
Workgroup: GNAP

Internet-Draft:

draft-richer-transactional-authz-10

Published: 2 September 2020

Intended Status: Standards Track

Expires: 6 March 2021

Authors: J. Richer, Ed.

Bespoke Engineering

XYZ: Grant Negotiation Access Protocol

Abstract

This document defines a mechanism for delegating authorization to a

piece of software, and conveying that delegation to the software.

This delegation can include access to a set of APIs as well as

information passed directly to the software.

This document is input into the GNAP working group and should be

referred to as "XYZ" to differentiate it from other proposals.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 March 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Protocol

1.1. Roles

1.2. Sequences

1.2.1. Redirect-based Interaction

1.2.2. User-code-based Interaction

1.2.3. Asynchronous Authorization

1.2.4. Software-only Authorization

1.2.5. Refreshing an Expired Access Token

2. Requesting Access

2.1. Requesting Resources

2.1.1. Requesting a Single Access Token

2.1.2. Requesting Resources By Reference

2.1.3. Requesting Multiple Access Tokens

2.2. Requesting User Information

2.3. Identifying the Client Key

2.3.1. Authenticating the Client

2.3.2. Identifying the Client Key By Reference

2.4. Identifying the User

2.4.1. Identifying the User by Reference

2.5. Interacting with the User

2.5.1. Redirect to an Arbitrary URL

2.5.2. Open an Application-specific URL

2.5.3. Receive a Callback After Interaction

2.5.4. Display a Short User Code

2.5.5. Extending Interaction Capabilities

2.6. Providing Displayable Client Information

2.7. Declaring Client Capabilities

2.8. Referencing an Existing Grant Request

2.9. Requesting OpenID Connect Claims

2.10. Extending The Grant Request

3. Grant Response

3.1. Request Continuation Handle

3.2. Access Tokens

3.2.1. Single Access Token

3.2.2. Multiple Access Tokens

3.3. Interaction Capabilities

3.3.1. Redirection to an arbitrary URL

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

3.3.2. Launch of an application URL

3.3.3. Callback to a Client URL

3.3.4. Display of a Short User Code

3.3.5. Extending Interaction Capability Responses

3.4. Returning User Information

3.5. Returning Dynamically-bound Reference Handles

3.6. Error response

3.7. Extending the Response

4. Interaction at the AS

4.1. Interaction at a Redirected URI

4.2. Interaction at the User Code URI

4.3. Interaction through an Application URI

4.4. Post-Interaction Completion

4.4.1. Completing Interaction with a Callback URI

4.4.2. Completing Interaction with a Pushback URI

4.4.3. Calculating the interaction hash

5. Continuing a Grant Request

5.1. Continuing after a Finalized Interaction

5.2. Continuing after Tokens are Issued

6. Token Management

6.1. Rotating the Access Token

6.2. Revoking the Access Token

7. Using Access Tokens

8. Binding Keys

8.1. Detached JWS

8.2. Attached JWS

8.3. Mutual TLS

8.4. DPoP

8.5. HTTP Signing

8.6. OAuth PoP

9. Discovery

10. Resource Servers

10.1. Introspecting a Token

10.2. Deriving a downstream token

10.3. Registering a Resource Handle

10.4. Requesting a Resources With Insufficient Access

11. Acknowledgements

12. IANA Considerations

13. Security Considerations

14. Privacy Considerations

15. Normative References

Appendix A. Document History

Appendix B. Component Data Models

Appendix C. Example Protocol Flows

C.1. Redirect-Based User Interaction

C.2. Secondary Device Interaction

Appendix D. No User Involvement

D.1. Asynchronous Authorization

D.2. Applying OAuth 2 Scopes and Client IDs

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Author's Address

1. Protocol

This protocol allows a piece of software to request delegated

authorization to an API, protected by an authorization server

usually on behalf of a resource owner. The user operating the

software may interact with the authorization server to authenticate,

provide consent, and authorize the request.

The process by which the delegation happens is known as a grant, and

the GNAP protocol allows for the negotiation of the grant process

over time by multiple parties

1.1. Roles

The Authorization Server (AS) manages the requested delegations for

the RO. The AS issues tokens and directly delegated information to

the RC. The AS is defined by its grant endpoint, a single URL that

accepts a POST request with a JSON payload. The AS could also have

other endpoints, including interaction endpoints and user code

endpoints, and these are introduced to the RC as needed during the

delegation process.

The Resource Client (RC, aka "client") requests tokens from the AS

and uses tokens at the RS. The RC is identified by its key, and can

be known to the AS prior to the first request. The AS determines

which policies apply to a given client.

The Resource Server (RS) accepts tokens from the RC and validates

them (potentially at the AS). The RS serves delegated resources on

behalf of the RO.

The Resource Owner (RO) authorizes the request from the RC to the

RS, often interactively at the AS.

The Requesting Party (RQ, aka "user") operates the RC and may be the

same party as the RO in many circumstances.

1.2. Sequences

The GNAP protocol can be used in a variety of ways to allow the core

delegation process to take place. Many portions of this process are

conditionally present depending on the context of the deployments,

and not every step in this overview will happen in all

circumstances.

Note that a connection between roles in this process does not

necessarily indicate that a specific protocol message is sent across

the wire between the components fulfilling the roles in question, or

¶

¶

¶

¶

¶

¶

¶

¶

¶

that a particular step is required every time. In some

circumstances, the information needed at a given stage is

communicated out-of-band or is pre-configured between the components

or entities performing the roles. For example, one entity can fulfil

multiple roles, and so explicit communication between the roles is

not necessary within the protocol flow.

(A) The RQ interacts with the RC to indicate a need for resources

on behalf of the RO. This could identify the RS the RC needs to

call, the resources needed, or the RO that is needed to approve

the request. Note that the RO and RQ are often the same entity in

practice.

(1) The RC attempts to call the RS (Section 10.4) to determine

what access is needed. The RS informs the RC that access can be

granted through the AS.

(2) The RC creates requests access at the AS (Section 2).

¶

 +------------+ +------------+

 | Requesting | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | Resource |

 | Party (RQ) | | Owner (RO) |

 +------------+ +------------+

 + +

 + +

 (A) (B)

 + +

 + +

 +--------+ + +------------+

 |Resource|--------------(1)-------+----->| Resource |

 | Client | + | Server |

 | (RC) | +---------------+ | (RS) |

 | |--(2)->| Authorization | | |

 | |<-(3)--| Server | | |

 | | | (AS) | | |

 | |--(4)->| | | |

 | |<-(5)--| | | |

 | | | |<-(7)--| |

 | | +---------------+ | |

 | | | |

 | |--------------(6)------------->| |

 +--------+ +------------+

 Legend

 + + + indicates a possible interaction with a human

 ----- indicates an interaction between protocol roles

 ~ ~ ~ indicates a potential equivalence or communication between roles

¶

*

¶

*

¶

* ¶

(3) The AS processes the request and determines what is needed to

fulfill the request. The AS sends its response to the RC (Section

3).

(B) If interaction is required, the AS interacts with the RO

(Section 4) to gather authorization. The interactive component of

the AS can function using a variety of possible mechanisms

including web page redirects, applications, challenge/response

protocols, or other methods. The RO approves the request for the

RC being operated by the RQ. Note that the RO and RQ are often

the same entity in practice.

(4) The RC continues the grant at the AS (Section 5).

(5) If the AS determines that access can be granted, it returns a

response to the RC (Section 3) including an access token (Section

3.2) for calling the RS and any directly returned information

(Section 3.4) about the RO.

(6) The RC uses the access token (Section 7) to call the RS.

(7) The RS determines if the token is sufficient for the request

by examining the token, potentially calling the AS (Section

10.1).

The following sections and Appendix C contain specific guidance on

how to use the GNAP protocol in different situations and

deployments.

1.2.1. Redirect-based Interaction

In this example flow, the RC is a web application that wants access

to resources on behalf of the current user, who acts as both the

requesting party (RQ) and the resource owner (RO). Since the RC is

capable of directing the user to an arbitrary URL and receiving

responses from the user's browser, interaction here is handled

through front-channel redirects using the user's browser. The RC

uses a persistent session with the user to ensure the same user that

is starting the interaction is the user that returns from the

interaction.

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

¶

¶

The RC establishes a verifiable session to the user, in the

role of the RQ.

The RC requests access to the resource (Section 2). The RC

indicates that it can redirect to an arbitrary URL (Section

2.5.1) and receive a callback from the browser (Section 2.5.3).

The RC stores verification information for its callback in the

session created in (1).

The AS determines that interaction is needed and responds

(Section 3) with a URL to send the user to (Section 3.3.1) and

information needed to verify the callback (Section 3.3.3) in

(7). The AS also includes information the RC will need to

continue the request (Section 3.1) in (8). The AS associates

this continuation information with an ongoing request that will

be referenced in (4), (6), and (8).

The RC stores the verification and continuation information

from (3) in the session from (1). The RC then redirects the

user to the URL (Section 4.1) given by the AS in (3). The

user's browser loads the interaction redirect URL. The AS loads

the pending request based on the incoming URL generated in (3).

The user authenticates at the AS, taking on the role of the RO.

 +--------+ +--------+ +------+

 | RC | | AS | | RO |

 | | | | | + |

 | |< (1) + Start Session + + + + + + + + + + + + + + + +| RQ |

 | | | | |(User)|

 | |--(2)--- Request Access --------->| | | |

 | | | | | |

 | |<-(3)-- Interaction Needed -------| | | |

 | | | | | |

 | |+ (4) + + Redirect to Interact + + + + + + + + + + > | |

 | | | | | |

 | | | |<+ (5) +>| |

 | | | | AuthN | |

 | | | | | |

 | | | |<+ (6) +>| |

 | | | | AuthZ | |

 | | | | | |

 | |< (7) + Redirect to Client + + + + + + + + + + + + + | |

 | | | | +------+

 | |--(8)--- Continue Request ------->| |

 | | | |

 | |<-(9)----- Grant Access ----------| |

 | | | |

 +--------+ +--------+

¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

As the RO, the user authorizes the pending request from the RC.

When the AS is done interacting with the user, the AS redirects

the user back (Section 4.4.1) to the RC using the callback URL

provided in (2). The callback URL is augmented with an

interaction reference that the AS associates with the ongoing

request created in (2) and referenced in (4). The callback URL

is also augmented with a hash of the security information

provided in (2) and (3). The RC loads the verification

information from (2) and (3) from the session created in (1).

The RC calculates a hash (Section 4.4.3) based on this

information and continues only if the hash validates.

The RC loads the continuation information from (3) and sends

the interaction reference from (7) in a request to continue the

request (Section 5.1). The AS validates the interaction

reference ensuring that the reference is associated with the

request being continued.

If the request has been authorized, the AS grants access to the

information in the form of access tokens (Section 3.2) and

direct subject information (Section 3.4) to the RC.

An example set of protocol messages for this method can be found in

Appendix C.1.

1.2.2. User-code-based Interaction

In this example flow, the RC is a device that is capable of

presenting a short, human-readable code to the user and directing

the user to enter that code at a known URL. The RC is not capable of

presenting an arbitrary URL to the user, nor is it capable of

accepting incoming HTTP requests from the user's browser. The RC

polls the AS while it is waiting for the RO to authorize the

request. The user's interaction is assumed to occur on a secondary

device. In this example it is assumed that the user is both the RQ

and RO, though the user is not assumed to be interacting with the RC

through the same web browser used for interaction at the AS.

6. ¶

7.

¶

8.

¶

9.

¶

¶

¶

The RC requests access to the resource (Section 2). The RC

indicates that it can display a user code (Section 2.5.4).

The AS determines that interaction is needed and responds

(Section 3) with a user code to communicate to the user

(Section 3.3.4). This could optionally include a URL to direct

the user to, but this URL should be static and so could be

configured in the RC's documentation. The AS also includes

information the RC will need to continue the request (Section

3.1) in (8) and (10). The AS associates this continuation

information with an ongoing request that will be referenced in

(4), (6), (8), and (10).

The RC stores the continuation information from (2) for use in

(8) and (10). The RC then communicates the code to the user

(Section 4.1) given by the AS in (2).

The user's directs their browser to the user code URL. This URL

is stable and can be communicated via the client's

documentation, the AS documentation, or the client software

itself. The client does not provide a mechanism to launch the

user's browser at this URL. The user enters the code

 +--------+ +--------+ +------+

 | RC | | AS | | RO |

 | |--(1)--- Request Access --------->| | | + |

 | | | | | RQ |

 | |<-(2)-- Interaction Needed -------| | |(User)|

 | | | | | |

 | |+ (3) + + Display User Code + + + + + + + + + + + + >| |

 | | | | | |

 | | | |<+ (4) +>| |

 | | | | Code | |

 | |--(8)--- Continue Request (A) --->| | | |

 | | | |<+ (5) +>| |

 | |<-(9)-- Not Yet Granted (Wait) ---| | AuthN | |

 | | | | | |

 | | | |<+ (6) +>| |

 | | | | AuthZ | |

 | | | | | |

 | | | |<+ (7) +>| |

 | | | |Completed| |

 | | | | | |

 | |--(10)-- Continue Request (B) --->| | +------+

 | | | |

 | |<-(11)----- Grant Access ---------| |

 | | | |

 +--------+ +--------+

¶

1.

¶

2.

¶

3.

¶

4.

communicated in (3) to the AS. The AS validates this code

against a current request in process.

The user authenticates at the AS, taking on the role of the RO.

As the RO, the user authorizes the pending request from the RC.

When the AS is done interacting with the user, the AS indicates

to the user that the request has been completed.

Meanwhile, the RC loads the continuation information stored at

(3) and continues the request (Section 5). The AS determines

which ongoing access request is referenced here and checks its

state.

If the access request has not yet been authorized by the RO in

(6), the AS responds to the RC to continue the request (Section

3.1) at a future time through additional polling. This response

can include refreshed credentials as well as information

regarding how long the RC should wait before calling again. The

RC replaces its stored continuation information from the

previous response (2).

The RC continues to poll the AS (Section 5) with the new

continuation information in (9).

If the request has been authorized, the AS grants access to the

information in the form of access tokens (Section 3.2) and

direct subject information (Section 3.4) to the RC.

An example set of protocol messages for this method can be found in

Appendix C.2.

1.2.3. Asynchronous Authorization

In this example flow, the RQ and RO roles are fulfilled by different

parties, and the RO does not interact with the RC. The AS reaches

out asynchronously to the RO during the request process to gather

the RO's authorization for the RC's request. The RC polls the AS

while it is waiting for the RO to authorize the request.

¶

5. ¶

6. ¶

7.

¶

8.

¶

9.

¶

10.

¶

11.

¶

¶

¶

The RC requests access to the resource (Section 2). The RC does

not send any interactions capabilities to the server,

indicating that it does not expect to interact with the RO. The

RC can also signal which RO it requires authorization from, if

known, by using the user request section (Section 2.4).

The AS determines that interaction is needed, but the RC cannot

interact with the RO. The AS responds (Section 3) with the

information the RC will need to continue the request (Section

3.1) in (6) and (8), including a signal that the RC should wait

before checking the status of the request again. The AS

associates this continuation information with an ongoing

request that will be referenced in (3), (4), (5), (6), and (8).

The AS determines which RO to contact based on the request in

(1), through a combination of the user request (Section 2.4),

the resources request (Section 2.1), and other policy

information. The AS contacts the RO and authenticates them.

The RO authorizes the pending request from the RC.

When the AS is done interacting with the user, the AS indicates

to the user that the request has been completed.

Meanwhile, the RC loads the continuation information stored at

(3) and continues the request (Section 5). The AS determines

which ongoing access request is referenced here and checks its

state.

