each call.

8.1. Detached JWS

This method is indicated by jwsd in the proof field. To signh a
request, the RC takes the serialized body of the request and signs
it using detached JWS [RFC7797]. The header of the JWS MUST contain
the kid field of the key bound to this RC for this request. The JWS
header MUST contain an alg field appropriate for the key identified
by kid and MUST NOT be none.

The RC presents the signature in the Detached-JWS HTTP Header field.
[Editor's Note: this is a custom header field, do we need this?]

POST /tx HTTP/1.1

Host: server.example.com

Content-Type: application/json

Detached-JwWS: eyJiNjQiOmZhbHN1LCJhbGci0iJSUzI1INiIsImtpZCI6Inh5eiOXINO.
.Y287HMtaYOEegEjoTd_04a4GC6qV48GgVbGKOhHAJINDtDEVUUlVjLfwne8AuUY3U7e8
9zUWwXLnAYK_BiS84M8EsrFvmv8yDLWzqveeIpcN5_ysveQnYt9Dqi32w6I0tAywkNUD
ZeJEdc3z5s9E18qrYFN2fxcu28YS4e8e_cHTK57003WJu-wFn2TJUmAbHuUqvUsyTb-nz
YOKXUCK1qQItJF7E-cwSb_xULu-3f77BEU_vGbNY0o5ZBa2B7UHO- KWNMSghbW2yeNNLbL
C18Kv80GF22Y7SbZt0e2TwnR2Aa2zksuUbntQ5c7al-gxtnXzuIKa340ekrnygE1lhmvw

peQ

"display": {
"name": "My Client Display Name",
"uri": "https://example.net/client"
I
"resources": [
"dolphin-metadata"
1
"interact": {
"redirect": true,
"callback": {
"method": "redirect",
"uri": "https://client.foo",
"nonce": "VJLO6A4CAYLBXHTROKRO"

}
3
"key": {
"proof": "jwsd",
"jwk": {
"kty": "RSA",
"e": "AQAB",

"kid": "xyz-1",

"alg": "RS256",

"n": "kOB5rR4JvOGMeLaY6_It_r30Rwdf8ci_JtffXyaSx8
XYJCNaOKNJIn_0z0YhdHbXTeW05A0yspDWJIbN5w_7bdwWDxgpD-y6jnD1u9YhBOCWObNPF
VPKTM8LC7SAXGRKx2k8Me2r_GssY1lyRpqvpBlY5-ejCywKRBfctRcnhTTGNztbbDBUYD
SWMFMVCHe5mXT4cLOBwWrZC6S-uu-LAX06aKwQOPwY0OGOs1K8WPm1lyGdkaAluF_FpS6LS
63WYPHi_Ap2B7_8Wbw4ttzbMS_doJvuDagW8A1Ip3fXFAHtRACKwW7rdI4_X1n66hJIxFe
kpdfwdiPQddQ6Y1lcK2U3obvUg7w"

}

When the AS receives the Detached-JWS header, it MUST parse its
contents as a detached JWS object. The HTTP Body is used as the
payload for purposes of validating the JWS, with no transformations.

[[Editor's note: this is a potentially fragile signature mechanism.
It doesn't protect the method or URL of the request in the
signature, but it's simple to calculate and useful for body-driven
requests, like the client to the AS. We might want to remove this in
favor of general-purpose HTTP signing. 1]

8.2. Attached Jws

This method is indicated by jws in the proof field. To sign a
request, the RC takes the serialized body of the request JSON and
signs it using JWS [REC7515]. The header of the JWS MUST contain the
kid field of the key bound to this RC during this request. The JWS
header MUST contain an alg field appropriate for the key identified
by kid and MUST NOT be none.

The RC presents the JWS as the body of the request along with a
content type of application/jose. The AS MUST extract the payload of
the JWS and treat it as the request body for further processing.

POST /transaction HTTP/1.1
Host: server.example.com
Content-Type: application/jose

eyJiNjQiOmZhbHN1LCJIhbGci0iJSUZIAINIiISImtpZCI6Inh5eiOXIN0G.ewogICAgIm
NsaWVudCI6IHSKICAgQICAgICAibmFtZSI6ICJINeSBDbG11bnQgRG1lzcGxheSBOYW11l
IiwKICAgICAQICAiLdXJIpIjogImhO@dHBz0i8vZXhhbXBsZS5uzZXQvY2xpZW50IgogIC
AgTSWKICAQICJyZXNvdXJjZXMi0iBbCiAgICAgICAgIMRvbHBoawW4tbwVOYWRhAGE L
CiAQICBdLAOQICAgIMludGVYyYWNOIjogewogICAgQICAQICJIyZWRpcmVjdCI6IHRydW
USCiAgICAQICAQIMNhbGXiYWNrIjogewogICAgCQkidXJIpIjogImhOdHBZz0i8VvY2xp
ZW50LmZvbyIsCiAgICAJCSJub25jZSI6ICIWSKkXPNKEOQOFZTEJYSFRSMELSTYIKIC
AgIA19CiAgICB9LAOgICAgIMtleXMiOiB7CgkJINByb29mIjogImp3c2QiLA0gICAg
ICAgICJqd2tzIjogewogICAgICAQICAgICAia2V5cyI6IFSKICAgICAQICAQICAQIC
AgIHSKICAQICAgICAgICAGICAgICAgICAiIa3R5IjogI1JTQSISCiAgICAgICAgICAY
ICAgICAgICAgIMUiOiAiQVFBQiIsCiAgICAgICAgICAgICAgGICAgICAgImtpZCIBIC
J4eX0otMSIsCiAgICAQICAgICAgQICAQICAgICAQIMFsZyI6ICISUZzIAINIISCiAgICAg
ICAgICAgQICAgICAgGICAgIM4i0iAia®9CNXISNEp2MEANZUXhWTZFSXRFcjNPUNdkZ]
hjavIKdGZmwH1hU3g4eF1KQONOYUILTKkpuX096MF10ZEhiWFR1VO81QW95Cc3BEVOpi
TjV3XzdiZFdEeGAwRC15NmpuRDF10V10Qk9DVO9iT1BGANnBrVEO4TEM3U2RYR1JLeD
JrOE11MnJIFfR3NzWWX5UNBXdnBChFk1LWVQqQ313S1JCZmMNOUMNuaFRURO56dGJIiREJIV
eURTV21GTVZDSGU1bVhUNGNMMEJ3Cc1pDNIMtdXUtTEF4MDZhS3dRT1B3WU9HT3NSSZz
hXUGOxeUdka2FBMXVGX0ZwUzZMUzYzV11QSG1lfQXAyQjdfOFdidzROAHpiTVNFZGIK
dnNVEYWdXOEEXSXAzZ1hGQUhOUKFjS3c3cmRINFIYbG42NmhKeEZ1a3BkzZ1ldkaVBRZG
RRN1kxYOsyVTNvYnzZVZzd3IgogICAgICAgICAgICAgICAgTfQogICAgICAgICAgICBd
CiAgICAQICAgTQogICAgQgfQp9.Y287HMtaYOEegEjoTd_04a4GC6qV48GgVhbGKOhHAJ
nDtDOVUULlVjLfwne8AuUY3U7e89zUWwWXLNAYK_BiS84M8EsrFvmv8yDLWzqveeIpcN
5_ysveQnYt9Dqi32w6I0tAywkNUDZeJEdc3z5s9Ei8qrYFN2fxcu28YS4e8e_cHTK5S
7003WJu-wFN2TJUmAbHUqvUsyTb-nzYOKXuCK1qQItJF7E-cwSh_xULu-3f77BEU_v
GbNY05ZBa2B7UHO- KWNMSgbW2yeNNLbLC18Kv80GF22Y7ShZt0e2TwnR2Aa2zksuUb
ntQ5c7al-gxtnXzuIKa340ekrnygElhmVWpeQ