 +--------+ +--------+ +------+

 | RC | | AS | | RO |

 | |--(1)--- Request Access --------->| | | |

 | | | | | |

 | |<-(2)-- Not Yet Granted (Wait) ---| | | |

 | | | |<+ (3) +>| |

 | | | | AuthN | |

 | |--(6)--- Continue Request (A) --->| | | |

 | | | |<+ (4) +>| |

 | |<-(7)-- Not Yet Granted (Wait) ---| | AuthZ | |

 | | | | | |

 | | | |<+ (5) +>| |

 | | | |Completed| |

 | | | | | |

 | |--(8)--- Continue Request (B) --->| | +------+

 | | | |

 | |<-(9)------ Grant Access ---------| |

 | | | |

 +--------+ +--------+

¶

1.

¶

2.

¶

3.

¶

4. ¶

5.

¶

6.

¶

If the access request has not yet been authorized by the RO in

(6), the AS responds to the RC to continue the request (Section

3.1) at a future time through additional polling. This response

can include refreshed credentials as well as information

regarding how long the RC should wait before calling again. The

RC replaces its stored continuation information from the

previous response (2).

The RC continues to poll the AS (Section 5) with the new

continuation information in (7).

If the request has been authorized, the AS grants access to the

information in the form of access tokens (Section 3.2) and

direct subject information (Section 3.4) to the RC.

An example set of protocol messages for this method can be found in

Appendix D.1.

1.2.4. Software-only Authorization

In this example flow, the AS policy allows the RC to make a call on

its own behalf, without the need for a RO to be involved at runtime

to approve the decision. The Since there is no explicit RO, the RC

does not interact with an RO.

The RC requests access to the resource (Section 2). The RC does

not send any interactions capabilities to the server.

The AS determines that the request is been authorized, the AS

grants access to the information in the form of access tokens

(Section 3.2) and direct subject information (Section 3.4) to

the RC.

An example set of protocol messages for this method can be found in

Appendix D.

1.2.5. Refreshing an Expired Access Token

In this example flow, the RC receives an access token to access a

resource server through some valid GNAP process. The RC uses that

token at the RS for some time, but eventually the access token

7.

¶

8.

¶

9.

¶

¶

¶

 +--------+ +--------+

 | RC | | AS |

 | |--(1)--- Request Access --------->| |

 | | | |

 | |<-(2)---- Grant Access -----------| |

 | | | |

 +--------+ +--------+

¶

1.

¶

2.

¶

¶

expires. The RC then gets a new access token by rotating the expired

access token at the AS using the token's management URL.

The RC requests access to the resource (Section 2).

The AS grants access to the resource (Section 3) with an access

token (Section 3.2) usable at the RS. The access token response

includes a token management URI.

The RC presents the token (Section 7) to the RS. The RS

validates the token and returns an appropriate response for the

API.

When the access token is expired, the RS responds to the RC

with an error.

The RC calls the token management URI returned in (2) to rotate

the access token (Section 6.1). The RC presents the access

token as well as the appropriate key.

The AS validates the rotation request including the signature

and keys presented in (5) and returns a new access token

(Section 3.2.1). The response includes a new access token and

can also include updated token management information, which

the RC will store in place of the values returned in (2).

2. Requesting Access

To start a request, the client sends JSON [RFC8259] document with an

object as its root. Each member of the request object represents a

different aspect of the client's request.

¶

 +--------+ +--------+

 | RC | | AS |

 | |--(1)--- Request Access ----------------->| |

 | | | |

 | |<-(2)--- Grant Access --------------------| |

 | | | |

 | | +--------+ | |

 | |--(3)--- Access Resource --->| RS | | |

 | | | | | |

 | |<-(4)--- Error Response -----| | | |

 | | +--------+ | |

 | | | |

 | |--(5)--- Rotate Token ------------------->| |

 | | | |

 | |<-(6)--- Rotated Token -------------------| |

 | | | |

 +--------+ +--------+

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

¶

A non-normative example of a grant request is below:¶

{

 "resources": [

 {

 "type": "photo-api",

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 },

 "dolphin-metadata"

],

 "key": {

 "proof": "jwsd",

 "jwk": {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "xyz-1",

 "alg": "RS256",

 "n": "kOB5rR4Jv0GMeL...."

 }

 },

 "interact": {

 "redirect": true,

 "callback": {

 "method": "redirect",

 "uri": "https://client.example.net/return/123455",

 "nonce": "LKLTI25DK82FX4T4QFZC"

 }

 },

 "display": {

 "name": "My Client Display Name",

 "uri": "https://example.net/client"

 },

 "capabilities": ["ext1", "ext2"],

 "subject": {

 "sub_ids": ["iss-sub", "email"],

 "assertions": ["oidc_id_token"]

 }

}

¶

actions

locations

datatypes

identifier

The request MUST be sent as a JSON object in the body of the HTTP

POST request with Content-Type application/json, unless otherwise

specified by the signature mechanism.

2.1. Requesting Resources

If the client is requesting one or more access tokens for the

purpose of accessing an API, the client MUST include a resources

element. This element MUST be an array (for a single access token)

or an object (for multiple access tokens), as described in the

following sections.

2.1.1. Requesting a Single Access Token

When requesting a single access token, the client MUST send a

resources element containing a JSON array. The elements of the JSON

array represent rights of access that the client is requesting in

the access token. The requested access is the sum of all elements

within the array. These request elements MAY be sent by value as an

object or by reference as a string. A single resources array MAY

contain both object and string type resource requests.

The client declares what access it wants to associated with the

resulting access token using objects that describe multiple

dimensions of access. Each object contains a type property that

determines the type of API that the client is calling. The value of

this field is under the control of the AS and it MAY determine which

other fields allowed in the object. While it is expected that many

APIs will have its own properties, a set of common properties are

defined here. Specific API implementations SHOULD NOT re-use these

fields with different semantics or syntax.

[[Editor's note: this will align with OAuth 2 RAR, but the details

of how it aligns are TBD]].

The types of actions the RC will take at the RS as an array

of strings. The values of the strings are determined by the API

being protected.

The location of the RS as an array of strings. These

strings are typically URIs, and are determined by the API being

protected.

Kinds of data available to the RC at the RS's API as an

array of strings. The values of the strings are determined by the

API being protected.

A string identifier indicating a specific resource at

the RS. The value of the string is determined by the API being

protected.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The following non-normative example shows the use of both common and

API-specific elements.

2.1.2. Requesting Resources By Reference

Instead of sending an object describing the requested resource

(Section 2.1.1), a client MAY send a string known to the AS or RS

representing the access being requested. Each string SHOULD

correspond to a specific expanded object representation at the AS.

[[Editor's note: we could describe more about how the expansion

would work. For example, expand into an object where the value of

the "type" field is the value of the string. Or we could leave it

open and flexible, since it's really up to the AS/RS to interpret.

]]

¶

 "resources": [

 {

 "type": "photo-api",

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 },

 {

 "type": "financial-transaction",

 "actions": [

 "withdraw"

],

 "identifier": "account-14-32-32-3",

 "currency": "USD"

 }

]

¶

¶

¶

 "resources": [

 "read", "dolphin-metadata", "some other thing"

]

¶

This value is opaque to the client and MAY be any valid JSON string,

and therefore could include spaces, unicode characters, and properly

escaped string sequences.

This functionality is similar in practice to OAuth 2's scope

parameter [RFC6749], where a single string represents the set of

access rights requested by the client. As such, the reference string

could contain any valid OAuth 2 scope value as in Appendix D.2. Note

that the reference string here is not bound to the same character

restrictions as in OAuth 2's scope definition.

A single "resources" array MAY include both object-type and string-

type resource items.

2.1.3. Requesting Multiple Access Tokens

When requesting multiple access tokens, the resources element is a

JSON object. The names of the JSON object elements are token

identifiers chosen by the client, and MAY be any valid string. The

values of the JSON object are JSON arrays representing a single

¶

¶

¶

 "resources": [

 {

 "type": "photo-api",

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 },

 "read", "dolphin-metadata",

 {

 "type": "financial-transaction",

 "actions": [

 "withdraw"

],

 "identifier": "account-14-32-32-3",

 "currency": "USD"

 },

 "some other thing"

]

¶

access token request, as specified in requesting a single access

token (Section 2.1.1).

The following non-normative example shows a request for two separate

access tokens, token1 and token2.

2.2. Requesting User Information

If the client is requesting information about the current user from

the AS, it sends a subject element as a JSON object. This object MAY

¶

¶

 "resources": {

 "token1": [

 {

 "type": "photo-api",

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 },

 "dolphin-metadata"

],

 "token2": [

 {

 "type": "walrus-access",

 "actions": [

 "foo",

 "bar"

],

 "locations": [

 "https://resource.other/"

],

 "datatypes": [

 "data",

 "pictures",

 "walrus whiskers"

]

 }

]

 }

¶

sub_ids

assertions

proof

jwk

contain the following fields (or additional fields defined in a

registry TBD (Section 12)).

An array of subject identifier subject types requested for

the user, as defined by [I-D.ietf-secevent-subject-identifiers].

An array of requested assertion formats defined by a

registry TBD (Section 12).

If the AS knows the identifier for the current user and has

permission to do so [[editor's note: from the user's consent or

data policy or ...]], the AS MAY return the user's information in

its response (Section 3.4).

The "sub_ids" and "assertions" request fields are independent of

each other, and a returned assertion MAY omit a requested subject

identifier.

[[Editor's note: we're potentially conflating these two fields in

the same structure, so perhaps these should be split. There's also a

difference between user information and authentication event

information.]]

2.3. Identifying the Client Key

When sending an initial request to the AS, the client MUST identify

itself by including the key field in the request and by signing the

request as described in Section 8. This key MAY be sent by value or

by reference.

When sent by value, the key MUST be a public key in at least one

supported format and MUST contain a proof property that matches the

proofing mechanism used in the request. If the key is sent in

multiple formats, all the keys MUST be the same. The key presented

in this field MUST be the key used to sign the request.

The form of proof that the RC will use when presenting the

key to the AS. The valid values of this field and the processing

requirements for each are detailed in Section 8. This field is

REQUIRED.

Value of the public key as a JSON Web Key. MUST contain an

"alg" field which is used to validate the signature. MUST contain

the "kid" field to identify the key in the signed object.

¶

¶

¶

"subject": {

 "sub_ids": ["iss-sub", "email"],

 "assertions": ["oidc-id-token", "saml"]

}

¶

¶

¶

¶

¶

¶

¶

¶

cert

cert#256

PEM serialized value of the certificate used to sign the

request, with optional internal whitespace.

The certificate thumbprint calculated as per OAuth-MTLS

[RFC8705] in base64 URL encoding.

Additional key types are defined in a registry TBD (Section 12).

[[Editor's note: we will eventually want to have fetchable keys, I

would guess. Things like DID for key identification are going to be

important.]]

This non-normative example shows a single key presented in multiple

formats using a single proofing mechanism.

The RC MUST prove possession of any presented key by the proof

mechanism associated with the key in the request. Proof types are

defined in a registry TBD (Section 12) and an initial set are of

methods are described in Section 8. Continuation requests (Section

5) MUST use the same key and proof method as the initial request.

[[Editor's note: additional client attestation frameworks will

eventually need to be addressed here beyond the presentation of the

key. For example, the organization the client represents, or a

family of client software deployed in a cluster, or the posture of

the device the client is installed on. These all need to be

separable from the client's key and the key identifier.]]

2.3.1. Authenticating the Client

If the presented key is known to the AS and is associated with a

single instance of a client, the process of presenting a key and

proving possession of that key is usually sufficient to authenticate

the client to the AS. The AS MAY associate policies with the client

software identified by this key, such as limiting which resources

can be requested and which interaction methods can be used. For

example, only specific clients with certain known keys might be

¶

¶

¶

¶

¶

 "key": {

 "proof": "httpsig",

 "jwk": {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "xyz-1",

 "alg": "RS256",

 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."

 },

 "cert": "MIIEHDCCAwSgAwIBAgIBATANBgkqhkiG9w0BAQsFA..."

 }

¶

¶

¶

sub_ids

trusted with access tokens without the AS interacting directly with

the user as in Appendix D.

The presentation of a key is of vital importance to the protocol as

it allows the AS to strongly associate multiple requests from the

same RC with each other. This value exists whether the AS knows the

key ahead of time or not, and as such the AS MAY allow for clients

to make requests with unknown keys. This pattern allows for

ephemeral clients, such as single-page applications, and many-

instance clients, such as mobile applications, to generate their own

key pairs and use them within the protocol without having to go

through a separate registration step. The AS MAY limit which

capabilities are made available to clients with unknown keys. For

example, the AS could have a policy saying that only previously-

registered clients can request particular resources.

2.3.2. Identifying the Client Key By Reference

If the client has a reference for its key, the client MAY send that

reference handle as a string. The format of this string is opaque to

the client.

If the key is passed by reference, the proofing mechanism associated

with that key reference MUST also be used by the client, as

described in Section 8.

If the AS does not recognize the key reference handle, the request

MUST be rejected with an error.

If the client identifies its key by reference, the referenced key

MAY be a symmetric key known to the AS. The client MUST NOT send a

symmetric key by value, as doing so would be a security violation.

[[Editor's note: In many ways, passing a key identifier by

reference is analogous to OAuth 2's "client_id" parameter [RFC6749],

especially when coupled with a confidential client's authentication

process. See Appendix D.2 for an example.]]

2.4. Identifying the User

If the client knows the identity of the current user or one or more

identifiers for the user, the client MAY send that information to

the AS in the "user" field. The client MAY pass this information by

value or by reference.

¶

¶

¶

{

 "key": "7C7C4AZ9KHRS6X63AJAO"

}

¶

¶

¶

¶

¶

¶

assertions

An array of subject identifiers for the user, as defined by [I-

D.ietf-secevent-subject-identifiers].

An object containing assertions as values keyed on the

assertion type defined by a registry TBD (Section 12). [[

Editor's note: should this be an array of objects with internal

typing like the sub_ids? Do we expect more than one assertion per

user anyway?]]

Subject identifiers are hints to the AS in determining the current

user and MUST NOT be taken as declarative statements that a

particular user is present at the client. Assertions SHOULD be

validated by the AS. [[editor's note: assertion validation is

extremely specific to the kind of assertion in place]]

If the identified user does not match the user present at the AS

during an interaction step, the AS SHOULD reject the request.

[[Editor's note: we're potentially conflating identification

(sub_ids) and provable presence (assertions and a trusted reference

handle) in the same structure, so perhaps these should be split.]]

Additional user assertion formats are defined in a registry TBD

(Section 12). [[Editor's note: probably the same registry as

requesting formats to keep them aligned.]]

If the AS trusts the client to present user information, it MAY

decide, based on its policy, to skip interaction with the user, even

if the client provides one or more interaction capabilities.

2.4.1. Identifying the User by Reference

If the client has a reference for the current user at this AS, the

client MAY pass that reference as a string. The format of this

string is opaque to the client.

¶

¶

"user": {

 "sub_ids": [{

 "subject_type": "email",

 "email": "user@example.com"

 }],

 "assertions": {

 "oidc_id_token": "eyj..."

 }

}

¶

¶

¶

¶

¶

¶

¶

"user": "XUT2MFM1XBIKJKSDU8QM"¶

User reference identifiers are not intended to be human-readable

user identifiers or machine-readable verifiable assertions. For

either of these, use the regular user request instead.

If the AS does not recognize the user reference, it MUST return an

error.

2.5. Interacting with the User

If the client is capable of driving interaction with the user, the

client SHOULD declare the means that it can interact using the

"interact" field. This field is a JSON object with keys that declare

different interaction capabilities. A client MUST NOT declare an

interaction capability it does not support.

The client MAY send multiple capabilities in the same request. There

is no preference order specified in this request. An AS MAY respond

to any, all, or none of the presented interaction capabilities (Sect

ion 3.3) in a request, depending on its capabilities and what is

allowed to fulfill the request.

The following sections detail requests for interaction capabilities.

Additional interaction capabilities are defined in a registry TBD

(Section 12).

[[Editor's note: there need to be more examples (Appendix C) that

knit together the interaction capabilities into common flows, like

an authz-code equivalent. But it's important for the protocol design

that these are separate pieces to allow such knitting to take place.

]]

If the RC does not provide a suitable interaction mechanism, the AS

cannot contact the RO asynchronously, and the AS determines that

interaction is required, then the AS SHOULD return an error since

the RC will be unable to complete the request without authorization.

2.5.1. Redirect to an Arbitrary URL

If the client is capable of directing the user to a URL defined by

the AS at runtime, the client indicates this by sending the

¶

¶

¶

¶

¶

¶

 "interact": {

 "redirect": true,

 "user_code": true,

 "callback": {

 "method": "redirect",

 "uri": "https://client.example.net/return/123455",

 "nonce": "LKLTI25DK82FX4T4QFZC"

 }

 }

¶

¶

"redirect" field with the boolean value "true". The means by which

the client will activate this URL is out of scope of this

specification, but common methods include an HTTP redirect,

launching a browser on the user's device, providing a scannable

image encoding, and printing out a URL to an interactive console.

If this interaction capability is supported for this client and

request, the AS returns a redirect interaction response Section

3.3.1.

2.5.1.1. Redirect to an Arbitrary Shortened URL

If the client would prefer to redirect to a shortened URL defined by

the AS at runtime, the client indicates this by sending the

"redirect" field with an integer indicating the maximum character

length of the returned URL. The AS MAY use this value to decide

whether to return a shortened form of the response URL. If the AS

cannot shorten its response URL enough to fit in the requested size,

the AS SHOULD return an error. [[Editor's note: Or maybe just

ignore this part of the interaction request?]]

The means by which the client will activate this URL is out of scope

of this specification, but common methods include an HTTP redirect,

launching a browser on the user's device, providing a scannable

image encoding, and printing out a URL to an interactive console for

the user to copy and paste into a browser.

If this interaction capability is supported for this client and

request, the AS returns a redirect interaction response with short

URL Section 3.3.1.

2.5.2. Open an Application-specific URL

If the client can open a URL associated with an application on the

user's device, the client indicates this by sending the "app" field

with boolean value "true". The means by which the client determines

the application to open with this URL are out of scope of this

specification.

¶

"interact": {

 "redirect": true

}

¶

¶

¶

¶

"interact": {

 "redirect": 255

}

¶

¶

¶

"interact": {

 "app": true

}

¶

uri

nonce

method

hash_method

If this interaction capability is supported for this client and

request, the AS returns an app interaction response with an app URL

payload Section 3.3.2.

[[Editor's note: this is similar to the "redirect" above today as

most apps use captured URLs, but there seems to be a desire for

splitting the web-based interaction and app-based interaction into

different URIs. There's also the possibility of wanting more in the

payload than can be reasonably put into the URL, or at least having

separate payloads.]]

2.5.3. Receive a Callback After Interaction

If the client is capable of receiving a message from the AS

indicating that the user has completed their interaction, the client

indicates this by sending the "callback" field. The value of this

field is an object containing the following members.

REQUIRED. Indicates the URI to send the RO to after

interaction. This URI MAY be unique per request and MUST be

hosted by or accessible by the RC. This URI MUST NOT contain any

fragment component. This URI MUST be protected by HTTPS, be

hosted on a server local to the user's browser ("localhost"), or

use an application-specific URI scheme. If the RC needs any state

information to tie to the front channel interaction response, it

MUST encode that into the callback URI. The allowable URIs and

URI patterns MAY be restricted by the AS based on the RC's

presented key information. The callback URI SHOULD be presented

to the RO during the interaction phase before redirect.

REQUIRED. Unique value to be used in the calculation of the

"hash" query parameter sent to the callback URL, must be

sufficiently random to be unguessable by an attacker. MUST be

generated by the RC as a unique value for this request.

REQUIRED. The callback method that the AS will use to

contact the client. Valid values include redirect Section 2.5.3.1

and push Section 2.5.3.2, with other values defined by a registry

TBD (Section 12).

OPTIONAL. The hash calculation mechanism to be used for

the callback hash in Section 4.4.3. Can be one of sha3 or sha2.

If absent, the default value is sha3. [[Editor's note: This

should be expandable via a registry of cryptographic options, and

it would be good if we didn't define our own identifiers here.

See also note about cryptographic functions in Section 4.4.3.]]

¶

¶

¶

¶

¶

¶

¶

If this interaction capability is supported for this client and

request, the AS returns a nonce for use in validating the callback

response (Section 3.3.3). Requests to the callback URI MUST be

processed as described in Section 4.4, and the AS MUST require

presentation of an interaction callback reference as described in

Section 5.1.

Note that the means by which the user arrives at the AS is declared

separately from the user's return using this callback mechanism.

2.5.3.1. Receive an HTTP Callback Through the Browser

A callback method value of redirect indicates that the client will

expect a call from the user's browser using the HTTP method GET as

described in Section 4.4.1.

Requests to the callback URI MUST be processed as described in

Section 4.4.1.

Since the incoming request to the callback URL is from the user's

browser, the client MUST require the user to be present on the

connection.

2.5.3.2. Receive an HTTP Direct Callback

A callback method value of push indicates that the client will

expect a call from the AS directly using the HTTP method POST as

described in Section 4.4.2.

"interact": {

 "callback": {

 "method": "redirect",

 "uri": "https://client.example.net/return/123455",

 "nonce": "LKLTI25DK82FX4T4QFZC"

 }

}

¶

¶

¶

¶

"interact": {

 "callback": {

 "method": "redirect",

 "uri": "https://client.example.net/return/123455",

 "nonce": "LKLTI25DK82FX4T4QFZC"

 }

}

¶

¶

¶

¶

name

Requests to the pushback URI MUST be processed as described in

Section 4.4.2.

Since the incoming request to the pushback URL is from the AS and

not from the user's browser, the client MUST NOT require the user to

be present.

2.5.4. Display a Short User Code

If the client is capable of displaying or otherwise communicating a

short, human-entered code to the user, the client indicates this by

sending the "user_code" field with the boolean value "true". This

code is to be entered at a static URL that does not change at

runtime.

If this interaction capability is supported for this client and

request, the AS returns a user code and interaction URL as specified

in Section 4.2.

2.5.5. Extending Interaction Capabilities

Additional interaction capabilities are defined in a registry TBD

(Section 12).

[[Editor's note: we should have guidance in here about how to

define other interaction capabilities. There's already interest in

defining message-based protocols and challenge-response protocols,

for example.]]

2.6. Providing Displayable Client Information

If the client has additional information to display to the user

during any interactions at the AS, it MAY send that information in

the "display" field. This field is a JSON object that declares

information to present to the user during any interactive sequences.

Display name of the RC software

"interact": {

 "callback": {

 "method": "redirect",

 "uri": "https://client.example.net/return/123455",

 "nonce": "LKLTI25DK82FX4T4QFZC"

 }

}

¶

¶

¶

¶

"interact": {

 "user_code": true

}

¶

¶

¶

¶

¶

¶

uri

logo_uri

User-facing web page of the RC software

Display image to represent the RC software

Additional display fields are defined by a registry TBD (Section

12).

The AS SHOULD use these values during interaction with the user. The

AS MAY restrict display values to specific clients, as identified by

their keys in Section 2.3.

[[Editor's note: this might make sense to combine with the "key"

field, but some classes of more dynamic client vary those fields

separately from the key material. We should also consider things

like signed statements for client attestation, but that might fit

better into a different top-level field instead of this "display"

field.]]

2.7. Declaring Client Capabilities

If the client supports extension capabilities, it MAY present them

to the AS in the "capabilities" field. This field is an array of

strings representing specific extensions and capabilities, as

defined by a registry TBD (Section 12).

2.8. Referencing an Existing Grant Request

If the client has a reference handle from a previously granted

request, it MAY send that reference in the "reference" field. This

field is a single string.

The AS MUST dereference the grant associated with the reference and

process this request in the context of the referenced one.

[[Editor's note: this basic capability is to allow for both step-up

authorization and downscoped authorization, but by explicitly

creating a new request and not modifying an existing one. What's the

best guidance for how an AS should process this?]]

¶

¶

 "display": {

 "name": "My Client Display Name",

 "uri": "https://example.net/client"

 }

¶

¶

¶

¶

¶

"capabilities": ["ext1", "ext2"]¶

¶

"existing_grant": "80UPRY5NM33OMUKMKSKU"¶

¶

¶

2.9. Requesting OpenID Connect Claims

If the client and AS both support OpenID Connect's claims query

language as defined in [OIDC] Section 5.5, the client sends the

value of the OpenID Connect claims authorization request parameter

as a JSON object under the name oidc_claims.

The contents of the oidc_claims parameter have the same semantics as

they do in OpenID Connect, including all extensions such as

[OIDC4IA]. The AS MUST process the claims object in the same way

that it would with an OAuth 2 based authorization request.

Note that because this is an independent query object, the

oidc_claims value can augment or alter other portions of the

request, namely the resources and subject fields. This query

language uses the fields in the top level of the object to indicate

the target for any requested claims. For instance, the userinfo

target indicates that an access token would grant access to the

given claims at the UserInfo Endpoint, while the id_token target

indicates that the claims would be returned in an ID Token as

described in Section 3.4.

[[Editor's note: I'm not a fan of GNAP defining how OIDC would work

and would rather that work be done by the OIDF. However, I think it

is important for discussion to see this kind of thing in context

with the rest of the protocol, for now.]]

2.10. Extending The Grant Request

The request object MAY be extended by registering new items in a

registry TBD (Section 12). Extensions SHOULD be orthogonal to other

parameters. Extensions MUST document any aspects where the

[[Editor's note: we should have more guidance and examples on what

possible top-level extensions would look like. Things like an OIDC

"claims" request or a VC query, for example.]]

¶

 "oidc_claims": {

 "id_token" : {

 "email" : { "essential" : true },

 "email_verified" : { "essential" : true }

 },

 "userinfo" : {

 "name" : { "essential" : true },

 "picture" : null

 }

 }

¶

¶

¶

¶

¶

¶

handle

3. Grant Response

In response to a client's request, the AS responds with a JSON

object as the HTTP entity body.

In this example, the AS is returning an interaction URL (Section

3.3.1), a callback nonce (Section 3.3.3), and a continuation handle

(Section 3.1).

In this example, the AS is returning an access token (Section

3.2.1), a continuation handle (Section 3.1), and a subject

identifier (Section 3.4).

3.1. Request Continuation Handle

If the AS determines that the request can be continued with

additional requests, it responds with the "continue" field. This

field contains a JSON object with the following properties.

REQUIRED. A unique reference for the grant request.

¶

¶

{

 "interact": {

 "redirect": "https://server.example.com/interact/4CF492MLVMSW9MKMXKHQ",

 "callback": "MBDOFXG4Y5CVJCX821LH"

 },

 "continue": {

 "handle": "80UPRY5NM33OMUKMKSKU",

 "uri": "https://server.example.com/tx"

 }

}

¶

¶

{

 "access_token": {

 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

 "proof": "bearer",

 "manage": "https://server.example.com/token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L"

 },

 "continue": {

 "handle": "80UPRY5NM33OMUKMKSKU",

 "uri": "https://server.example.com/continue"

 },

 "subject": {

 "sub_ids": [{

 "subject_type": "email",

 "email": "user@example.com",

 }]

 }

}

¶

¶

¶

uri

wait

expires_in

value

REQUIRED. The URI at which the client can make continuation

requests. This URI MAY vary per client or ongoing request, or MAY

be stable at the AS.

RECOMMENDED. The amount of time in integer seconds the client

SHOULD wait after receiving this continuation handle and calling

the URI.

OPTIONAL. The number of seconds in which the handle will

expire. The client MUST NOT use the handle past this time. The

handle MAY be revoked at any point prior to its expiration.

The client can use the values of this field as described in Section

5.

This field SHOULD be returned when interaction is expected, to allow

the client to follow up after interaction has been concluded.

3.2. Access Tokens

If the AS has successfully granted one or more access tokens, it

responds with one of these fields. The AS MUST NOT respond with both

fields.

[[Editor's note: I really don't like the dichotomy between

"access_token" and "multiple_access_tokens" and their being mutually

exclusive, and I think we should design away from this pattern

toward something less error-prone.]]

3.2.1. Single Access Token

If the client has requested a single access token and the AS has

granted that access token, the AS responds with the "access_token"

field. The value of this field is an object with the following

properties.

REQUIRED. The value of the access token as a string. The

value is opaque to the client. The value SHOULD be limited to

ASCII characters to facilitate transmission over HTTP headers and

elements without additional encoding.

¶

¶

¶

{

 "continue": {

 "handle": "80UPRY5NM33OMUKMKSKU",

 "uri": "https://server.example.com/continue",

 "wait": 60

 }

}

¶

¶

¶

¶

¶

¶

¶

proof

manage

resources

expires_in

key

REQUIRED. The proofing presentation mechanism used for

presenting this access token to an RS. See the section on using

access tokens (Section 7) for details on possible values to this

field and their requirements.

OPTIONAL. The management URI for this access token. If

provided, the client MAY manage its access token as described in

managing an access token lifecycle (Section 6). This URI MUST NOT

include the access token value and MAY be different for each

access token.

OPTIONAL. A description of the rights associated with

this access token, as defined in requesting resource access

(Section 3.2.1). If included, this MUST reflect the rights

associated with the issued access token. These rights MAY vary

from what was requested by the client.

OPTIONAL. The number of seconds in which the access will

expire. The client MUST NOT use the access token past this time.

The access token MAY be revoked at any point prior to its

expiration.

The key that the token is bound to, REQUIRED if the token is

sender-constrained. The key MUST be in a format described in

Section 2.3. [[Editor's note: this isn't quite right, since the

request section includes a "proof" field that we already have

here. A possible solution would be to only have a "key" field as

defined above and its absence indicates a bearer token?]]

¶

¶

¶

¶

¶

3.2.2. Multiple Access Tokens

If the client has requested multiple access tokens and the AS has

granted at least one of them, the AS responds with the

"multiple_access_tokens" field. The value of this field is a JSON

object, and the property names correspond to the token identifiers

chosen by the client in the multiple access token request (Section

2.1.3). The values of the properties of this object are access

tokens as described in Section 3.2.1.

Each access token corresponds to the named resources arrays in the

client's request. The AS MAY not issue one or more of the requested

 "access_token": {

 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

 "proof": "bearer",

 "manage": "https://server.example.com/token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L",

 "resources": [

 {

 "type": "photo-api",

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 },

 "read", "dolphin-metadata"

]

 }

¶

¶

 "multiple_access_tokens": {

 "token1": {

 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

 "proof": "bearer",

 "manage": "https://server.example.com/token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L"

 },

 "token2": {

 "value": "UFGLO2FDAFG7VGZZPJ3IZEMN21EVU71FHCARP4J1",

 "proof": "bearer"

 }

 }

¶

access tokens. In such cases all of the issued access tokens are

included without the omitted token. The multiple access token

response MUST be used when multiple access tokens are requested,

even if only one access token is issued.