[[Editor's note: A downside to this method is that it requires the
content type to be something other than application/json, and it
doesn't work against an RS without additional profiling since it
requires things to be sent in the body. Additionally it is
potentially fragile like a detached JWS since a multi-tier system
could parse the payload and pass the parsed payload downstream with
potential transformations. Furthermore, it doesn't protect the
method or URL of the request in the signature. We might want to
remove this in favor of general-purpose HTTP signing.]]

8.3. Mutual TLS

This method is indicated by mtls in the proof field. The RC presents
its client certificate during TLS negotiation with the server
(either AS or RS). The AS or RS takes the thumbprint of the client
certificate presented during mutual TLS negotiation and compares

that thumbprint to the thumbprint presented by the RC application as
described in [RFC8705] section 3.

POST /transaction HTTP/1.1

Host: server.example.com

Content-Type: application/json

SSL_CLIENT_CERT: MIIEHDCCAwSgAwWIBAQIBATANBgkghkiG9wOBAQsSFADCBmM]jE3MDUGA1U
CcG9rZSBFbmdpbmvlcmluzZzyBSb290IEN1cnRpZml1jYXR1IEF1dGhvcml@eTELMAKG
A1UECAWCTUEXCzAJBgNVBAYTALVTMRKkwFwY JKoZIhvcNAQkBFgpjYUBic3BrLmlv
MRwwGQYDVQQKDBNCZXNwb2t1IEVUZ21luzZWVyaWw5nMQwwCgYDVQQLDANNVEKwHhCN
MTKkwNDEwMjEOMDISWhcNMjQwNDA4MjEOMDISWjBS8MRIWEAYDVQQDDAl1sb2NhbGhv
c3QxCzAJBgNVBAgMAK1BMQswCQYDVQQGEwWJVUzZEgMB4GCSqGSIb3DQEJARYRAGXZ
Y2xXpZW50QGJzcGsuaW8xHDAaBgNVBAOMER®J1c3Bva2UgRW5naw51ZXJpbmcxDDAK
BgNVBASMAO1USTCCASIWDQYJKoZIhvcNAQEBBQADgGEPADCCAQOCggEBAMmMaXQHb
s/wc1RpsQ60rzferN+q2ijazbQxD8oi+XaaNOP/gnE13JgQduvdq770mJI4bQLokq
sdOBexnIO7Njs18nkDDYpe8rNve5TjyUDCTbwgS7U1CluYenXmNQbaYNDOmCdHww
UjV4KKREg6DGAX220q7+VHPTeeFgyw4kQgWRSTDENWY3KUXJ1b/VKR61Q+a0Jytk
vj8kvzQtWupPbvwoJeOna/ISNAOhL74w20DWWoDKON1tXsEtfIN1jVoi5ngsmZQc
jTfjt6LOOT7010X3Cwu2xWx8KZ3n/20CURGKEJHqQUGTeDtuQNt6Jz79v/0Tr8pulWw
aD+uyk6NbtGjoQsCAWEAAaOBiTCBhjAJBgNVHRMEAjAAMASGA1UdDWQEAWIF4DBS
BgNVHREEZTBjgglsb2NhbGhvc3SCD3Rsc2NsawWVudC5sb2NhbIcEwKgBBIERAGXZ
Y2xpZW50QGJzcGsuaW+GF2hOdHAGLY90bHNjbG11bnQubG9jYWwvhhNzc2g6dGxz
Y2XpZW50LmxVvY2FsMAOGCSqGSIb3DQEBCWUAA4IBAQCKKVB8W1LrT4Z5NazauryYtl
TF+2v0tvZBQ7qzJQjl0gAcvxry/d2zyhiRCRS/v318YCJIBEV4Iq2W3I3JIMMyAYEe
2573HzT7rH3xQP12yZyRQnetdiVM1Z1KaXwfrPDLs72hUeELtXxIcfZOMO85jLboX
hufHI6kgm3NCyCCTihe2ck5RmCc512KB0O/VAHFO1ihhFO00bylv6gbPHQCXAUGrED
907/p6BW/LVINCgYB1QtFSTGXxowqb9FRIMD2kvMSMOOEMXgwZ6k6spa+jkoIsI3k
1wLW9b+Tfn/daUbIDctxedneq2anQyU2znBgQl6KILDSF4ea0qlBut/KNZHHazJh

"client": {
"name": "My Client Display Name",
"uri": "https://example.net/client"
3
"resources": [
"dolphin-metadata"
]l
"interact": {
"redirect": true,
"callback": {
"method": "redirect",
"uri": "https://client.foo",
"nonce": "VJLO6A4CAYLBXHTROKRO"

3
"key": {

"proof": "mtls",

"cert": "MIIEHDCCAWSgAWIBAgIBATANBgkghkiGOwOBAQSFADCBMJE3
MDUGALUEAWwWUQmMVzcG9OrZSBFbmdpbmvVlcmluzyBSb290IENIcnRpZml1jYXR1IEF1d
GhvcmlOeTELMAKGALUECAWCTUEXCzAJBgNVBAYTALVTMRKkwFwY JKoZIhvcNAQKBFg
pjYUBic3BrLmlvMRwwGgYDVQQKDBNCZXNwb2t1IEVUZ21luZwVyaw5nMQwwCgYDVQQ
LDANNVEKWHhCcNMTKWNDEwWMjEOMDISWhcNMjQwNDA4MjEGMDI5SWjBSMRIWEAYDVQQD