If the client requested a single access token (Section 2.1.1), the

AS MUST NOT respond with multiple access tokens.

Each access token MAY have different proofing mechanisms. If used,

each access token MUST have different management URIs.

3.3. Interaction Capabilities

If the client has indicated a capability to interact with the user

in its request (Section 2.5), and the AS has determined that

interaction is both supported and necessary, the AS responds to the

client with any of the following values in the interact field of the

response. There is no preference order for interaction capabilities

in the response, and it is up to the client to determine which ones

to use.

The AS MUST NOT respond with any interaction capability that the

client did not indicate in its request.

3.3.1. Redirection to an arbitrary URL

If the client indicates that it can redirect to an arbitrary URL

(Section 2.5.1) and the AS supports this capability for the client's

request, the AS responds with the "redirect" field, which is a

string containing the URL to direct the user to. This URL MUST be

unique for the request and MUST NOT contain any security-sensitive

information.

The client sends the user to the URL to interact with the AS. The

client MUST NOT alter the URL in any way. The means for the client

to send the user to this URL is out of scope of this specification,

but common methods include an HTTP redirect, launching the system

browser, displaying a scannable code, or printing out the URL in an

interactive console.

3.3.2. Launch of an application URL

If the client indicates that it can launch an application URL

(Section 2.5.2) and the AS supports this capability for the client's

request, the AS responds with the "app" field, which is a string

containing the URL to direct the user to. This URL MUST be unique

¶

¶

¶

¶

¶

¶

 "interact": {

 "redirect": "https://server.example.com/interact/4CF492MLVMSW9MKMXKHQ"

 }

¶

¶

code

for the request and MUST NOT contain any security-sensitive

information.

The client launches the URL as appropriate on its platform, and the

means for the client to launch this URL is out of scope of this

specification. The client MUST NOT alter the URL in any way. The

client MAY attempt to detect if an installed application will

service the URL being sent.

[[Editor's note: This will probably need to be expanded to an

object to account for other parameters needed in app2app use cases,

like addresses for distributed storage systems, server keys, and the

like. Details TBD as people build this out.]]

3.3.3. Callback to a Client URL

If the client indicates that it can receive a post-interaction

callback on a URL (Section 2.5.3) and the AS supports this

capability for the client's request, the AS responds with a

"callback" field containing a nonce that the client will use in

validating the callback as defined in Section 4.4.1.

When the user completes interaction at the AS, the AS MUST call the

client's callback URL using the method indicated in the callback

request (Section 2.5.3) as described in Section 4.4.1.

If the AS returns a "callback" nonce, the client MUST NOT continue a

grant request before it receives the associated interaction

reference on the callback URI.

3.3.4. Display of a Short User Code

If the client indicates that it can display a short user-typeable

code (Section 2.5.4) and the AS supports this capability for the

client's request, the AS responds with a "user_code" field. This

field is an object that contains the following members.

REQUIRED. A unique short code that the user can type into an

authorization server. This string MUST be case-insensitive, MUST

consist of only easily typeable characters (such as letters or

numbers). The time in which this code will be accepted SHOULD be

¶

 "interact": {

 "app": "https://app.example.com/launch?tx=4CF492MLV"

 }

¶

¶

¶

¶

 "interact": {

 "callback": "MBDOFXG4Y5CVJCX821LH"

 }

¶

¶

¶

¶

url

sub_ids

short lived, such as several minutes. It is RECOMMENDED that this

code be no more than eight characters in length.

RECOMMENDED. The interaction URL that the RC will direct the RO

to. This URL MUST be stable at the AS such that clients can be

statically configured with it.

The client MUST communicate the "code" to the user in some fashion,

such as displaying it on a screen or reading it out audibly. The

client SHOULD also communicate the URL if possible.

The code is a one-time-use credential that the AS uses to identify

the pending request from the RC. When the user enters this code into

the AS, the AS MUST determine the pending request that it was

associated with. If the AS does not recognize the entered code, the

AS MUST display an error to the user.

As this interaction capability is designed to facilitate interaction

via a secondary device, it is not expected that the client redirect

the user to the URL given here at runtime. Consequently, the URL

needs to be stable enough that a client could be statically

configured with it, perhaps referring the user to the URL via

documentation instead of through an interactive means. If the client

is capable of communicating an arbitrary URL to the user, such as

through a scannable code, the client can use the "redirect" (Section

2.5.1) capability for this purpose.

3.3.5. Extending Interaction Capability Responses

Extensions to this specification can define new interaction

capability responses in a registry TBD (Section 12).

3.4. Returning User Information

If information about the current user is requested and the AS grants

the client access to that data, the AS returns the approved

information in the "subject" response field. This field is an object

with the following OPTIONAL properties.

An array of subject identifiers for the user, as defined by

[I-D.ietf-secevent-subject-identifiers]. [[Editor's note:

privacy considerations are needed around returning identifiers.

]]

¶

¶

 "interact": {

 "user_code": {

 "code": "A1BC-3DFF",

 "url": "https://srv.ex/device"

 }

 }

¶

¶

¶

¶

¶

¶

¶

assertions

updated_at

An object containing assertions as values keyed on the

assertion type defined by a registry TBD (Section 12). [[

Editor's note: should this be an array of objects with internal

typing like the sub_ids? Do we expect more than one assertion per

user anyway?]]

Timestamp in integer seconds indicating when the

identified account was last updated. The client MAY use this

value to determine if it needs to request updated profile

information through an identity API.

Extensions to this specification MAY define additional response

properties in a registry TBD (Section 12).

3.5. Returning Dynamically-bound Reference Handles

Many parts of the client's request can be passed as either a value

or a reference. Some of these references, such as for the client's

keys or the resources, can sometimes be managed statically through

an admin console or developer portal provided by the AS or RS. If

desired, the AS MAY also generate and return some of these

references dynamically to the client in its response to facilitate

multiple interactions with the same software. The client SHOULD use

these references in future requests in lieu of sending the

associated data value. These handles are intended to be used on

future requests.

Dynamically generated handles are string values that MUST be

protected by the client as secrets. Handle values MUST be

unguessable and MUST NOT contain any sensitive information. Handle

values are opaque to the client. [[Editor's note: these used to be

objects to allow for expansion to future elements, like a management

URI or different presentation types or expiration, but those weren't

used in practice. Is that desirable anymore or is collapsing them

like this the right direction?]]

All dynamically generated handles are returned as fields in the root

JSON object of the response. This specification defines the

¶

¶

"subject": {

 "sub_ids": [{

 "subject_type": "email",

 "email": "user@example.com",

 }],

 "assertions": {

 "oidc_id_token": "eyj..."

 }

}

¶

¶

¶

¶

key_handle

user_handle

error

user_denied

too_fast

unknown_handle

following dynamic handle returns, additional handles can be defined

in a registry TBD (Section 12).

A value used to represent the information in the key

object that the client can use in a future request, as described

in Section 2.3.2.

A value used to represent the current user. The client

can use in a future request, as described in Section 2.4.1.

This non-normative example shows two handles along side an issued

access token.

3.6. Error response

If the AS determines that the request cannot be issued for any

reason, it responds to the RC with an error message.

The error code.

The error code is one of the following, with additional values

available in a registry TBD (Section 12):

The RO denied the request.

The RC did not respect the timeout in the wait response.

The request referenced an unknown handle.

[[Editor's note: I think we will need a more robust error

mechanism, and we need to be more clear about what error states are

allowed in what circumstances. Additionally, is the "error"

parameter exclusive with others in the return?]]

¶

¶

¶

¶

{

 "user_handle": "XUT2MFM1XBIKJKSDU8QM",

 "key_handle": "7C7C4AZ9KHRS6X63AJAO",

 "access_token": {

 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

 "proof": "bearer"

 }

}

¶

¶

¶

{

 "error": "user_denied"

}

¶

¶

¶

¶

¶

¶

3.7. Extending the Response

Extensions to this specification MAY define additional fields for

the grant response in a registry TBD (Section 12).

[[Editor's note: what guidance should we give to designers on this?

]]

4. Interaction at the AS

If the client indicates that it is capable of driving interaction

with the user in its request (Section 2.5), and the AS determines

that interaction is required and responds to one or more of the

client's interaction capabilities, the client SHOULD initiate one of

the returned interaction capabilities in the response (Section 3.3).

When the RO is interacting with the AS, the AS MAY perform whatever

actions it sees fit, including but not limited to:

authenticate the user as RO

gather consent and authorization from the RO for access to

requested resources or the

allow the RO to modify the parameters of the request (such as

disallowing some requested resources or specifying an account or

record)

[[Editor's note: there are some privacy and security considerations

here but for the most part we don't want to be overly prescriptive

about the UX, I think.]]

4.1. Interaction at a Redirected URI

When the user is directed to the AS through the "redirect" (Section

3.3.1) capability, the AS can interact with the user through their

web browser to authenticate the user as an RO and gather their

consent. Note that since the client does not add any parameters to

the URL, the AS MUST determine the grant request being referenced

from the URL value itself. If the URL cannot be associated with a

currently active request, the AS MUST display an error to the user

and MUST NOT attempt to redirect the user back to any client.

The interaction URL MUST be reachable from the RO's browser, though

note that the RO MAY open the URL on a separate device from the RC

itself. The interaction URL MUST be accessible from an HTTP GET

request, and MUST be protected by HTTPS or equivalent means.

¶

¶

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

4.2. Interaction at the User Code URI

When the user is directed to the AS through the "user_code" (Section

3.3.4) capability, the AS can interact with the user through their

web browser to collect the user code, authenticate the user as an

RO, and gather their consent. Note that since the URL itself is

static, the AS MUST determine the grant request being referenced

from the user code value itself. If the user code cannot be

associated with a currently active request, the AS MUST display an

error to the user and MUST NOT attempt to redirect the user back to

any client.

The user code URL MUST be reachable from the RO's browser, though

note that the RO MAY open the URL on a separate device from the RC

itself. The user code URL MUST be accessible from an HTTP GET

request, and MUST be protected by HTTPS or equivalent means.

4.3. Interaction through an Application URI

When the user successfully launches an application through the "app"

capability (Section 3.3.2), the AS interacts with the user through

that application to authenticate the user as the RO and gather their

consent. The details of this interaction are out of scope for this

specification.

[[Editor's note: Should we have anything to say about an app

sending information to a back-end to get details on the pending

request?]]

4.4. Post-Interaction Completion

Upon completing an interaction with the user, if a "callback"

(Section 3.3.3) capability is available with the current request,

the AS MUST follow the appropriate method at the end of interaction

to allow the client to continue. If neither capability is available,

the AS SHOULD instruct the user to return to their client software

upon completion. Note that these steps still take place in most

error cases, such as when the user has denied access. This allows

the client to potentially recover from the error state without

restarting.

[[Editor's note: there might be some other kind of push-based

notification or callback that the client can use, or an out-of-band

non-HTTP protocol. The AS would know about this if supported and

used, but the guidance here should be written in such a way as to

not be too restrictive in the next steps that it can take. Still,

it's important that the AS not expect or even allow clients to poll

if the client has stated it can take a callback of some form,

otherwise that sets up a potential session fixation attack vector

that the client is trying to and able to avoid.]]

¶

¶

¶

¶

¶

¶

hash

interact_ref

The AS MUST calculate a hash value as described in Section 4.4.3.

The client will use this value to validate the return call from the

AS.

The AS MUST create an interaction reference and associate that

reference with the current interaction and the underlying pending

request. This value MUST be sufficiently random so as not to be

guessable by an attacker.

The AS then MUST send the hash and interaction reference based on

the interaction finalization capability as described in the

following sections.

4.4.1. Completing Interaction with a Callback URI

When using the "callback" interaction capability (Section 3.3.3)

with the redirect method, the AS signals to the client that

interaction is complete and the request can be continued by

directing the user (in their browser) back to the client's callback

URL sent in the callback request (Section 2.5.3.1).

The AS secures this callback by adding the hash and interaction

reference as query parameters to the client's callback URL.

REQUIRED. The interaction hash value as described in Section

4.4.3.

REQUIRED. The interaction reference generated for this

interaction.

The means of directing the user to this URL are outside the scope of

this specification, but common options include redirecting the user

from a web page and launching the system browser with the target

URL.

When receiving the request, the client MUST parse the query

parameters to calculate and validate the hash value as described in

Section 4.4.3. If the hash validates, the client sends a

continuation request to the AS as described in Section 5.1 using the

interaction reference value received here.

4.4.2. Completing Interaction with a Pushback URI

When using the "callback" interaction capability (Section 3.3.3)

with the push method, the AS signals to the client that interaction

is complete and the request can be continued by sending an HTTP POST

¶

¶

¶

¶

¶

¶

¶

¶

https://client.example.net/return/123455

 ?hash=p28jsq0Y2KK3WS__a42tavNC64ldGTBroywsWxT4md_jZQ1R2HZT8BOWYHcLmObM7XHPAdJzTZMtKBsaraJ64A

 &interact_ref=4IFWWIKYBC2PQ6U56NL1

¶

¶

hash

interact_ref

request to the client's callback URL sent in the callback request

(Section 2.5.3.2).

The entity message body is a JSON object consisting of the following

two elements:

REQUIRED. The interaction hash value as described in Section

4.4.3.

REQUIRED. The interaction reference generated for this

interaction.

When receiving the request, the client MUST parse the JSON object

and validate the hash value as described in Section 4.4.3. If the

hash validates, the client sends a continuation request to the AS as

described in Section 5.1 using the interaction reference value

received here.

4.4.3. Calculating the interaction hash

The "hash" parameter in the request to the client's callback URL

ties the front channel response to an ongoing request by using

values known only to the parties involved. This prevents several

kinds of session fixation attacks against the client.

To calculate the "hash" value, the party doing the calculation first

takes the "nonce" value sent by the RC in the interaction section of

the initial request (Section 2.5.3), the AS's nonce value from the

callback response (Section 3.3.3), and the "interact_ref" sent to

the client's callback URL. These three values are concatenated to

each other in this order using a single newline character as a

separator between the fields. There is no padding or whitespace

before or after any of the lines, and no trailing newline character.

The party then hashes this string with the appropriate algorithm

based on the "hash_method" parameter of the "callback". If the

¶

¶

¶

¶

POST /push/554321 HTTP/1.1

Host: client.example.net

Content-Type: application/json

{

 "hash": "p28jsq0Y2KK3WS__a42tavNC64ldGTBroywsWxT4md_jZQ1R2HZT8BOWYHcLmObM7XHPAdJzTZMtKBsaraJ64A",

 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"

}

¶

¶

¶

¶

VJLO6A4CAYLBXHTR0KRO

MBDOFXG4Y5CVJCX821LH

4IFWWIKYBC2PQ6U56NL1

¶

"hash_method" value is not present in the RC's request, the

algorithm defaults to "sha3".

[[Editor's note: these hash algorithms should be pluggable, and

ideally we shouldn't redefine yet another crypto registry for this

purpose, but I'm not convinced an appropriate one already exists.

Furthermore, we should be following best practices here whether it's

a plain hash, a keyed MAC, an HMAC, or some other form of

cryptographic function. I'm not sure what the defaults and options

ought to be, but SHA512 and SHA3 were picked based on what was

available to early developers.]]

4.4.3.1. SHA3

The "sha3" hash method consists of hashing the input string with the

512-bit SHA3 algorithm. The byte array is then encoded using URL

Safe Base64 with no padding. The resulting string is the hash value.

4.4.3.2. SHA2

The "sha2" hash method consists of hashing the input string with the

512-bit SHA2 algorithm. The byte array is then encoded using URL

Safe Base64 with no padding. The resulting string is the hash value.

5. Continuing a Grant Request

If the client receives a continuation element in its response

Section 3.1, the client can make an HTTP POST call to the

continuation URI with a JSON object. The client MUST send the handle

reference from the continuation element in its request as a top-

level JSON parameter.

The client MAY include other parameters as described here or as

defined a registry TBD (Section 12).

[[Editor's note: We probably want to allow other parameters, like

modifying the resources requested or providing more user

information. We'll certainly have some kinds of specific challenge-

response protocols as there's already been interest in that kind of

thing, and the continuation request is the place where that would

fit.]]

¶

¶

¶

p28jsq0Y2KK3WS__a42tavNC64ldGTBroywsWxT4md_jZQ1R2HZT8BOWYHcLmObM7XHPAdJzTZMtKBsaraJ64A¶

¶

62SbcD3Xs7L40rjgALA-ymQujoh2LB2hPJyX9vlcr1H6ecChZ8BNKkG_HrOKP_Bpj84rh4mC9aE9x7HPBFcIHw¶

¶

{

 "handle": "tghji76ytghj9876tghjko987yh"

}

¶

¶

¶

If a "wait" parameter was included in the continuation response, the

client MUST NOT call the continuation URI prior to waiting the

number of seconds indicated. If no "wait" period is indicated, the

client SHOULD wait at least 5 seconds [[Editor's note: what's a

reasonable amount of time so as not to DOS the server??]].

The response from the AS is a JSON object and MAY contain any of the

elements described in Section 3, with some variations:

If the AS determines that the client can make a further continuation

request, the AS MUST include a new "continue" response element

(Section 3.1). The returned handle value MUST NOT be the same as

that used to make the continuation request, and the continuation URI

MAY remain the same. If the AS does not return a new "continue"

response element, the client MUST NOT make an additional

continuation request. If a client does so, the AS MUST return an

error.

If the AS determines that the client still needs to drive

interaction with the user, the AS MAY return appropriate responses

for any of the interaction mechanisms (Section 3.3) the client

indicated in its initial request (Section 2.5). Unique values such

as interaction URIs and nonces SHOULD be re-generated and not re-

used.

The client MUST present proof of the same key identified in the

initial request (Section 2.3) by signing the request as described in

Section 8. This requirement is in place whether or not the AS had

previously registered the client's key as described in Section

2.3.1.

5.1. Continuing after a Finalized Interaction

If the client has received an interaction reference from a

"callback" (Section 4.4.1) message, the client MUST include the

"interaction_ref" in its continuation request. The client MUST

validate the hash before making the continuation request, but note

that the client does not send the hash back to the AS in the

request.

5.2. Continuing after Tokens are Issued

A request MAY be continued even after access tokens have been

issued, so long as the handle is valid. The AS MAY respond to such a

continuation request with new access tokens as described in Section

¶

¶

¶

¶

¶

¶

{

 "handle": "tghji76ytghj9876tghjko987yh",

 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"

}

¶

3.2 based on the client's original request. The AS SHOULD revoke

existing access tokens. If the AS determines that the client can

make a further continuation request in the future, the AS MUST

include a new "continue" response element (Section 3.1). The

returned handle value MUST NOT be the same as that used to make the

continuation request, and the continuation URI MAY remain the same.

If the AS does not return a new "continue" response element, the

client MUST NOT make an additional continuation request. If a client

does so, the AS MUST return an error.

6. Token Management

If an access token response includes the "manage" parameter as

described in Section 3.2.1, the client MAY call this URL to manage

the access token with any of the actions defined in the following

sections. Other actions are undefined by this specification.

The access token being managed acts as the access element for its

own management API. The client MUST present proof of an appropriate

key along with the access token.

If the token is sender-constrained (i.e., not a bearer token), it

MUST be sent with the appropriate binding for the access token

(Section 7).

If the token is a bearer token, the client MUST present proof of the

same key identified in the initial request (Section 2.3) as

described in Section 8.

The AS MUST validate the proof and assure that it is associated with

either the token itself or the client the token was issued to, as

appropriate for the token's presentation type.

6.1. Rotating the Access Token

The client makes an HTTP POST to the token management URI, sending

the access token in the appropriate header and signing the request

with the appropriate key.

The AS validates that the token presented is associated with the

management URL, that the AS issued the token to the given client,

and that the presented key is appropriate to the token. The access

token MAY be expired, and in such cases the AS SHOULD honor the

rotation request to the token management URL. The AS MAY store

¶

¶

¶

¶

¶

¶

¶

POST /token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L HTTP/1.1

Host: server.example.com

Authorization: GNAP OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0

Detached-JWS: eyj0....

¶

different lifetimes for the use of the token in rotation vs. its use

at an RS.

If the token is validated and the key is appropriate for the

request, the AS will invalidate the current access token associated

with this URL, if possible, and return a new access token response

as described in Section 3.2.1. The value of the access token MUST

NOT be the same as the current value of the access token used to

access the management API. The response MAY include an updated

access token management URL as well, and if so, the client MUST use

this new URL to manage the new access token.

6.2. Revoking the Access Token

The client makes an HTTP DELETE request to the token management URI,

signing the request with its key.

¶

¶

{

 "access_token": {

 "value": "FP6A8H6HY37MH13CK76LBZ6Y1UADG6VEUPEER5H2",

 "proof": "bearer",

 "manage": "https://server.example.com/token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L",

 "resources": [

 {

 "type": "photo-api",

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 },

 "read", "dolphin-metadata"

]

 }

}

¶

¶

DELETE /token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L HTTP/1.1

Host: server.example.com

Authorization: GNAP OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0

Detached-JWS: eyj0....

¶

jwsd

jws

mtls

dpop

httpsig

If the token was issued to the client identified by the key, the AS

will invalidate the current access token associated with this URL,

if possible, and return an HTTP 204 response code.

7. Using Access Tokens

The method the RC uses to send an access token to the RS depends on

the value of the "proof" parameter in the access token response

(Section 3.2.1).

If this value is "bearer", the access token is sent using the HTTP

Header method defined in [RFC6750].

If the "proof" value is any other string, the access token is sent

using the HTTP authorization scheme "GNAP" along with a key proof as

described in Section 8 for the key bound to the access token. For

example, a "jwsd"-bound access token is sent as follows:

[[Editor's note: I don't actually like the idea of using only one

header type for differently-bound access tokens, but instead these

values should somehow reflect the key binding types. Maybe there can

be multiple fields after the "GNAP" keyword using structured

headers? Or a set of derived headers like GNAP-mtls? This might also

be better as a separate specification, like OAuth 2.]]

8. Binding Keys

Any keys presented by the RC to the AS or RS MUST be validated as

part of the request in which they are presented. The type of binding

used is indicated by the proof parameter of the key section in the

initial request Section 2.3. Values defined by this specification

are as follows:

A detached JWS signature header

Attached JWS payload

Mutual TLS certificate verification

OAuth Demonstration of Proof-of-Possession key proof header

HTTP Signing signature header

¶

204 No Content¶

¶

¶

Authorization: Bearer OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0¶

¶

Authorization: GNAP OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0

Detached-JWS: eyj0....

¶

¶

¶

¶

¶

¶

¶

¶

oauthpop
OAuth PoP key proof authentication header

Additional values can be defined by a registry TBD (Section 12).

The keys presented by the RC in the Section 2 MUST be proved in all

continuation requests Section 5 and token management requests

Section 6. The AS MUST validate all keys presented by the RC

(Section 2.3) or referenced in an ongoing transaction at each call.

8.1. Detached JWS

This method is indicated by jwsd in the proof field. To sign a

request, the RC takes the serialized body of the request and signs

it using detached JWS [RFC7797]. The header of the JWS MUST contain

the kid field of the key bound to this RC for this request. The JWS

header MUST contain an alg field appropriate for the key identified

by kid and MUST NOT be none.

The RC presents the signature in the Detached-JWS HTTP Header field.

[Editor's Note: this is a custom header field, do we need this?]

¶

¶

¶

¶

¶

When the AS receives the Detached-JWS header, it MUST parse its

contents as a detached JWS object. The HTTP Body is used as the

payload for purposes of validating the JWS, with no transformations.

POST /tx HTTP/1.1

Host: server.example.com

Content-Type: application/json

Detached-JWS: eyJiNjQiOmZhbHNlLCJhbGciOiJSUzI1NiIsImtpZCI6Inh5ei0xIn0.

 .Y287HMtaY0EegEjoTd_04a4GC6qV48GgVbGKOhHdJnDtD0VuUlVjLfwne8AuUY3U7e8

 9zUWwXLnAYK_BiS84M8EsrFvmv8yDLWzqveeIpcN5_ysveQnYt9Dqi32w6IOtAywkNUD

 ZeJEdc3z5s9Ei8qrYFN2fxcu28YS4e8e_cHTK57003WJu-wFn2TJUmAbHuqvUsyTb-nz

 YOKxuCKlqQItJF7E-cwSb_xULu-3f77BEU_vGbNYo5ZBa2B7UHO-kWNMSgbW2yeNNLbL

 C18Kv80GF22Y7SbZt0e2TwnR2Aa2zksuUbntQ5c7a1-gxtnXzuIKa34OekrnyqE1hmVW

 peQ

{

 "display": {

 "name": "My Client Display Name",

 "uri": "https://example.net/client"

 },

 "resources": [

 "dolphin-metadata"

],

 "interact": {

 "redirect": true,

 "callback": {

 "method": "redirect",

 "uri": "https://client.foo",

 "nonce": "VJLO6A4CAYLBXHTR0KRO"

 }

 },

 "key": {

 "proof": "jwsd",

 "jwk": {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "xyz-1",

 "alg": "RS256",

 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8

xYJCNaOKNJn_Oz0YhdHbXTeWO5AoyspDWJbN5w_7bdWDxgpD-y6jnD1u9YhBOCWObNPF

vpkTM8LC7SdXGRKx2k8Me2r_GssYlyRpqvpBlY5-ejCywKRBfctRcnhTTGNztbbDBUyD

SWmFMVCHe5mXT4cL0BwrZC6S-uu-LAx06aKwQOPwYOGOslK8WPm1yGdkaA1uF_FpS6LS

63WYPHi_Ap2B7_8Wbw4ttzbMS_doJvuDagW8A1Ip3fXFAHtRAcKw7rdI4_Xln66hJxFe

kpdfWdiPQddQ6Y1cK2U3obvUg7w"

 }

 }

}

¶

¶

[[Editor's note: this is a potentially fragile signature mechanism.

It doesn't protect the method or URL of the request in the

signature, but it's simple to calculate and useful for body-driven

requests, like the client to the AS. We might want to remove this in

favor of general-purpose HTTP signing.]]

8.2. Attached JWS

This method is indicated by jws in the proof field. To sign a

request, the RC takes the serialized body of the request JSON and

signs it using JWS [RFC7515]. The header of the JWS MUST contain the

kid field of the key bound to this RC during this request. The JWS

header MUST contain an alg field appropriate for the key identified

by kid and MUST NOT be none.

The RC presents the JWS as the body of the request along with a

content type of application/jose. The AS MUST extract the payload of

the JWS and treat it as the request body for further processing.

¶

¶

¶

[[Editor's note: A downside to this method is that it requires the

content type to be something other than application/json, and it

doesn't work against an RS without additional profiling since it

requires things to be sent in the body. Additionally it is

potentially fragile like a detached JWS since a multi-tier system

could parse the payload and pass the parsed payload downstream with

potential transformations. Furthermore, it doesn't protect the

method or URL of the request in the signature. We might want to

remove this in favor of general-purpose HTTP signing.]]

8.3. Mutual TLS

This method is indicated by mtls in the proof field. The RC presents

its client certificate during TLS negotiation with the server

(either AS or RS). The AS or RS takes the thumbprint of the client

certificate presented during mutual TLS negotiation and compares

POST /transaction HTTP/1.1

Host: server.example.com

Content-Type: application/jose

eyJiNjQiOmZhbHNlLCJhbGciOiJSUzI1NiIsImtpZCI6Inh5ei0xIn0.ewogICAgIm

NsaWVudCI6IHsKICAgICAgICAibmFtZSI6ICJNeSBDbGllbnQgRGlzcGxheSBOYW1l

IiwKICAgICAgICAidXJpIjogImh0dHBzOi8vZXhhbXBsZS5uZXQvY2xpZW50IgogIC

AgfSwKICAgICJyZXNvdXJjZXMiOiBbCiAgICAgICAgImRvbHBoaW4tbWV0YWRhdGEi

CiAgICBdLAogICAgImludGVyYWN0IjogewogICAgICAgICJyZWRpcmVjdCI6IHRydW

UsCiAgICAgICAgImNhbGxiYWNrIjogewogICAgCQkidXJpIjogImh0dHBzOi8vY2xp

ZW50LmZvbyIsCiAgICAJCSJub25jZSI6ICJWSkxPNkE0Q0FZTEJYSFRSMEtSTyIKIC

AgIAl9CiAgICB9LAogICAgImtleXMiOiB7CgkJInByb29mIjogImp3c2QiLAogICAg

ICAgICJqd2tzIjogewogICAgICAgICAgICAia2V5cyI6IFsKICAgICAgICAgICAgIC

AgIHsKICAgICAgICAgICAgICAgICAgICAia3R5IjogIlJTQSIsCiAgICAgICAgICAg

ICAgICAgICAgImUiOiAiQVFBQiIsCiAgICAgICAgICAgICAgICAgICAgImtpZCI6IC

J4eXotMSIsCiAgICAgICAgICAgICAgICAgICAgImFsZyI6ICJSUzI1NiIsCiAgICAg

ICAgICAgICAgICAgICAgIm4iOiAia09CNXJSNEp2MEdNZUxhWTZfSXRfcjNPUndkZj

hjaV9KdGZmWHlhU3g4eFlKQ0NOYU9LTkpuX096MFloZEhiWFRlV081QW95c3BEV0pi

TjV3XzdiZFdEeGdwRC15NmpuRDF1OVloQk9DV09iTlBGdnBrVE04TEM3U2RYR1JLeD

JrOE1lMnJfR3NzWWx5UnBxdnBCbFk1LWVqQ3l3S1JCZmN0UmNuaFRUR056dGJiREJV

eURTV21GTVZDSGU1bVhUNGNMMEJ3clpDNlMtdXUtTEF4MDZhS3dRT1B3WU9HT3NsSz

hXUG0xeUdka2FBMXVGX0ZwUzZMUzYzV1lQSGlfQXAyQjdfOFdidzR0dHpiTVNfZG9K

dnVEYWdXOEExSXAzZlhGQUh0UkFjS3c3cmRJNF9YbG42NmhKeEZla3BkZldkaVBRZG

RRNlkxY0syVTNvYnZVZzd3IgogICAgICAgICAgICAgICAgfQogICAgICAgICAgICBd

CiAgICAgICAgfQogICAgfQp9.Y287HMtaY0EegEjoTd_04a4GC6qV48GgVbGKOhHdJ

nDtD0VuUlVjLfwne8AuUY3U7e89zUWwXLnAYK_BiS84M8EsrFvmv8yDLWzqveeIpcN

5_ysveQnYt9Dqi32w6IOtAywkNUDZeJEdc3z5s9Ei8qrYFN2fxcu28YS4e8e_cHTK5

7003WJu-wFn2TJUmAbHuqvUsyTb-nzYOKxuCKlqQItJF7E-cwSb_xULu-3f77BEU_v

GbNYo5ZBa2B7UHO-kWNMSgbW2yeNNLbLC18Kv80GF22Y7SbZt0e2TwnR2Aa2zksuUb

ntQ5c7a1-gxtnXzuIKa34OekrnyqE1hmVWpeQ

¶

¶

that thumbprint to the thumbprint presented by the RC application as

described in [RFC8705] section 3.¶

POST /transaction HTTP/1.1

Host: server.example.com

Content-Type: application/json

SSL_CLIENT_CERT: MIIEHDCCAwSgAwIBAgIBATANBgkqhkiG9w0BAQsFADCBmjE3MDUGA1UEAwwuQmVz