DAlsb2NhbGhvc3QxCzAJBgNVBAgMAKk1BMQswCQYDVQQGEwWJIVUZEgMB4GCSqGSIb3D
QEJARYRAGXZzY2xpZW50QGJzcGsuaW8xHDAaBgNVBAOME®J1c3Bva2UgRW5naw51zX
JpbmcxDDAKBgNVBASMAO1USTCCASIWDQYJKoZIhvcNAQEBBQADggEPADCCAQOCQQE
BAMmaXQHbs/wc1RpsQ60rzf6rN+q2ijazbQxD8oi+XaaNOP/gnE13JqQduvdq770m
J4bQLokgsd@BexnIO7Njs18nkDDYpe8rNve5TjyUDCFbwgS7U1CluYenXmNQbaYND
OmCdHwwUjV4kKREg6DGAX220q7+VHPTeeFgyw4kQgWRSTDENWY3KUXJ1b/vKR61Q+
a0Jytkvj8kvzQtwWupPbvwoJe®na/ISNAOhL74w20DWWODKON1tXsSEtf1IN1jVoi5nq
smZQcjfjt6LO0OT7010X3Cwu2XWx8KZ3n/20CcURqKEJHqQUGTeDtuQNt6Jz79v/0Tr8
puLwWaD+uyk6NbtGjoQsCAWEAAaOBiTCBhjAJBgNVHRMEAjAAMASGA1UdDWQEAWIF4
DBsSBgNVHREEZTBjgglsb2NhbGhvc3SCD3Rsc2NsaWwVvVudC5sb2NhbIcEwKgBBIERAG
XZY2XpZW50QGJzcGsuaW+GF2hOdHAGLY9ObHNjbG11bnQubG9jYwWwvhhNzc2g6dGx
ZY2XpZW50LmxVvY2FsMAOGCSqGSIb3DQEBCWUAA4IBAQCKKV8W1LrT4Z5NazauryYtl
TF+2vOtvZBQ7qzJQjl0gAcvxry/d2zyhiRCRS/v318YCJIBEV4Iq2W3I3JIMMyAYEe2
573HzT7rH3xQP12yZyRQnetdiVM1Z1KaXwfrPDLs72hUeELtxIcfZOMO85]jLboXhu
fHI6kgm3NCyCCTihe2ck5RmCc512KB0O/vVAHFOihhFO00Oby1v6qbPHQCXAUGrEDH907
/p6BW/LVINCQYB1QtFSTGXxowqh9FRIMD2kvMSMOOEMXgwZ6k6spa+jkOIsI3k1lwLWw
9b+Tfn/daUbIDctxeJneq2anQyU2znBgQl6KILDSF4ea0qlBut/KNZHHazJh"

}

8.4. DPoP

This method is indicated by dpop in the proof field. The RC creates
a Demonstration of Proof-of-Possession signature header as described
in [I-D.ietf-oauth-dpop] section 2.

POST /transaction HTTP/1.1

Host: server.example.com

Content-Type: application/json

DPoOP: eyJOeXAi0iJkcG9wK2p3dCISImFsZyI6I1JTMjuU2IiwiandrIjp7Imt0eSI6I1
JTQSIsImUiOiJBUUFCIiwia2lkIjoieH16LWNsaWVudCISImFsZyI6I1JTMjU2Iiwibi
I6Inp3Q1RTM2J4LWdsYmIIcmhlwWXBZcFJXaVk5SS1uRWFNUNBablJySWpDczZiX2VteV
RrQmtEREVQqU31zaTM4TOM3M2hgMS1XZ3hjUGRLTkdaeULlvSDNRWmVuUMU1LeX1oUXBMSk
CXLWOMTkxXbTdwWFhOZF16U2RDOU8zLWOpeXk4eWtPNF1VeU5aclJSZ1BjawhkUUNiT1
9PQzhRdWdtZz1yZO5ETINXCcHBkYU51YXMxb3Y5UHhZdnhxcnoxLThIYTdna@QwMF1FQ1
hIYUIWNXVNYVVhZEhxLU9fVO12WVhpY2c2STVNIMONFZOVTY1VkJI3dS1BbH1uVHhRZE
1BV1AzY114V1Z5NnAzLTd1VEpva3ZqwWVRGCWAEVKRa0GXVWGJYNX1DVG5SaG50Smd2Z j
NWakRfbWFSTmU4LXRPcUS1T1NEbEhUeTZNRD10OCWRHQ20tUGOZzUSJI9fQ.eyJodHRwWX21
1dGhvzZCI6I1BPU1QiLCJodHRWX3VyaSI6ImhOdHAGXCOcL2hvc3QuZzG9ja2VyLmludGY
ybmFs0jk4MzRcL2FwaVwvYXNCcL3RyYW5zYWNOawouIiwiaWFOIjoxNTcyNjQyNjEzLCJ
gdGki0iJIam9IcmpnbTJ5QjR4N2pBNX15RyJ9.auhftvfw2Now3M7durkopReTvONngl
fOzbWjALKNSLLOQIwDgTG39XUyNvwQ230BIwe6IuvTQ2UBBPK1PATIJhDTKA8KHEATidN
B-LzUOzhDetLg30yLFzIpcEBMLCjbOTEsmXadvXuNKEzFRL-Q-QCgOAXSF1h57eAqZV8
SYF4CQK90UV6ETIWwxLDd3cVTx83MgyCNnvF1G_HDyimlXx-rxV4ePdlvgDeRubFb6QWwj
iKEO7Vvj1APv32dsux679ZYiUpjmOwWEZprjlG0a07R984KLeK1XPjXgViEWEd1lirUmpVy
TOtyEYqGrTfm5uautELgM1s9sgSyE929w0Z59elg

"client": {
"name": "My Client Display Name",
"uri": "https://example.net/client"
}/
"resources": [
"dolphin-metadata"
1
"interact": {
"redirect": true,
"callback": {
"method": "redirect",
"uri": "https://client.foo",
"nonce": "VJLOG6A4CAYLBXHTROKRO"

}
}I
"key": {
"proof": "dpop",
"jwk": {
"kty": "RSA",
"e": "AQAB",

"kid": "xyz-1",

"alg": "RS256",

"n": "kOB5rR4JvOGMeLaY6_It_r30Rwdf8ci_JtffXyaSx8xYJ
CCNaOKNJn_0z0YhdHbXTeWO5A0yspDWJIbNSw_7bdwWDXxgpD-y6jnD1u9YhBOCWObNPFVPkTM
8LC7SAXGRKx2k8Me2r_GssY1lyRpqvpBlY5-ejCywKRBfctRcnhTTGNztbbDBUYyDSWmFMVCH
e5mXT4cLOBwrZC6S-uu-LAX06aKwQOPWYOGOs1K8WPmM1lyGdkaAluF_FpS6LS63WYPHi_Ap2
B7_8Wbw4ttzbMS_doJvuDagW8A1Ip3fXFAHtRACKw7rdI4_X1n66hJxFekpdfwdiPQddQ6yY

1cK2U3obvUg7w"
}

[[Editor's note: this method requires duplication of the key in the
header and the request body, which is redundant and potentially
awkward. The signature also doesn't protect the body of the request.

11
8.5. HTTP Signing

This method is indicated by httpsig in the proof field. The RC
creates an HTTP Signature header as described in [I-D.ietf-httpbis-
message-signatures] section 4. The RC MUST calculate and present the

Digest header as defined in [RFEC3230].

POST /transaction HTTP/1.1

Host: server.example.com

Content-Type: application/json

Content-Length: 716

Signature: keyId="xyz-client", algorithm="rsa-sha256",
headers="(request-target) digest content-length",
signature="TkehmgK7GD/z4jGkmcHS67cjVRgm3zVQNINrrXw32wv7d
UOVNEIVI/dMhe®OW1HC93NP3mMs91i2WOW5r5B6qow6TNX/82/6W84p5jqF

YuYTTKkKYZ69GbfqgXkYV9gaT++d15kvZQjVk+KZT1dzpAzv8hdk9n087Xi
rj79e2mdAGE1LLCc3YVXwWNXxuCQh82sa5rXHqQtNT1077fiDvSVYecedOUEm
rWwErvgr7sijtbTohC4FJLUJONG/KJIUCIG/FTchw9rd6dHOBNY43+3Dz]j

CIthXpdH5u4VX3TBe6GJDO6Mkzc6VvB+670WzPwhYTplUiFFV6UZCsDEeu

Sa/UelyLEAMg=="1]}

Digest: SHA=0Zz203kg5SEFAhmrOXEBbc4jEfo=

{
"client": {
"name": "My Client Display Name",
"uri": "https://example.net/client"
3

"resources": [
"dolphin-metadata"
1,
"interact": {
"redirect": true,
"callback": {
"method": "push",
"uri": "https://client.foo",
"nonce": "VJLO6A4CAYLBXHTROKRO"

}
}I
"key": {
"proof": "httpsig",
"jwk": {
"kty": "RSA",
"e": "AQAB",

"kid": "xyz-1",

"alg": '"RS256",

"n": "kOB5rR4JvOGMeLaY6_It_r30Rwdf8ci_J
tffXyaSx8xYJCCNaOKNJIn_0zOYhdHbXTeW05A0yspDWJIbN5w_7bdwWDxgpD-
y6jnD1u9YhBOCWObNPFVpkTM8LC7SAXGRKXx2k8Me2r_GssY1yRpqvpBlY5-
ejCywKRBfctRcnhTTGNztbbDBUYDSWmMFMVCHe5mXT4cLOBwWrZC6S-uu-LAX
06aKwQOPwY0GOs1K8WPm1lyGdkaAluF_FpS6LS63WYPHi_Ap2B7_8Wbw4ttz
bMS_doJvuDagW8A1Ip3fXFAHtRACKwW7rdI4_X1n66hJIxFekpdfwdiPQddQ6
Y1cK2U3obvug7w"

}

When used to present an access token as in Section 7, the
Authorization header MUST be included in the signature.

8.6. OAuth PoP

This method is indicated by oauthpop in the proof field. The RC
creates an HTTP Authorization PoP header as described in [I-D.ietf-

oauth-signed-http-request] section 4, with the following additional
requirements:

*The at (access token) field MUST be [note: this is in contrast to
the requirements in the existing spec] unless this method is
being used in conjunction with an access token as in Section 7.

*The b (body hash) field MUST be calculated and supplied

POST /transaction HTTP/1.1

Host: server.example.com

Content-Type: application/json

PoP: eyJhbGci0iJSUzI1NiIsImp3ayI6eyJrdHkiOiJSUGEiLCJI1Ijoi
QVFBQiIsImtpZCI6Inh5ei1jbGl1bnQiLCIhbGci0iJSUZIINiIISIm41i0
1J6dONUXzNieC1nbGJiSHJI0oZV1wWXBSV21Z0UktbkVhTVIwWwm5Sck1qQ3
M2Y191bX1Ua®JrRERFalN5c2kz0OE9DNzNoajEtV2d4Y1BkSO5HWN1Jb0Og
zUVplbjFNS315aFFWTEpHMS1VvTESMcWO3cFhYdGRZe1NkQz1PMylvaXx1l5
OH1rTzRZVX10WnJSUmZQY210ZFFDYk9TfTOM4UXVnbWc5cmdORESTCcXBwZ
GFOZWFzMW920VB4WXZ4cXJ6MSO4SGE3Z2tEMDBZRUNYSGFCMDVITWFVYW
RIcS1PX1dJd1llYaWNnNkk1ajZTNDRWT1U2NVZCd3UtQwWx5b1R4UWRNQVd
QM2JZeFZWeTZwMy03ZVRKb2t2allURNFNRFZEWjhsVVhicjV5Q1RuUmhu
aEpndmYzVmpEX21hbE510C10T3FLNU9TRGXIVHk2Z0Q5TnFKRONtLVBtM
1EifX0.eyJwIjoiXC9hcGlcL2FzXC90cmFuc2FjdGlvbiIsImIiOiJxa0
1PYkdOeERhZVBTZnc3NnFjamtgSXNFRmxDb3g5bTUSNFMOMORKUOXBI iw
1dSI6Imhvc3QuzG9ja2VyLmludGVybmFsIiwiaCI6W1siQWNjZXBOIiwi
Q29udGVudC1UeXB1lIiwiQ29udGVudC1MZW5ndGgiXSwiVjQ20UhFWGX6S
k9kQTZmQU50MmpKdFhTd3pjSGRqMU100Gk5MOh3bEVHYYJdLCJItIjoiUE
9TVCISINRzIjoxNTcyNjQyNjEwWfQ.xyQ47qy8budfyK1T3RulSway8wp6
5r fAKNTQQU92AUUUO7I2iKoBL2tipBcNCC5zLH5]_WUyj1N150i_1LHym
fPdzihtt8_Jibjfjib5J15UlifakjQOrHX04tPaloPvcjwnyZHFcKn-So
Y3wSARN-gGwxpzbsPhiKQP70d2eGOCYQMA6rTLS1T7GgdQheelhVFW29i
27NcvgtkImiAG6Swrq4ulgCY3zRotR0OkJ13qo86t2DXk1V-eES4-2dCxf
CWFkzBAr60C4Qp7HnY_5UT6IWKRJIt3efwYprWwcYouOVjtRan3kEtWkawr
GOJ4bPVNTI5St9hJYVVh7FE8JirIg

"client": {
"name": "My Client Display Name",
"uri": "https://example.net/client"
3
"resources": [
"dolphin-metadata"
]l
"interact": {
"redirect": true,
"callback": {
"method": "redirect",
"uri": "https://client.foo",
"nonce": "VJLO6A4CAYLBXHTROKRO"

}
}I
"key": {
"proof": "oauthpop",
"Jwk": {
"kty": "RSA",
"e": "AQAB",

llkidll: IIXyZ_1|I,
"alg": "RS256",

"n": "kOB5rR4JvOGMeLaY6_It_r30Rwdf8ci_J
tffXyaSx8xYJCCNaOKNJINn_0zOYhdHbXTeW05A0yspDWJIbN5w_7bdwWDxgpD-
y6jnD1u9YhBOCWObNPFVpkTM8LC7SAXGRKXx2k8Me2r_GssY1yRpqvpBlY5-
ejCywKRBfctRcnhTTGNztbbDBUYDSWMFMVCHe5mXT4CcLOBWrZC6S-uu-LAX
06aKwQOPwYOGOs1K8WPm1yGdkaAluF_FpS6LS63WYPHi_Ap2B7_8Wbw4ttz
bMS_doJvuDagW8A1Ip3fXFAHtRACKW7rdI4_X1n66hJxFekpdfwWdiPQddQ6
Y1cK2U3obvug7w"

}

9.

Discovery

By design, the protocol minimizes the need for any pre-flight
discovery. To begin a request, the RC only needs to know the
endpoint of the AS and which keys it will use to sign the request.
Everything else can be negotiated dynamically in the course of the
protocol.