 cG9rZSBFbmdpbmVlcmluZyBSb290IENlcnRpZmljYXRlIEF1dGhvcml0eTELMAkG

 A1UECAwCTUExCzAJBgNVBAYTAlVTMRkwFwYJKoZIhvcNAQkBFgpjYUBic3BrLmlv

 MRwwGgYDVQQKDBNCZXNwb2tlIEVuZ2luZWVyaW5nMQwwCgYDVQQLDANNVEkwHhcN

 MTkwNDEwMjE0MDI5WhcNMjQwNDA4MjE0MDI5WjB8MRIwEAYDVQQDDAlsb2NhbGhv

 c3QxCzAJBgNVBAgMAk1BMQswCQYDVQQGEwJVUzEgMB4GCSqGSIb3DQEJARYRdGxz

 Y2xpZW50QGJzcGsuaW8xHDAaBgNVBAoME0Jlc3Bva2UgRW5naW5lZXJpbmcxDDAK

 BgNVBAsMA01USTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMmaXQHb

 s/wc1RpsQ6Orzf6rN+q2ijaZbQxD8oi+XaaN0P/gnE13JqQduvdq77OmJ4bQLokq

 sd0BexnI07Njsl8nkDDYpe8rNve5TjyUDCfbwgS7U1CluYenXmNQbaYNDOmCdHww

 UjV4kKREg6DGAx22Oq7+VHPTeeFgyw4kQgWRSfDENWY3KUXJlb/vKR6lQ+aOJytk

 vj8kVZQtWupPbvwoJe0na/ISNAOhL74w20DWWoDKoNltXsEtflNljVoi5nqsmZQc

 jfjt6LO0T7O1OX3Cwu2xWx8KZ3n/2ocuRqKEJHqUGfeDtuQNt6Jz79v/OTr8puLW

 aD+uyk6NbtGjoQsCAwEAAaOBiTCBhjAJBgNVHRMEAjAAMAsGA1UdDwQEAwIF4DBs

 BgNVHREEZTBjgglsb2NhbGhvc3SCD3Rsc2NsaWVudC5sb2NhbIcEwKgBBIERdGxz

 Y2xpZW50QGJzcGsuaW+GF2h0dHA6Ly90bHNjbGllbnQubG9jYWwvhhNzc2g6dGxz

 Y2xpZW50LmxvY2FsMA0GCSqGSIb3DQEBCwUAA4IBAQCKKv8WlLrT4Z5NazaUrYtl

 TF+2v0tvZBQ7qzJQjlOqAcvxry/d2zyhiRCRS/v318YCJBEv4Iq2W3I3JMMyAYEe

 2573HzT7rH3xQP12yZyRQnetdiVM1Z1KaXwfrPDLs72hUeELtxIcfZ0M085jLboX

 hufHI6kqm3NCyCCTihe2ck5RmCc5l2KBO/vAHF0ihhFOOOby1v6qbPHQcxAU6rEb

 907/p6BW/LV1NCgYB1QtFSfGxowqb9FRIMD2kvMSmO0EMxgwZ6k6spa+jk0IsI3k

 lwLW9b+Tfn/daUbIDctxeJneq2anQyU2znBgQl6KILDSF4eaOqlBut/KNZHHazJh

{

 "client": {

 "name": "My Client Display Name",

 "uri": "https://example.net/client"

 },

 "resources": [

 "dolphin-metadata"

],

 "interact": {

 "redirect": true,

 "callback": {

 "method": "redirect",

 "uri": "https://client.foo",

 "nonce": "VJLO6A4CAYLBXHTR0KRO"

 }

 },

 "key": {

 "proof": "mtls",

 "cert": "MIIEHDCCAwSgAwIBAgIBATANBgkqhkiG9w0BAQsFADCBmjE3

MDUGA1UEAwwuQmVzcG9rZSBFbmdpbmVlcmluZyBSb290IENlcnRpZmljYXRlIEF1d

Ghvcml0eTELMAkGA1UECAwCTUExCzAJBgNVBAYTAlVTMRkwFwYJKoZIhvcNAQkBFg

pjYUBic3BrLmlvMRwwGgYDVQQKDBNCZXNwb2tlIEVuZ2luZWVyaW5nMQwwCgYDVQQ

LDANNVEkwHhcNMTkwNDEwMjE0MDI5WhcNMjQwNDA4MjE0MDI5WjB8MRIwEAYDVQQD

DAlsb2NhbGhvc3QxCzAJBgNVBAgMAk1BMQswCQYDVQQGEwJVUzEgMB4GCSqGSIb3D

QEJARYRdGxzY2xpZW50QGJzcGsuaW8xHDAaBgNVBAoME0Jlc3Bva2UgRW5naW5lZX

JpbmcxDDAKBgNVBAsMA01USTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggE

BAMmaXQHbs/wc1RpsQ6Orzf6rN+q2ijaZbQxD8oi+XaaN0P/gnE13JqQduvdq77Om

J4bQLokqsd0BexnI07Njsl8nkDDYpe8rNve5TjyUDCfbwgS7U1CluYenXmNQbaYND

OmCdHwwUjV4kKREg6DGAx22Oq7+VHPTeeFgyw4kQgWRSfDENWY3KUXJlb/vKR6lQ+

aOJytkvj8kVZQtWupPbvwoJe0na/ISNAOhL74w20DWWoDKoNltXsEtflNljVoi5nq

smZQcjfjt6LO0T7O1OX3Cwu2xWx8KZ3n/2ocuRqKEJHqUGfeDtuQNt6Jz79v/OTr8

puLWaD+uyk6NbtGjoQsCAwEAAaOBiTCBhjAJBgNVHRMEAjAAMAsGA1UdDwQEAwIF4

DBsBgNVHREEZTBjgglsb2NhbGhvc3SCD3Rsc2NsaWVudC5sb2NhbIcEwKgBBIERdG

xzY2xpZW50QGJzcGsuaW+GF2h0dHA6Ly90bHNjbGllbnQubG9jYWwvhhNzc2g6dGx

zY2xpZW50LmxvY2FsMA0GCSqGSIb3DQEBCwUAA4IBAQCKKv8WlLrT4Z5NazaUrYtl

TF+2v0tvZBQ7qzJQjlOqAcvxry/d2zyhiRCRS/v318YCJBEv4Iq2W3I3JMMyAYEe2

573HzT7rH3xQP12yZyRQnetdiVM1Z1KaXwfrPDLs72hUeELtxIcfZ0M085jLboXhu

fHI6kqm3NCyCCTihe2ck5RmCc5l2KBO/vAHF0ihhFOOOby1v6qbPHQcxAU6rEb907

/p6BW/LV1NCgYB1QtFSfGxowqb9FRIMD2kvMSmO0EMxgwZ6k6spa+jk0IsI3klwLW

9b+Tfn/daUbIDctxeJneq2anQyU2znBgQl6KILDSF4eaOqlBut/KNZHHazJh"

 }

}

¶

8.4. DPoP

This method is indicated by dpop in the proof field. The RC creates

a Demonstration of Proof-of-Possession signature header as described

in [I-D.ietf-oauth-dpop] section 2.¶

POST /transaction HTTP/1.1

Host: server.example.com

Content-Type: application/json

DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IlJTMjU2IiwiandrIjp7Imt0eSI6Il

JTQSIsImUiOiJBUUFCIiwia2lkIjoieHl6LWNsaWVudCIsImFsZyI6IlJTMjU2Iiwibi

I6Inp3Q1RfM2J4LWdsYmJIcmhlWXBZcFJXaVk5SS1uRWFNUnBablJySWpDczZiX2VteV

RrQmtEREVqU3lzaTM4T0M3M2hqMS1XZ3hjUGRLTkdaeUlvSDNRWmVuMU1LeXloUXBMSk

cxLW9MTkxxbTdwWFh0ZFl6U2RDOU8zLW9peXk4eWtPNFlVeU5aclJSZlBjaWhkUUNiT1

9PQzhRdWdtZzlyZ05ET1NxcHBkYU5lYXMxb3Y5UHhZdnhxcnoxLThIYTdna0QwMFlFQ1

hIYUIwNXVNYVVhZEhxLU9fV0l2WVhpY2c2STVqNlM0NFZOVTY1VkJ3dS1BbHluVHhRZE

1BV1AzYll4VlZ5NnAzLTdlVEpva3ZqWVRGcWdEVkRaOGxVWGJyNXlDVG5SaG5oSmd2Zj

NWakRfbWFsTmU4LXRPcUs1T1NEbEhUeTZnRDlOcWRHQ20tUG0zUSJ9fQ.eyJodHRwX21

ldGhvZCI6IlBPU1QiLCJodHRwX3VyaSI6Imh0dHA6XC9cL2hvc3QuZG9ja2VyLmludGV

ybmFsOjk4MzRcL2FwaVwvYXNcL3RyYW5zYWN0aW9uIiwiaWF0IjoxNTcyNjQyNjEzLCJ

qdGkiOiJIam9IcmpnbTJ5QjR4N2pBNXl5RyJ9.aUhftvfw2NoW3M7durkopReTvONng1

fOzbWjAlKNSLL0qIwDgfG39XUyNvwQ23OBIwe6IuvTQ2UBBPklPAfJhDTKd8KHEAfidN

B-LzUOzhDetLg30yLFzIpcEBMLCjb0TEsmXadvxuNkEzFRL-Q-QCg0AXSF1h57eAqZV8

SYF4CQK9OUV6fIWwxLDd3cVTx83MgyCNnvFlG_HDyim1Xx-rxV4ePd1vgDeRubFb6QWj

iKEO7vj1APv32dsux67gZYiUpjm0wEZprjlG0a07R984KLeK1XPjXgViEwEdlirUmpVy

T9tyEYqGrTfm5uautELgMls9sgSyE929woZ59elg

{

 "client": {

 "name": "My Client Display Name",

 "uri": "https://example.net/client"

 },

 "resources": [

 "dolphin-metadata"

],

 "interact": {

 "redirect": true,

 "callback": {

 "method": "redirect",

 "uri": "https://client.foo",

 "nonce": "VJLO6A4CAYLBXHTR0KRO"

 }

 },

 "key": {

 "proof": "dpop",

 "jwk": {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "xyz-1",

 "alg": "RS256",

 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xYJ

CCNaOKNJn_Oz0YhdHbXTeWO5AoyspDWJbN5w_7bdWDxgpD-y6jnD1u9YhBOCWObNPFvpkTM

8LC7SdXGRKx2k8Me2r_GssYlyRpqvpBlY5-ejCywKRBfctRcnhTTGNztbbDBUyDSWmFMVCH

e5mXT4cL0BwrZC6S-uu-LAx06aKwQOPwYOGOslK8WPm1yGdkaA1uF_FpS6LS63WYPHi_Ap2

B7_8Wbw4ttzbMS_doJvuDagW8A1Ip3fXFAHtRAcKw7rdI4_Xln66hJxFekpdfWdiPQddQ6Y

1cK2U3obvUg7w"

 }

 }

}

¶

[[Editor's note: this method requires duplication of the key in the

header and the request body, which is redundant and potentially

awkward. The signature also doesn't protect the body of the request.

]]

8.5. HTTP Signing

This method is indicated by httpsig in the proof field. The RC

creates an HTTP Signature header as described in [I-D.ietf-httpbis-

message-signatures] section 4. The RC MUST calculate and present the

Digest header as defined in [RFC3230].

¶

¶

POST /transaction HTTP/1.1

Host: server.example.com

Content-Type: application/json

Content-Length: 716

Signature: keyId="xyz-client", algorithm="rsa-sha256",

 headers="(request-target) digest content-length",

 signature="TkehmgK7GD/z4jGkmcHS67cjVRgm3zVQNlNrrXW32Wv7d

u0VNEIVI/dMhe0WlHC93NP3ms91i2WOW5r5B6qow6TNx/82/6W84p5jqF

YuYfTkKYZ69GbfqXkYV9gaT++dl5kvZQjVk+KZT1dzpAzv8hdk9nO87Xi

rj7qe2mdAGE1LLc3YvXwNxuCQh82sa5rXHqtNT1077fiDvSVYeced0UEm

rWwErVgr7sijtbTohC4FJLuJ0nG/KJUcIG/FTchW9rd6dHoBnY43+3Dzj

CIthXpdH5u4VX3TBe6GJDO6Mkzc6vB+67OWzPwhYTplUiFFV6UZCsDEeu

Sa/Ue1yLEAMg=="]}

Digest: SHA=oZz2O3kg5SEFAhmr0xEBbc4jEfo=

{

 "client": {

 "name": "My Client Display Name",

 "uri": "https://example.net/client"

 },

 "resources": [

 "dolphin-metadata"

],

 "interact": {

 "redirect": true,

 "callback": {

 "method": "push",

 "uri": "https://client.foo",

 "nonce": "VJLO6A4CAYLBXHTR0KRO"

 }

 },

 "key": {

 "proof": "httpsig",

 "jwk": {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "xyz-1",

 "alg": "RS256",

 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_J

tffXyaSx8xYJCCNaOKNJn_Oz0YhdHbXTeWO5AoyspDWJbN5w_7bdWDxgpD-

y6jnD1u9YhBOCWObNPFvpkTM8LC7SdXGRKx2k8Me2r_GssYlyRpqvpBlY5-

ejCywKRBfctRcnhTTGNztbbDBUyDSWmFMVCHe5mXT4cL0BwrZC6S-uu-LAx

06aKwQOPwYOGOslK8WPm1yGdkaA1uF_FpS6LS63WYPHi_Ap2B7_8Wbw4ttz

bMS_doJvuDagW8A1Ip3fXFAHtRAcKw7rdI4_Xln66hJxFekpdfWdiPQddQ6

Y1cK2U3obvUg7w"

 }

 }

}

¶

When used to present an access token as in Section 7, the

Authorization header MUST be included in the signature.

8.6. OAuth PoP

This method is indicated by oauthpop in the proof field. The RC

creates an HTTP Authorization PoP header as described in [I-D.ietf-

oauth-signed-http-request] section 4, with the following additional

requirements:

The at (access token) field MUST be [note: this is in contrast to

the requirements in the existing spec] unless this method is

being used in conjunction with an access token as in Section 7.