However, the AS can have limits on its allowed functionality. If the
RC wants to optimize its calls to the AS before making a request, it
MAY send an HTTP OPTIONS request to the transaction endpoint to
retrieve the server's discovery information. The AS MUST respond
with a JSON document containing the following information:

grant_request_endpoint REQUIRED. The full URL of the AS's grant
request endpoint. This MUST match the URL the RC used to make the
discovery request.

capabilities OPTIONAL. A list of the AS's capabilities. The values
of this result MAY be used by the RC in the capabilities section
(Section 2.7) of the request.

interaction_methods OPTIONAL. A list of the AS's interaction
methods. The values of this list correspond to the possible
fields in the interaction section (Section 2.5) of the request.

key_proofs OPTIONAL. A list of the AS's supported key proofing
mechanisms. The values of this list correspond to possible values
of the proof field of the key section (Section 2.3) of the
request.

sub_ids OPTIONAL. A list of the AS's supported identifiers. The
values of this list correspond to possible values of the subject
identifier section (Section 2.2) of the request.

assertions OPTIONAL. A list of the AS's supported assertion
formats. The values of this list correspond to possible values of
the subject assertion section (Section 2.2) of the request.

The information returned from this method is for optimization
purposes only. The AS MAY deny any request, or any portion of a
request, even if it lists a capability as supported. For example, a
given client can be registered with the mtls key proofing mechanism,
but the AS also returns other proofing methods, then the AS will
deny a request from that client using a different proofing
mechanism.

10.

10.

Resource Servers

In some deployments, a resource server will need to be able to call
the AS for a number of functions.

[[Editor's note: This section is for discussion of possible
advanced functionality. It seems like it should be a separate
document or set of documents, and it's not even close to being well-
baked. This also adds additional endpoints to the AS, as this is
separate from the token request process, and therefore would require
RS-facing discovery or configuration information to make it work.
Also-also, it does presume the RS can sign requests in the same way
that a client does, but hopefully we can be more consistent with
this than RFC7662 was able to do.]]

1. Introspecting a Token

When the RS receives an access token, it can call the introspection
endpoint at the AS to get token information. [[Editor's note: this
isn't super different from the token management URIs, but the RS has
no way to get that URI, and it's bound to different keys.]]

The RS signs the request with its own key and sends the access token
as the body of the request.

POST /introspect HTTP/1.1
Host: server.example.com
Content-type: application/json
Detached-JwS: ejye...

"access_token": "OS9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO",

The AS responds with a data structure describing the token's current
state and any information the RS would need to validate the token's
presentation, such as its intended proofing mechanism and key
material.

Content-type: application/json

{
"active": true,
"resources": [
"dolphin-metadata", "some other thing"
1
"resources": [
"dolphin-metadata", "some other thing"
1
"proof": "httpsig",
"key": {
"proof": "jwsd",
"Jwk": {
"kty": "RSA",
"e": "AQAB",
"kid": "xyz-1",
"alg": "RS256",
"n": "kOB5rR4JvOGMeL...."
}
}
}

10.2. Deriving a downstream token

If the RS needs to derive a token from one presented to it, it can
request one from the AS by making a token request as described in

Section 2 and presenting the existing access token's value in the

"existing_access_token" field.

The RS MUST identify itself with its own key and sign the request.

[[Editor's note: this is similar to but based on the access token
and not the grant. The fact that the keys presented are not the ones
used for the access token should indicate that it's a different
party and a different kind of request.]]

POST /tx HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JwS: ejyeo...

"resources": [
{

"actions": [
"read",
"write",
"dolphin"

]l

"locations": [
"https://server.example.net/",
"https://resource.local/other"

]I

"datatypes": [
"metadata",
"images"

iy

"dolphin-metadata"

1

"key": "7C7C4AZ9KHRS6X63AJA0",

"existing_access_token": "0S9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO"
The AS responds with a token as described in Section 3.

10.3. Registering a Resource Handle

If the RS needs to, it can post a set of resources as described in
Section 2.1.1 to the AS's resource registration endpoint.

The RS MUST identify itself with its own key and sign the request.

POST /resource HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JwS: ejyeo...

{
"resources": [
{
"actions": [
"I‘ead",
"write",
"dolphin"
1
"locations": [
"https://server.example.net/",
"https://resource.local/other"
1
"datatypes": [
"metadata",
"images"
]
+
"dolphin-metadata"
1
"key": "7C7C4AZ9KHRS6X63AJA0"
}

The AS responds with a handle appropriate to represent the resources
list that the RS presented.

Content-type: application/json

"resource_handle": "FWWIKYBQ6US56NL1"

The RS MAY make this handle available as part of a response to a
client (Section 10.4) or as documentation to developers.

[[Editor's note: It's not an exact match here because the
"resource_handle" returned now represents a collection of objects
instead of a single one. Perhaps we should let this return a list of
strings instead? Or use a different syntax than the resource
request? Also, this borrows heavily from UMA 2's "distributed
authorization" model and, like UMA, might be better suited to an
extension than the core protocol.]]

10.4. Requesting a Resources With Insufficient Access

If the client calls an RS without an access token, or with an
invalid access token, the RS MAY respond to the client with an
authentication header indicating that GNAP. The address of the GNAP
endpoint MUST be sent in the "as_uri" parameter. The RS MAY
additionally return a resource reference that the client MAY use in
its resource request (Section 2.1). This resource reference handle
SHOULD be sufficient for at least the action the client was
attempting to take at the RS. The RS MAY use the dynamic resource
handle request (Section 10.3) to register a new resource handle, or
use a handle that has been pre-configured to represent what the AS
is protecting. The content of this handle is opaque to the RS and
the client.

WWW-Authenticate: GNAP as_uri=http://server.example/transaction, resource

The client then makes a call to the "as_uri" as described in Section
2, with the value of "resource" as one of the members of a
"resources" array Section 2.1.1. The client MAY request additional
resources and other information, and MAY request multiple access
tokens.

[[Editor's note: this borrows heavily from UMA 2's "distributed
authorization" model and, like UMA, might be better suited to an
extension than the core protocol.]]

11. Acknowledgements

The author would like to thank the feedback of the following
individuals for their reviews, implementations, and contributions:
Aaron Parecki, Annabelle Backman, Dick Hardt, Dmitri Zagidulin,
Dmitry Barinov, Fabien Imbault, Francis Pouatcha, George Fletcher,
Haardik Haardik, Hamid Massaoud, Jacky Yuan, Joseph Heenan, Kathleen
Moriarty, Mike Jones, Mike Varley, Nat Sakimura, Takahiko Kawasaki,
Takahiro Tsuchiya.

In particular, the author would like to thank Aaron Parecki and Mike
Jones for insights into how to integrate identity and authentication
systems into the core protocol, and to Dick Hardt for the use cases,
diagrams, and insights provided in the XAuth proposal that have been
incorporated here. The author would like to especially thank Mike
Varley and the team at SecureKey for feedback and development of
early versions of the XYZ protocol that fed into this standards
work.

12. TIANA Considerations

[[TBD: There are a lot of items in the document that are expandable
through the use of value registries.]]

13.

14.

15.

Security Considerations
[[TBD: There are a lot of security considerations to add.]]
All requests have to be over TLS or equivalent as per [BCP195]. Many
handles act as shared secrets, though they can be combined with a
requirement to provide proof of a key as well.

Privacy Considerations

[[TBD: There are a lot of privacy considerations to add.]]

Handles are passed between parties and therefore should not contain
any private data.

When user information is passed to the client, the AS needs to make
sure that it has the permission to do so.

Normative References
[BCP195] "Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security
(DTLS)", 2015, <http://www.rfc-editor.org/info/bcp195>.

[I-D.ietf-httpbis-message-signatures]
Backman, A., Richer, J., and M. Sporny, "Signing HTTP
Messages", Work in Progress, Internet-Draft, draft-ietf-
httpbis-message-signatures-00, 10 April 2020, <http://
www.ietf.org/internet-drafts/draft-ietf-httpbis-message-
signatures-00.txt>.

[I-D.ietf-oauth-dpop] Fett, D., Campbell, B., Bradley, J.,
Lodderstedt, T., Jones, M., and D. Waite, "OAuth 2.0
Demonstration of Proof-of-Possession at the Application
Layer (DPoP)", Work in Progress, Internet-Draft, draft-
ietf-oauth-dpop-01, 1 May 2020, <http://www.ietf.org/
internet-drafts/draft-ietf-oauth-dpop-01.txt>.

[I-D.ietf-oauth-signed-http-request]
Richer, J., Bradley, J., and H. Tschofenig, "A Method for
Signing HTTP Requests for OAuth", Work in Progress,
Internet-Draft, draft-ietf-oauth-signed-http-request-03,
8 August 2016, <http://www.ietf.org/internet-drafts/
draft-ietf-oauth-signed-http-request-03.txt>.

[I-D.ietf-secevent-subject-identifiers]
Backman, A. and M. Scurtescu, "Subject Identifiers for
Security Event Tokens", Work in Progress, Internet-Draft,
draft-ietf-secevent-subject-identifiers-05, 24 July 2019,

http://www.rfc-editor.org/info/bcp195
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-message-signatures-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-message-signatures-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-message-signatures-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-dpop-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-dpop-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-signed-http-request-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-signed-http-request-03.txt

[0IDC]

[0IDC4IA]

[RFC2119]

[RFC3230]

[RFC6749]

[RFC6750]

[RFC7515]

[RFC7797]

[RFC8174]

[RFC8259]

[RFC8705]

<http://www.ietf.org/internet-drafts/draft-ietf-secevent-
subject-identifiers-05.txt>.

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,
and C. Mortimore, "OpenID Connect Core 1.0 incorporating
errata set 1", November 2014, <https://openiD.net/specs/
openiD-connect-core-1 0.html>.

Lodderstedt, T. and D. Fett, "OpenID Connect for Identity
Assurance 1.0", October 2019, <https://openid.net/specs/
openid-connect-4-identity-assurance-1 0.html>.

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",
RFC 3230, DOI 10.17487/RFC3230, January 2002, <https://
www.rfc-editor.org/info/rfc3230>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://
www.rfc-editor.org/info/rfc6749>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/
RFC6750, October 2012, <https://www.rfc-editor.org/info/
rfc6750>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JwWS)", RFC 7515, DOI 10.17487/RFC7515, May
2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M., "JSON Web Signature (JWS) Unencoded Payload
Option", RFC 7797, DOI 10.17487/RFC7797, February 2016,
<https://www.rfc-editor.org/info/rfc7797>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)
Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/
RFC8259, December 2017, <https://www.rfc-editor.org/info/
rfc8259>.

Campbell, B., Bradley, J., Sakimura, N., and T.
Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
and Certificate-Bound Access Tokens", RFC 8705, DOI

http://www.ietf.org/internet-drafts/draft-ietf-secevent-subject-identifiers-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-secevent-subject-identifiers-05.txt
https://openiD.net/specs/openiD-connect-core-1_0.html
https://openiD.net/specs/openiD-connect-core-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7797
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

10.17487/RFC8705, February 2020, <https://www.rfc-
editor.org/info/rfc8705>.

Appendix A. Document History
*-10
-Switched to xml2rfc v3 and markdown source.
-Updated based on Design Team feedback and reviews.
-Added acknowledgements list.
-Added sequence diagrams and explanations.
-Collapsed "short_redirect" into regular redirect request.
-Separated pass-by-reference into subsections.

-Collapsed "callback" and "pushback" into a single mode-
switched method.

-Add 0IDC Claims request object example.
*-09

-Major document refactoring based on request and response
capabilities.

-Changed from "claims" language to "subject identifier"
language.

-Added "pushback" interaction capability.
-Removed DIDCOMM interaction (better left to extensions).

-Excised "transaction" language in favor of "Grant" where
appropriate.

-Added token management URLS.

-Added separate continuation URL to use continuation handle
with.

-Added RS-focused functionality section.

-Added notion of extending a grant request based on a previous
grant.

-Simplified returned handle structures.

https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8705

*-08

-Added attached JWS signature method.

-Added discovery methods.
*-07

-Marked sections as being controlled by a future registry TBD.
*-06

-Added multiple resource requests and multiple access token
response.

*-05
-Added "claims" request and response for identity support.
-Added "capabilities" request for inline discovery support.
*-04
-Added crypto agility for callback return hash.
-Changed "interaction_handle" to "interaction_ref".
*-03
-Removed "state" in favor of "nonce".
-Created signed return parameter for front channel return.

-Changed "client" section to "display" section, as well as
associated handle.

-Changed "key" to "keys".
-Separated key proofing from key presentation.

-Separated interaction methods into booleans instead of "type"
field.

*-02
-Minor editorial cleanups.
*-01

-Made JSON multimodal for handle requests.

-Major updates to normative language and references throughout
document.

-Allowed interaction to split between how the user gets to the
AS and how the user gets back.

*-00
-Initial submission.
Appendix B. Component Data Models

While different implementations of this protocol will have different
realizations of all the components and artifacts enumerated here,
the nature of the protocol implies some common structures and
elements for certain components. This appendix seeks to enumerate
those common elements.

TBD: Client has keys, allowed requested resources, identifier(s),
allowed requested subjects, allowed

TBD: AS has '"grant endpoint", interaction endpoints, store of
trusted client keys, policies

TBD: Token has RO, user, client, resource list, RS list,
Appendix C. Example Protocol Flows

The protocol defined in this specification provides a number of
features that can be combined to solve many different kinds of
authentication scenarios. This section seeks to show examples of how
the protocol would be applied for different situations.

Some longer fields, particularly cryptographic information, have
been truncated for display purposes in these examples.

C.1. Redirect-Based User Interaction

In this scenario, the user is the RO and has access to a web
browser, and the client can take front-channel callbacks on the same
device as the user. This combination is analogous to the OAuth 2
Authorization Code grant type.

The client initiates the request to the AS. Here the client
identifies itself using its public key.

POST /tx HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JwS: ejyeo...