The b (body hash) field MUST be calculated and supplied

¶

¶

*

¶

* ¶

POST /transaction HTTP/1.1

Host: server.example.com

Content-Type: application/json

PoP: eyJhbGciOiJSUzI1NiIsImp3ayI6eyJrdHkiOiJSU0EiLCJlIjoi

QVFBQiIsImtpZCI6Inh5ei1jbGllbnQiLCJhbGciOiJSUzI1NiIsIm4iO

iJ6d0NUXzNieC1nbGJiSHJoZVlwWXBSV2lZOUktbkVhTVJwWm5ScklqQ3

M2Yl9lbXlUa0JrRERFalN5c2kzOE9DNzNoajEtV2d4Y1BkS05HWnlJb0g

zUVplbjFNS3l5aFFwTEpHMS1vTE5McW03cFhYdGRZelNkQzlPMy1vaXl5

OHlrTzRZVXlOWnJSUmZQY2loZFFDYk9fT0M4UXVnbWc5cmdORE9TcXBwZ

GFOZWFzMW92OVB4WXZ4cXJ6MS04SGE3Z2tEMDBZRUNYSGFCMDV1TWFVYW

RIcS1PX1dJdllYaWNnNkk1ajZTNDRWTlU2NVZCd3UtQWx5blR4UWRNQVd

QM2JZeFZWeTZwMy03ZVRKb2t2allURnFnRFZEWjhsVVhicjV5Q1RuUmhu

aEpndmYzVmpEX21hbE5lOC10T3FLNU9TRGxIVHk2Z0Q5TnFkR0NtLVBtM

1EifX0.eyJwIjoiXC9hcGlcL2FzXC90cmFuc2FjdGlvbiIsImIiOiJxa0

lPYkdOeERhZVBTZnc3NnFjamtqSXNFRmxDb3g5bTU5NFM0M0RkU0xBIiw

idSI6Imhvc3QuZG9ja2VyLmludGVybmFsIiwiaCI6W1siQWNjZXB0Iiwi

Q29udGVudC1UeXBlIiwiQ29udGVudC1MZW5ndGgiXSwiVjQ2OUhFWGx6S

k9kQTZmQU5oMmpKdFhTd3pjSGRqMUloOGk5M0h3bEVHYyJdLCJtIjoiUE

9TVCIsInRzIjoxNTcyNjQyNjEwfQ.xyQ47qy8bu4fyK1T3Ru1Sway8wp6

5rfAKnTQQU92AUUU07I2iKoBL2tipBcNCC5zLH5j_WUyjlN15oi_lLHym

fPdzihtt8_Jibjfjib5J15UlifakjQ0rHX04tPal9PvcjwnyZHFcKn-So

Y3wsARn-gGwxpzbsPhiKQP70d2eG0CYQMA6rTLslT7GgdQheelhVFW29i

27NcvqtkJmiAG6Swrq4uUgCY3zRotROkJ13qo86t2DXklV-eES4-2dCxf

cWFkzBAr6oC4Qp7HnY_5UT6IWkRJt3efwYprWcYouOVjtRan3kEtWkaWr

G0J4bPVnTI5St9hJYvvh7FE8JirIg

{

 "client": {

 "name": "My Client Display Name",

 "uri": "https://example.net/client"

 },

 "resources": [

 "dolphin-metadata"

],

 "interact": {

 "redirect": true,

 "callback": {

 "method": "redirect",

 "uri": "https://client.foo",

 "nonce": "VJLO6A4CAYLBXHTR0KRO"

 }

 },

 "key": {

 "proof": "oauthpop",

 "jwk": {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "xyz-1",

 "alg": "RS256",

 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_J

tffXyaSx8xYJCCNaOKNJn_Oz0YhdHbXTeWO5AoyspDWJbN5w_7bdWDxgpD-

y6jnD1u9YhBOCWObNPFvpkTM8LC7SdXGRKx2k8Me2r_GssYlyRpqvpBlY5-

ejCywKRBfctRcnhTTGNztbbDBUyDSWmFMVCHe5mXT4cL0BwrZC6S-uu-LAx

06aKwQOPwYOGOslK8WPm1yGdkaA1uF_FpS6LS63WYPHi_Ap2B7_8Wbw4ttz

bMS_doJvuDagW8A1Ip3fXFAHtRAcKw7rdI4_Xln66hJxFekpdfWdiPQddQ6

Y1cK2U3obvUg7w"

 }

 }

}

¶

grant_request_endpoint

capabilities

interaction_methods

key_proofs

sub_ids

assertions

9. Discovery

By design, the protocol minimizes the need for any pre-flight

discovery. To begin a request, the RC only needs to know the

endpoint of the AS and which keys it will use to sign the request.

Everything else can be negotiated dynamically in the course of the

protocol.

However, the AS can have limits on its allowed functionality. If the

RC wants to optimize its calls to the AS before making a request, it

MAY send an HTTP OPTIONS request to the transaction endpoint to

retrieve the server's discovery information. The AS MUST respond

with a JSON document containing the following information:

REQUIRED. The full URL of the AS's grant

request endpoint. This MUST match the URL the RC used to make the

discovery request.

OPTIONAL. A list of the AS's capabilities. The values

of this result MAY be used by the RC in the capabilities section

(Section 2.7) of the request.

OPTIONAL. A list of the AS's interaction

methods. The values of this list correspond to the possible

fields in the interaction section (Section 2.5) of the request.

OPTIONAL. A list of the AS's supported key proofing

mechanisms. The values of this list correspond to possible values

of the proof field of the key section (Section 2.3) of the

request.

OPTIONAL. A list of the AS's supported identifiers. The

values of this list correspond to possible values of the subject

identifier section (Section 2.2) of the request.

OPTIONAL. A list of the AS's supported assertion

formats. The values of this list correspond to possible values of

the subject assertion section (Section 2.2) of the request.

The information returned from this method is for optimization

purposes only. The AS MAY deny any request, or any portion of a

request, even if it lists a capability as supported. For example, a

given client can be registered with the mtls key proofing mechanism,

but the AS also returns other proofing methods, then the AS will

deny a request from that client using a different proofing

mechanism.

¶

¶

¶

¶

¶

¶

¶

¶

¶

10. Resource Servers

In some deployments, a resource server will need to be able to call

the AS for a number of functions.

[[Editor's note: This section is for discussion of possible

advanced functionality. It seems like it should be a separate

document or set of documents, and it's not even close to being well-

baked. This also adds additional endpoints to the AS, as this is

separate from the token request process, and therefore would require

RS-facing discovery or configuration information to make it work.

Also-also, it does presume the RS can sign requests in the same way

that a client does, but hopefully we can be more consistent with

this than RFC7662 was able to do.]]

10.1. Introspecting a Token

When the RS receives an access token, it can call the introspection

endpoint at the AS to get token information. [[Editor's note: this

isn't super different from the token management URIs, but the RS has

no way to get that URI, and it's bound to different keys.]]

The RS signs the request with its own key and sends the access token

as the body of the request.

The AS responds with a data structure describing the token's current

state and any information the RS would need to validate the token's

presentation, such as its intended proofing mechanism and key

material.

¶

¶

¶

¶

POST /introspect HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "access_token": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

}

¶

¶

10.2. Deriving a downstream token

If the RS needs to derive a token from one presented to it, it can

request one from the AS by making a token request as described in

Section 2 and presenting the existing access token's value in the

"existing_access_token" field.

The RS MUST identify itself with its own key and sign the request.

[[Editor's note: this is similar to but based on the access token

and not the grant. The fact that the keys presented are not the ones

used for the access token should indicate that it's a different

party and a different kind of request.]]

Content-type: application/json

{

 "active": true,

 "resources": [

 "dolphin-metadata", "some other thing"

],

 "resources": [

 "dolphin-metadata", "some other thing"

],

 "proof": "httpsig",

 "key": {

 "proof": "jwsd",

 "jwk": {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "xyz-1",

 "alg": "RS256",

 "n": "kOB5rR4Jv0GMeL...."

 }

 }

}

¶

¶

¶

¶

The AS responds with a token as described in Section 3.

10.3. Registering a Resource Handle

If the RS needs to, it can post a set of resources as described in

Section 2.1.1 to the AS's resource registration endpoint.

The RS MUST identify itself with its own key and sign the request.

POST /tx HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "resources": [

 {

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 },

 "dolphin-metadata"

],

 "key": "7C7C4AZ9KHRS6X63AJAO",

 "existing_access_token": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0"

}

¶

¶

¶

¶

The AS responds with a handle appropriate to represent the resources

list that the RS presented.

The RS MAY make this handle available as part of a response to a

client (Section 10.4) or as documentation to developers.

[[Editor's note: It's not an exact match here because the

"resource_handle" returned now represents a collection of objects

instead of a single one. Perhaps we should let this return a list of

strings instead? Or use a different syntax than the resource

request? Also, this borrows heavily from UMA 2's "distributed

authorization" model and, like UMA, might be better suited to an

extension than the core protocol.]]

POST /resource HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "resources": [

 {

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 },

 "dolphin-metadata"

],

 "key": "7C7C4AZ9KHRS6X63AJAO"

}

¶

¶

Content-type: application/json

{

 "resource_handle": "FWWIKYBQ6U56NL1"

}

¶

¶

¶

10.4. Requesting a Resources With Insufficient Access

If the client calls an RS without an access token, or with an

invalid access token, the RS MAY respond to the client with an

authentication header indicating that GNAP. The address of the GNAP

endpoint MUST be sent in the "as_uri" parameter. The RS MAY

additionally return a resource reference that the client MAY use in

its resource request (Section 2.1). This resource reference handle

SHOULD be sufficient for at least the action the client was

attempting to take at the RS. The RS MAY use the dynamic resource

handle request (Section 10.3) to register a new resource handle, or

use a handle that has been pre-configured to represent what the AS

is protecting. The content of this handle is opaque to the RS and

the client.

The client then makes a call to the "as_uri" as described in Section

2, with the value of "resource" as one of the members of a

"resources" array Section 2.1.1. The client MAY request additional

resources and other information, and MAY request multiple access

tokens.

[[Editor's note: this borrows heavily from UMA 2's "distributed

authorization" model and, like UMA, might be better suited to an

extension than the core protocol.]]

11. Acknowledgements

The author would like to thank the feedback of the following

individuals for their reviews, implementations, and contributions:

Aaron Parecki, Annabelle Backman, Dick Hardt, Dmitri Zagidulin,

Dmitry Barinov, Fabien Imbault, Francis Pouatcha, George Fletcher,

Haardik Haardik, Hamid Massaoud, Jacky Yuan, Joseph Heenan, Kathleen

Moriarty, Mike Jones, Mike Varley, Nat Sakimura, Takahiko Kawasaki,

Takahiro Tsuchiya.

In particular, the author would like to thank Aaron Parecki and Mike

Jones for insights into how to integrate identity and authentication

systems into the core protocol, and to Dick Hardt for the use cases,

diagrams, and insights provided in the XAuth proposal that have been

incorporated here. The author would like to especially thank Mike

Varley and the team at SecureKey for feedback and development of

early versions of the XYZ protocol that fed into this standards

work.

12. IANA Considerations

[[TBD: There are a lot of items in the document that are expandable

through the use of value registries.]]

¶

WWW-Authenticate: GNAP as_uri=http://server.example/transaction,resource=FWWIKYBQ6U56NL1¶

¶

¶

¶

¶

¶

[BCP195]

[I-D.ietf-httpbis-message-signatures]

[I-D.ietf-oauth-dpop]

[I-D.ietf-oauth-signed-http-request]

[I-D.ietf-secevent-subject-identifiers]

13. Security Considerations

[[TBD: There are a lot of security considerations to add.]]

All requests have to be over TLS or equivalent as per [BCP195]. Many

handles act as shared secrets, though they can be combined with a

requirement to provide proof of a key as well.

14. Privacy Considerations

[[TBD: There are a lot of privacy considerations to add.]]

Handles are passed between parties and therefore should not contain

any private data.

When user information is passed to the client, the AS needs to make

sure that it has the permission to do so.

15. Normative References

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", 2015, <http://www.rfc-editor.org/info/bcp195>.

Backman, A., Richer, J., and M. Sporny, "Signing HTTP

Messages", Work in Progress, Internet-Draft, draft-ietf-

httpbis-message-signatures-00, 10 April 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-httpbis-message-

signatures-00.txt>.

Fett, D., Campbell, B., Bradley, J.,

Lodderstedt, T., Jones, M., and D. Waite, "OAuth 2.0

Demonstration of Proof-of-Possession at the Application

Layer (DPoP)", Work in Progress, Internet-Draft, draft-

ietf-oauth-dpop-01, 1 May 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-oauth-dpop-01.txt>.

Richer, J., Bradley, J., and H. Tschofenig, "A Method for

Signing HTTP Requests for OAuth", Work in Progress,

Internet-Draft, draft-ietf-oauth-signed-http-request-03,

8 August 2016, <http://www.ietf.org/internet-drafts/

draft-ietf-oauth-signed-http-request-03.txt>.

Backman, A. and M. Scurtescu, "Subject Identifiers for

Security Event Tokens", Work in Progress, Internet-Draft,

draft-ietf-secevent-subject-identifiers-05, 24 July 2019,

¶

¶

¶

¶

¶

http://www.rfc-editor.org/info/bcp195
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-message-signatures-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-message-signatures-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-message-signatures-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-dpop-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-dpop-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-signed-http-request-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-signed-http-request-03.txt

[OIDC]

[OIDC4IA]

[RFC2119]

[RFC3230]

[RFC6749]

[RFC6750]

[RFC7515]

[RFC7797]

[RFC8174]

[RFC8259]

[RFC8705]

<http://www.ietf.org/internet-drafts/draft-ietf-secevent-

subject-identifiers-05.txt>.

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect Core 1.0 incorporating

errata set 1", November 2014, <https://openiD.net/specs/

openiD-connect-core-1_0.html>.

Lodderstedt, T. and D. Fett, "OpenID Connect for Identity

Assurance 1.0", October 2019, <https://openid.net/specs/

openid-connect-4-identity-assurance-1_0.html>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",

RFC 3230, DOI 10.17487/RFC3230, January 2002, <https://

www.rfc-editor.org/info/rfc3230>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M., "JSON Web Signature (JWS) Unencoded Payload

Option", RFC 7797, DOI 10.17487/RFC7797, February 2016,

<https://www.rfc-editor.org/info/rfc7797>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Campbell, B., Bradley, J., Sakimura, N., and T.

Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication

and Certificate-Bound Access Tokens", RFC 8705, DOI

http://www.ietf.org/internet-drafts/draft-ietf-secevent-subject-identifiers-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-secevent-subject-identifiers-05.txt
https://openiD.net/specs/openiD-connect-core-1_0.html
https://openiD.net/specs/openiD-connect-core-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7797
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

10.17487/RFC8705, February 2020, <https://www.rfc-

editor.org/info/rfc8705>.

Appendix A. Document History

-10

Switched to xml2rfc v3 and markdown source.

Updated based on Design Team feedback and reviews.

Added acknowledgements list.

Added sequence diagrams and explanations.

Collapsed "short_redirect" into regular redirect request.

Separated pass-by-reference into subsections.

Collapsed "callback" and "pushback" into a single mode-

switched method.

Add OIDC Claims request object example.

-09

Major document refactoring based on request and response

capabilities.

Changed from "claims" language to "subject identifier"

language.

Added "pushback" interaction capability.

Removed DIDCOMM interaction (better left to extensions).

Excised "transaction" language in favor of "Grant" where

appropriate.

Added token management URLs.

Added separate continuation URL to use continuation handle

with.

Added RS-focused functionality section.

Added notion of extending a grant request based on a previous

grant.

Simplified returned handle structures.

* ¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

-

¶

- ¶

* ¶

-

¶

-

¶

- ¶

- ¶

-

¶

- ¶

-

¶

- ¶

-

¶

- ¶

https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8705

-08

Added attached JWS signature method.

Added discovery methods.

-07

Marked sections as being controlled by a future registry TBD.

-06

Added multiple resource requests and multiple access token

response.

-05

Added "claims" request and response for identity support.

Added "capabilities" request for inline discovery support.

-04

Added crypto agility for callback return hash.

Changed "interaction_handle" to "interaction_ref".

-03

Removed "state" in favor of "nonce".

Created signed return parameter for front channel return.

Changed "client" section to "display" section, as well as

associated handle.

Changed "key" to "keys".

Separated key proofing from key presentation.

Separated interaction methods into booleans instead of "type"

field.

-02

Minor editorial cleanups.

-01

Made JSON multimodal for handle requests.