"resources": [
{

"actions": [
"read",
"write",
"dolphin"

]l

"locations": [
"https://server.example.net/",
"https://resource.local/other"

]I

"datatypes": [
"metadata",
"images"

1
"key": {
"proof": "jwsd",
"jwk": {
"kty": "RSA",
"e": "AQAB",
"kid": "xyz-1",
"alg": "RS256",

"n'": "kOB5rR4JvOGMeLaY6_It_r30Rwdf8ci_JtffXyaSx8xY...

iy

"interact": {
"redirect": true,
"callback": {
"method": "redirect",
"uri": "https://client.example.net/return/123455",
"nonce": "LKLTI25DK82FX4T4QFZC"

The AS processes the request and determines that the RO needs to
interact. The AS returns the following response giving the client
the information it needs to connect. The AS has also indicated to
the client that it can use the given key handle to identify itself

in future calls.

Content-type: application/json

{
"interact": {
"redirect": "https://server.example.com/interact/4CF492MLVMSWIMKM
"callback": "MBDOFXG4Y5CVJCX821LH"
}
"continue": {
"handle": "8OUPRY5NM330MUKMKSKU",
"uri": "https://server.example.com/continue"
3
"key_handle": "7C7C4AZ9KHRS6X63AJA0"
}

The client saves the response and redirects the user to the
interaction_url by sending the following HTTP message to the user's
browser.

HTTP 302 Found
Location: https://server.example.com/interact/4CF492MLVMSWOMKMXKHQ

The user's browser fetches the AS's interaction URL. The user logs
in, is identified as the RO for the resource being requested, and
approves the request. Since the AS has a callback parameter, the AS
generates the interaction reference, calculates the hash, and
redirects the user back to the client with these additional values
added as query parameters.

HTTP 302 Found

Location: https://client.example.net/return/123455
?hash=p28jsqOY2KK3WS__a42tavNC641dGTBroywswWxT4md_jZQ1R2HZT8BOWYHCLmMObM
&interact_ref=4IFWWIKYBC2PQ6U56NL1

The client receives this request from the user's browser. The client
ensures that this is the same user that was sent out by validating
session information and retrieves the stored pending request. The
client uses the values in this to validate the hash parameter. The
client then calls the continuation URL and presents the handle and
interaction reference in the request body. The client signs the
request as above.

POST /continue HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JwS: ejyeo...

"handle": "8OUPRY5NM330MUKMKSKU",
"interact_ref": "4IFWWIKYBC2PQ6U56NL1"

The AS retrieves the pending request based on the handle and issues
a bearer access token and returns this to the client.

Content-type: application/json

"access_token": {
"value": "OS9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO",
"proof": "bearer",
"manage": "https://server.example.com/token/PRY5NM330M4TB8N6BW70
"resources": [{
"actions": [
"read",
"write",
"dolphin"
]l
"locations": [
"https://server.example.net/",
"https://resource.local/other"
]l
"datatypes": [
"metadata",
"images"

1]
3
"continue": {
"handle": "8OUPRY5NM330MUKMKSKU",
"uri": "https://server.example.com/continue"

C.2. Secondary Device Interaction

In this scenario, the user does not have access to a web browser on
the device and must use a secondary device to interact with the AS.
The client can display a user code or a printable QR code. The
client prefers a short URL if one is available, with a maximum of

255 characters in length. The is not able to accept callbacks from
the AS and needs to poll for updates while waiting for the user to
authorize the request.

The client initiates the request to the AS.

POST /tx HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JWS: ejyo...

{
"resources": [
"dolphin-metadata", "some other thing"
1
"key": "7C7C4AZ9KHRS6X63AJA0",
"interact": {
"redirect": 255,
"user_code": true
}
}

The AS processes this and determines that the RO needs to interact.
The AS supports both long and short redirect URIs for interaction,
so it includes both. Since there is no "callback" the AS does not
include a nonce, but does include a "wait" parameter on the
continuation section because it expects the client to poll for
results.

Content-type: application/json

{
"interact": {
"redirect": "https://srv.ex/MXKHQ",
"user_code": {
"code": "A1BC-3DFF",
"url": "https://srv.ex/device"
}
}I
"continue": {
"handle": "8OUPRY5NM330MUKMKSKU",
"uri": "https://server.example.com/continue",
"wait": 60
}
}

The client saves the response and displays the user code visually on
its screen along with the static device URL. The client also
displays the short interaction URL as a QR code to be scanned.

If the user scans the code, they are taken to the interaction
endpoint and the AS looks up the current pending request based on
the incoming URL. If the user instead goes to the static page and
enters the code manually, the AS looks up the current pending
request based on the value of the user code. In both cases, the user
logs in, is identified as the RO for the resource being requested,
and approves the request. Once the request has been approved, the AS
displays to the user a message to return to their device.

Meanwhile, the client periodically polls the AS every 60 seconds at
the continuation URL.

POST /continue HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JwS: ejye...

"handle": "8OUPRY5NM330MUKMKSKU"

The AS retrieves the pending request based on the handle and
determines that it has not yet been authorized. The AS indicates to
the client that no access token has yet been issued but it can
continue to call after another 60 second timeout.

Content-type: application/json

{
"continue": {
"handle": "BI9QNW6VOW3XFJK4RO2D",
"uri": "https://server.example.com/continue",
"wait": 60
}
}

Note that the continuation handle has been rotated since it was used
by the client to make this call. The client polls the continuation
URL after a 60 second timeout using the new handle.

POST /continue HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JWS: ejyo...

"handle": "BI9QNW6VOW3XFJIK4R02D"

The AS retrieves the pending request based on the handle and
determines that it has been approved and it issues an access token.

Content-type: application/json

{
"access_token": {
"value": "OS9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO",
"proof": "bearer",
"manage": "https://server.example.com/token/PRY5NM330M4TB8N6BW70
"resources": [
"dolphin-metadata", "some other thing"
]
}
}

Appendix D. No User Involvement

In this scenario, the client is requesting access on its own behalf,
with no user to interact with.

The client creates a request to the AS, identifying itself with its
public key and using MTLS to make the request.

POST /tx HTTP/1.1
Host: server.example.com
Content-type: application/json

{
"resources": [
"backend service", "nightly-routine-3"
1
"key": {
"proof": "mtls",
"cert#S256": "bwcKOesc3ACC3DB2Y5_1ESsXE8091tc05089jdN-dg2"
}
}

The AS processes this and determines that the client can ask for the
requested resources and issues an access token.

Content-type: application/json

{
"access_token": {
"value": "OS9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO",
"proof": "bearer",
"manage": "https://server.example.com/token/PRY5NM330M4TB8N6BW70
"resources": [
"backend service", "nightly-routine-3"
]
}
}

D.1. Asynchronous Authorization

In this scenario, the client is requesting on behalf of a specific
RO, but has no way to interact with the user. The AS can
asynchronously reach out to the RO for approval in this scenario.

The client starts the request at the AS by requesting a set of
resources. The client also identifies a particular user.

POST /tx HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JwS: ejyeo...

"resources": [
{

"type": "photo-api",

"actions": [
"read",
"write",
"dolphin"

1

"locations": [
"https://server.example.net/",
"https://resource.local/other"

1

"datatypes": [
"metadata",
"images"

}
"read", "dolphin-metadata",
{
"type": "financial-transaction",
"actions": [
"withdraw"
1
"identifier": "account-14-32-32-3",
"currency": "USD"
+
"some other thing"
1
"key": "7C7C4AZ9KHRS6X63AJA0",
"user": {
"sub_ids": [{
"subject_type": "email",
"email": "user@example.com"

1]

The AS processes this and determines that the RO needs to interact.
The AS determines that it can reach the identified user
asynchronously and that the identified user does have the ability to
approve this request. The AS indicates to the client that it can
poll for continuation.

Content-type: application/json

{
"continue": {
"handle": "8OUPRY5NM330MUKMKSKU",
"uri": "https://server.example.com/continue",
"wait": 60
}
}

The AS reaches out to the RO and prompts them for consent. In this
example, the AS has an application that it can push notifications in
to for the specified account.

Meanwhile, the client periodically polls the AS every 60 seconds at
the continuation URL.

POST /continue HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JwS: ejye...

"handle": "8OUPRY5NM330MUKMKSKU"

The AS retrieves the pending request based on the handle and
determines that it has not yet been authorized. The AS indicates to
the client that no access token has yet been issued but it can
continue to call after another 60 second timeout.

Content-type: application/json

{
"continue": {
"handle": "BI9QNW6VOW3XFJK4RO2D",
"uri": "https://server.example.com/continue",
"wait": 60
}
}

Note that the continuation handle has been rotated since it was used
by the client to make this call. The client polls the continuation
URL after a 60 second timeout using the new handle.

POST /continue HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JwS: ejyeo...

"handle": "BI9QNW6VOW3XFJIK4R02D"

The AS retrieves the pending request based on the handle and
determines that it has been approved and it issues an access token.

Content-type: application/json

{
"access_token": {
"value": "OS9M2PMHKUR64TB8N6BW70ZB8CDFONP219RP1LTO",
"proof": "bearer",
"manage": "https://server.example.com/token/PRY5NM330M4TB8N6BW70
"resources": [
"dolphin-metadata", "some other thing"
]
}
}

D.2. Applying OAuth 2 Scopes and Client IDs

In this scenario, the client developer has a client_id and set of
scope values from their OAuth 2 [REC6749] system and wants to apply
them to the new protocol. Traditionally, the OAuth 2 client
developer would put their client_id and scope values as parameters
into a redirect request to the authorization endpoint.

HTTP 302 Found

Location: https://server.example.com/authorize
?client_id=7C7C4AZ9KHRS6X63AJA0
&scope=read%20write%20dolphin
&redirect_uri=https://client.example.net/return
&response_type=code
&state=123455

Now the developer wants to make an analogous request to the AS using
the new protocol. To do so, the client makes an HTTP POST and places
the OAuth 2 values in the appropriate places.

POST /tx HTTP/1.1

Host: server.example.com
Content-type: application/json
Detached-JwS: ejyeo...

{
"resources": [
"read", "write", "dolphin"
]l
"key": "7C7C4AZ9KHRS6X63AJA0",
"interact": {
"redirect": true,
"callback": {
"uri": "https://client.example.net/return?state=123455",
"nonce": "LKLTI25DK82FX4T4QFzC"
}
}
}

The client_id can be used to identify the client's keys that it uses
for authentication, the scopes represent resources that the client
is requesting, and the redirect_uri and state value are combined
into a callback URI that can be unique per request. The client
additionally creates a nonce to protect the callback, separate from
the state parameter that it has added to its return URL.

From here, the protocol continues as above.
Author's Address

Justin Richer (editor)
Bespoke Engineering

Email: ietf@justin.richer.org
URI: https://bspk.io/

mailto:ietf@justin.richer.org
https://bspk.io/

	XYZ: Grant Negotiation Access Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Protocol
	1.1. Roles
	1.2. Sequences
	1.2.1. Redirect-based Interaction
	1.2.2. User-code-based Interaction
	1.2.3. Asynchronous Authorization
	1.2.4. Software-only Authorization
	1.2.5. Refreshing an Expired Access Token

	2. Requesting Access
	2.1. Requesting Resources
	2.1.1. Requesting a Single Access Token
	2.1.2. Requesting Resources By Reference
	2.1.3. Requesting Multiple Access Tokens

	2.2. Requesting User Information
	2.3. Identifying the Client Key
	2.3.1. Authenticating the Client
	2.3.2. Identifying the Client Key By Reference

	2.4. Identifying the User
	2.4.1. Identifying the User by Reference

	2.5. Interacting with the User
	2.5.1. Redirect to an Arbitrary URL
	2.5.1.1. Redirect to an Arbitrary Shortened URL

	2.5.2. Open an Application-specific URL
	2.5.3. Receive a Callback After Interaction
	2.5.3.1. Receive an HTTP Callback Through the Browser
	2.5.3.2. Receive an HTTP Direct Callback

	2.5.4. Display a Short User Code
	2.5.5. Extending Interaction Capabilities

	2.6. Providing Displayable Client Information
	2.7. Declaring Client Capabilities
	2.8. Referencing an Existing Grant Request
	2.9. Requesting OpenID Connect Claims
	2.10. Extending The Grant Request

	3. Grant Response
	3.1. Request Continuation Handle
	3.2. Access Tokens
	3.2.1. Single Access Token
	3.2.2. Multiple Access Tokens

	3.3. Interaction Capabilities
	3.3.1. Redirection to an arbitrary URL
	3.3.2. Launch of an application URL
	3.3.3. Callback to a Client URL
	3.3.4. Display of a Short User Code
	3.3.5. Extending Interaction Capability Responses

	3.4. Returning User Information
	3.5. Returning Dynamically-bound Reference Handles
	3.6. Error response
	3.7. Extending the Response

	4. Interaction at the AS
	4.1. Interaction at a Redirected URI
	4.2. Interaction at the User Code URI
	4.3. Interaction through an Application URI
	4.4. Post-Interaction Completion
	4.4.1. Completing Interaction with a Callback URI
	4.4.2. Completing Interaction with a Pushback URI
	4.4.3. Calculating the interaction hash
	4.4.3.1. SHA3
	4.4.3.2. SHA2

	5. Continuing a Grant Request
	5.1. Continuing after a Finalized Interaction
	5.2. Continuing after Tokens are Issued

	6. Token Management
	6.1. Rotating the Access Token
	6.2. Revoking the Access Token

	7. Using Access Tokens
	8. Binding Keys
	8.1. Detached JWS
	8.2. Attached JWS
	8.3. Mutual TLS
	8.4. DPoP
	8.5. HTTP Signing
	8.6. OAuth PoP

	9. Discovery
	10. Resource Servers
	10.1. Introspecting a Token
	10.2. Deriving a downstream token
	10.3. Registering a Resource Handle
	10.4. Requesting a Resources With Insufficient Access

	11. Acknowledgements
	12. IANA Considerations
	13. Security Considerations
	14. Privacy Considerations
	15. Normative References
	Appendix A. Document History
	Appendix B. Component Data Models
	Appendix C. Example Protocol Flows
	C.1. Redirect-Based User Interaction
	C.2. Secondary Device Interaction
	Appendix D. No User Involvement
	D.1. Asynchronous Authorization
	D.2. Applying OAuth 2 Scopes and Client IDs
	Author's Address