* ¶

- ¶

- ¶

* ¶

- ¶

* ¶

-

¶

* ¶

- ¶

- ¶

* ¶

- ¶

- ¶

* ¶

- ¶

- ¶

-

¶

- ¶

- ¶

-

¶

* ¶

- ¶

* ¶

- ¶

Major updates to normative language and references throughout

document.

Allowed interaction to split between how the user gets to the

AS and how the user gets back.

-00

Initial submission.

Appendix B. Component Data Models

While different implementations of this protocol will have different

realizations of all the components and artifacts enumerated here,

the nature of the protocol implies some common structures and

elements for certain components. This appendix seeks to enumerate

those common elements.

TBD: Client has keys, allowed requested resources, identifier(s),

allowed requested subjects, allowed

TBD: AS has "grant endpoint", interaction endpoints, store of

trusted client keys, policies

TBD: Token has RO, user, client, resource list, RS list,

Appendix C. Example Protocol Flows

The protocol defined in this specification provides a number of

features that can be combined to solve many different kinds of

authentication scenarios. This section seeks to show examples of how

the protocol would be applied for different situations.

Some longer fields, particularly cryptographic information, have

been truncated for display purposes in these examples.

C.1. Redirect-Based User Interaction

In this scenario, the user is the RO and has access to a web

browser, and the client can take front-channel callbacks on the same

device as the user. This combination is analogous to the OAuth 2

Authorization Code grant type.

The client initiates the request to the AS. Here the client

identifies itself using its public key.

-

¶

-

¶

* ¶

- ¶

¶

¶

¶

¶

¶

¶

¶

¶

The AS processes the request and determines that the RO needs to

interact. The AS returns the following response giving the client

the information it needs to connect. The AS has also indicated to

the client that it can use the given key handle to identify itself

in future calls.

POST /tx HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "resources": [

 {

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 }

],

 "key": {

 "proof": "jwsd",

 "jwk": {

 "kty": "RSA",

 "e": "AQAB",

 "kid": "xyz-1",

 "alg": "RS256",

 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."

 }

 },

 "interact": {

 "redirect": true,

 "callback": {

 "method": "redirect",

 "uri": "https://client.example.net/return/123455",

 "nonce": "LKLTI25DK82FX4T4QFZC"

 }

 }

}

¶

¶

The client saves the response and redirects the user to the

interaction_url by sending the following HTTP message to the user's

browser.

The user's browser fetches the AS's interaction URL. The user logs

in, is identified as the RO for the resource being requested, and

approves the request. Since the AS has a callback parameter, the AS

generates the interaction reference, calculates the hash, and

redirects the user back to the client with these additional values

added as query parameters.

The client receives this request from the user's browser. The client

ensures that this is the same user that was sent out by validating

session information and retrieves the stored pending request. The

client uses the values in this to validate the hash parameter. The

client then calls the continuation URL and presents the handle and

interaction reference in the request body. The client signs the

request as above.

Content-type: application/json

{

 "interact": {

 "redirect": "https://server.example.com/interact/4CF492MLVMSW9MKMXKHQ",

 "callback": "MBDOFXG4Y5CVJCX821LH"

 }

 "continue": {

 "handle": "80UPRY5NM33OMUKMKSKU",

 "uri": "https://server.example.com/continue"

 },

 "key_handle": "7C7C4AZ9KHRS6X63AJAO"

}

¶

¶

HTTP 302 Found

Location: https://server.example.com/interact/4CF492MLVMSW9MKMXKHQ

¶

¶

HTTP 302 Found

Location: https://client.example.net/return/123455

 ?hash=p28jsq0Y2KK3WS__a42tavNC64ldGTBroywsWxT4md_jZQ1R2HZT8BOWYHcLmObM7XHPAdJzTZMtKBsaraJ64A

 &interact_ref=4IFWWIKYBC2PQ6U56NL1

¶

¶

The AS retrieves the pending request based on the handle and issues

a bearer access token and returns this to the client.

C.2. Secondary Device Interaction

In this scenario, the user does not have access to a web browser on

the device and must use a secondary device to interact with the AS.

The client can display a user code or a printable QR code. The

client prefers a short URL if one is available, with a maximum of

POST /continue HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "handle": "80UPRY5NM33OMUKMKSKU",

 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"

}

¶

¶

Content-type: application/json

{

 "access_token": {

 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

 "proof": "bearer",

 "manage": "https://server.example.com/token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L",

 "resources": [{

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 }]

 },

 "continue": {

 "handle": "80UPRY5NM33OMUKMKSKU",

 "uri": "https://server.example.com/continue"

 }

}

¶

255 characters in length. The is not able to accept callbacks from

the AS and needs to poll for updates while waiting for the user to

authorize the request.

The client initiates the request to the AS.

The AS processes this and determines that the RO needs to interact.

The AS supports both long and short redirect URIs for interaction,

so it includes both. Since there is no "callback" the AS does not

include a nonce, but does include a "wait" parameter on the

continuation section because it expects the client to poll for

results.

The client saves the response and displays the user code visually on

its screen along with the static device URL. The client also

displays the short interaction URL as a QR code to be scanned.

¶

¶

POST /tx HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "resources": [

 "dolphin-metadata", "some other thing"

],

 "key": "7C7C4AZ9KHRS6X63AJAO",

 "interact": {

 "redirect": 255,

 "user_code": true

 }

}

¶

¶

Content-type: application/json

{

 "interact": {

 "redirect": "https://srv.ex/MXKHQ",

 "user_code": {

 "code": "A1BC-3DFF",

 "url": "https://srv.ex/device"

 }

 },

 "continue": {

 "handle": "80UPRY5NM33OMUKMKSKU",

 "uri": "https://server.example.com/continue",

 "wait": 60

 }

}

¶

¶

If the user scans the code, they are taken to the interaction

endpoint and the AS looks up the current pending request based on

the incoming URL. If the user instead goes to the static page and

enters the code manually, the AS looks up the current pending

request based on the value of the user code. In both cases, the user

logs in, is identified as the RO for the resource being requested,

and approves the request. Once the request has been approved, the AS

displays to the user a message to return to their device.

Meanwhile, the client periodically polls the AS every 60 seconds at

the continuation URL.

The AS retrieves the pending request based on the handle and

determines that it has not yet been authorized. The AS indicates to

the client that no access token has yet been issued but it can

continue to call after another 60 second timeout.

Note that the continuation handle has been rotated since it was used

by the client to make this call. The client polls the continuation

URL after a 60 second timeout using the new handle.

¶

¶

POST /continue HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "handle": "80UPRY5NM33OMUKMKSKU"

}

¶

¶

Content-type: application/json

{

 "continue": {

 "handle": "BI9QNW6V9W3XFJK4R02D",

 "uri": "https://server.example.com/continue",

 "wait": 60

 }

}

¶

¶

POST /continue HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "handle": "BI9QNW6V9W3XFJK4R02D"

}

¶

The AS retrieves the pending request based on the handle and

determines that it has been approved and it issues an access token.

Appendix D. No User Involvement

In this scenario, the client is requesting access on its own behalf,

with no user to interact with.

The client creates a request to the AS, identifying itself with its

public key and using MTLS to make the request.

The AS processes this and determines that the client can ask for the

requested resources and issues an access token.

¶

Content-type: application/json

{

 "access_token": {

 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

 "proof": "bearer",

 "manage": "https://server.example.com/token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L",

 "resources": [

 "dolphin-metadata", "some other thing"

]

 }

}

¶

¶

¶

POST /tx HTTP/1.1

Host: server.example.com

Content-type: application/json

{

 "resources": [

 "backend service", "nightly-routine-3"

],

 "key": {

 "proof": "mtls",

 "cert#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"

 }

}

¶

¶

D.1. Asynchronous Authorization

In this scenario, the client is requesting on behalf of a specific

RO, but has no way to interact with the user. The AS can

asynchronously reach out to the RO for approval in this scenario.

The client starts the request at the AS by requesting a set of

resources. The client also identifies a particular user.

Content-type: application/json

{

 "access_token": {

 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

 "proof": "bearer",

 "manage": "https://server.example.com/token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L",

 "resources": [

 "backend service", "nightly-routine-3"

]

 }

}

¶

¶

¶

The AS processes this and determines that the RO needs to interact.

The AS determines that it can reach the identified user

asynchronously and that the identified user does have the ability to

approve this request. The AS indicates to the client that it can

poll for continuation.

POST /tx HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "resources": [

 {

 "type": "photo-api",

 "actions": [

 "read",

 "write",

 "dolphin"

],

 "locations": [

 "https://server.example.net/",

 "https://resource.local/other"

],

 "datatypes": [

 "metadata",

 "images"

]

 },

 "read", "dolphin-metadata",

 {

 "type": "financial-transaction",

 "actions": [

 "withdraw"

],

 "identifier": "account-14-32-32-3",

 "currency": "USD"

 },

 "some other thing"

],

 "key": "7C7C4AZ9KHRS6X63AJAO",

 "user": {

 "sub_ids": [{

 "subject_type": "email",

 "email": "user@example.com"

 }]

 }

}

¶

¶

The AS reaches out to the RO and prompts them for consent. In this

example, the AS has an application that it can push notifications in

to for the specified account.

Meanwhile, the client periodically polls the AS every 60 seconds at

the continuation URL.

The AS retrieves the pending request based on the handle and

determines that it has not yet been authorized. The AS indicates to

the client that no access token has yet been issued but it can

continue to call after another 60 second timeout.

Note that the continuation handle has been rotated since it was used

by the client to make this call. The client polls the continuation

URL after a 60 second timeout using the new handle.

Content-type: application/json

{

 "continue": {

 "handle": "80UPRY5NM33OMUKMKSKU",

 "uri": "https://server.example.com/continue",

 "wait": 60

 }

}

¶

¶

¶

POST /continue HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "handle": "80UPRY5NM33OMUKMKSKU"

}

¶

¶

Content-type: application/json

{

 "continue": {

 "handle": "BI9QNW6V9W3XFJK4R02D",

 "uri": "https://server.example.com/continue",

 "wait": 60

 }

}

¶

¶

The AS retrieves the pending request based on the handle and

determines that it has been approved and it issues an access token.

D.2. Applying OAuth 2 Scopes and Client IDs

In this scenario, the client developer has a client_id and set of

scope values from their OAuth 2 [RFC6749] system and wants to apply

them to the new protocol. Traditionally, the OAuth 2 client

developer would put their client_id and scope values as parameters

into a redirect request to the authorization endpoint.

Now the developer wants to make an analogous request to the AS using

the new protocol. To do so, the client makes an HTTP POST and places

the OAuth 2 values in the appropriate places.

POST /continue HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "handle": "BI9QNW6V9W3XFJK4R02D"

}

¶

¶

Content-type: application/json

{

 "access_token": {

 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",

 "proof": "bearer",

 "manage": "https://server.example.com/token/PRY5NM33OM4TB8N6BW7OZB8CDFONP219RP1L",

 "resources": [

 "dolphin-metadata", "some other thing"

]

 }

}

¶

¶

HTTP 302 Found

Location: https://server.example.com/authorize

 ?client_id=7C7C4AZ9KHRS6X63AJAO

 &scope=read%20write%20dolphin

 &redirect_uri=https://client.example.net/return

 &response_type=code

 &state=123455

¶

¶

The client_id can be used to identify the client's keys that it uses

for authentication, the scopes represent resources that the client

is requesting, and the redirect_uri and state value are combined

into a callback URI that can be unique per request. The client

additionally creates a nonce to protect the callback, separate from

the state parameter that it has added to its return URL.

From here, the protocol continues as above.

Author's Address

Justin Richer (editor)

Bespoke Engineering

Email: ietf@justin.richer.org

URI: https://bspk.io/

POST /tx HTTP/1.1

Host: server.example.com

Content-type: application/json

Detached-JWS: ejy0...

{

 "resources": [

 "read", "write", "dolphin"

],

 "key": "7C7C4AZ9KHRS6X63AJAO",

 "interact": {

 "redirect": true,

 "callback": {

 "uri": "https://client.example.net/return?state=123455",

 "nonce": "LKLTI25DK82FX4T4QFZC"

 }

 }

}

¶

¶

¶

mailto:ietf@justin.richer.org
https://bspk.io/

	XYZ: Grant Negotiation Access Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Protocol
	1.1. Roles
	1.2. Sequences
	1.2.1. Redirect-based Interaction
	1.2.2. User-code-based Interaction
	1.2.3. Asynchronous Authorization
	1.2.4. Software-only Authorization
	1.2.5. Refreshing an Expired Access Token

	2. Requesting Access
	2.1. Requesting Resources
	2.1.1. Requesting a Single Access Token
	2.1.2. Requesting Resources By Reference
	2.1.3. Requesting Multiple Access Tokens

	2.2. Requesting User Information
	2.3. Identifying the Client Key
	2.3.1. Authenticating the Client
	2.3.2. Identifying the Client Key By Reference

	2.4. Identifying the User
	2.4.1. Identifying the User by Reference

	2.5. Interacting with the User
	2.5.1. Redirect to an Arbitrary URL
	2.5.1.1. Redirect to an Arbitrary Shortened URL

	2.5.2. Open an Application-specific URL
	2.5.3. Receive a Callback After Interaction
	2.5.3.1. Receive an HTTP Callback Through the Browser
	2.5.3.2. Receive an HTTP Direct Callback

	2.5.4. Display a Short User Code
	2.5.5. Extending Interaction Capabilities

	2.6. Providing Displayable Client Information
	2.7. Declaring Client Capabilities
	2.8. Referencing an Existing Grant Request
	2.9. Requesting OpenID Connect Claims
	2.10. Extending The Grant Request

	3. Grant Response
	3.1. Request Continuation Handle
	3.2. Access Tokens
	3.2.1. Single Access Token
	3.2.2. Multiple Access Tokens

	3.3. Interaction Capabilities
	3.3.1. Redirection to an arbitrary URL
	3.3.2. Launch of an application URL
	3.3.3. Callback to a Client URL
	3.3.4. Display of a Short User Code
	3.3.5. Extending Interaction Capability Responses

	3.4. Returning User Information
	3.5. Returning Dynamically-bound Reference Handles
	3.6. Error response
	3.7. Extending the Response

	4. Interaction at the AS
	4.1. Interaction at a Redirected URI
	4.2. Interaction at the User Code URI
	4.3. Interaction through an Application URI
	4.4. Post-Interaction Completion
	4.4.1. Completing Interaction with a Callback URI
	4.4.2. Completing Interaction with a Pushback URI
	4.4.3. Calculating the interaction hash
	4.4.3.1. SHA3
	4.4.3.2. SHA2

	5. Continuing a Grant Request
	5.1. Continuing after a Finalized Interaction
	5.2. Continuing after Tokens are Issued

	6. Token Management
	6.1. Rotating the Access Token
	6.2. Revoking the Access Token

	7. Using Access Tokens
	8. Binding Keys
	8.1. Detached JWS
	8.2. Attached JWS
	8.3. Mutual TLS
	8.4. DPoP
	8.5. HTTP Signing
	8.6. OAuth PoP

	9. Discovery
	10. Resource Servers
	10.1. Introspecting a Token
	10.2. Deriving a downstream token
	10.3. Registering a Resource Handle
	10.4. Requesting a Resources With Insufficient Access

	11. Acknowledgements
	12. IANA Considerations
	13. Security Considerations
	14. Privacy Considerations
	15. Normative References
	Appendix A. Document History
	Appendix B. Component Data Models
	Appendix C. Example Protocol Flows
	C.1. Redirect-Based User Interaction
	C.2. Secondary Device Interaction
	Appendix D. No User Involvement
	D.1. Asynchronous Authorization
	D.2. Applying OAuth 2 Scopes and Client IDs
	Author's Address

