
Ops WG R. Hartmann, Ed.
Internet-Draft Grafana Labs
Intended status: Standards Track B. Kochie
Expires: May 29, 2021 GitLab
 B. Brazil
 Robust Perception
 R. Skillington
 Chronosphere
 November 25, 2020

OpenMetrics, a cloud-native, highly scalable metrics protocol
draft-richih-opsawg-openmetrics-00

Abstract

 OpenMetrics specifies today's de-facto standard for transmitting
 cloud-native metrics at scale, with support for both text
 representation and Protocol Buffers and brings it into IETF. It
 supports both pull and push-based data collection.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 29, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Hartmann, et al. Expires May 29, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft OpenMetrics November 2020

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 4

2. Overview . 4
2.1. Metrics and Time Series 4

3. Data Model . 4
3.1. Data Types . 5
3.1.1. Values . 5
3.1.2. Timestamps . 5
3.1.3. Strings . 5
3.1.4. Label . 5
3.1.5. LabelSet . 5
3.1.6. MetricPoint . 5
3.1.7. Exemplars . 6
3.1.8. Metric . 6
3.1.9. MetricFamily . 6

3.2. Metric Types . 8
3.2.1. Gauge . 8
3.2.2. Counter . 8
3.2.3. StateSet . 9
3.2.4. Info . 9
3.2.5. Histogram . 10
3.2.6. GaugeHistogram 11
3.2.7. Summary . 11
3.2.8. Unknown . 12

4. Data transmission & wire formats 12
4.1. Protocol Negotiation 12
4.1.1. ABNF . 13
4.1.2. Overall Structure 14
4.1.3. MetricFamily . 17
4.1.4. MetricPoint . 18
4.1.5. Metric types . 19

4.2. Protobuf format . 23
4.2.1. Overall Structure 23
4.2.2. Protobuf schema 24

5. Design Considerations . 28
5.1. Scope . 28
5.1.1. Out of scope . 29

5.2. Extensions and Improvements 29
5.3. Units and Base Units 29
5.4. Statelessness . 31
5.5. Exposition Across Time and Metric Evolution 31

Hartmann, et al. Expires May 29, 2021 [Page 2]

Internet-Draft OpenMetrics November 2020

5.6. NaN . 32
5.7. Missing Data . 32
5.8. Exposition Performance 33
5.9. Concurrency . 33
5.10. Metric Naming and Namespaces 33
5.11. Label Namespacing . 35
5.12. Metric Names versus Labels 36
5.13. Types of Metadata . 37

 5.13.1. Supporting Target Metadata in both Push-based and
 Pull-based Systems 37

5.14. Client Calculations and Derived Metrics 38
5.15. Number Types . 39
5.16. Exposing Timestamps 39
5.16.1. Tracking When Metrics Last Changed 40

5.17. Thresholds . 41
5.18. Size Limits . 42

6. Security Considerations 43
7. IANA Considerations . 43
8. References . 44
8.1. Normative References 44
8.2. Informative References 44

 Authors' Addresses . 45

1. Introduction

 Created in 2012, Prometheus has been the default for cloud-native
 observability since 2015. A central part of Prometheus' design is
 its text metric exposition format, called the Prometheus exposition
 format 0.0.4, stable since 2014. In this format, special care has
 been taken to make it easy to generate, to ingest, and to understand
 by humans. As of 2020, there are more than 700 publicly listed
 exporters, an unknown number of unlisted exporters, and thousands of
 native library integrations using this format. Dozens of ingestors
 from various projects and companies support consuming it.

 With OpenMetrics, we are cleaning up and tightening the specification
 with the express purpose of bringing it into IETF. We are
 documenting a working standard with wide and organic adoption while
 introducing minimal, largely backwards-compatible, and well-
 considered changes. As of 2020, dozens of exporters, integrations,
 and ingestors use and preferentially negotiate OpenMetrics already.

 Given the wide adoption and significant coordination requirements in
 the ecosystem, sweeping changes to either the Prometheus exposition
 format 0.0.4 or OpenMetrics 1.0 are considered out of scope.

Hartmann, et al. Expires May 29, 2021 [Page 3]

Internet-Draft OpenMetrics November 2020

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Overview

 Metrics are a specific kind of telemetry data. They represent a
 snapshot of the current state for a set of data. They are distinct
 from logs or events, which focus on records or information about
 individual events.

 OpenMetrics is primarily a wire format, independent of any particular
 transport for that format. The format is expected to be consumed on
 a regular basis and to be meaningful over successive expositions.

 Implementers MUST expose metrics in the OpenMetrics text format in
 response to a simple HTTP GET request to a documented URL for a given
 process or device. This endpoint SHOULD be called "/metrics".
 Implementers MAY also expose OpenMetrics formatted metrics in other
 ways, such as by regularly pushing metric sets to an operator-
 configured endpoint over HTTP.

2.1. Metrics and Time Series

 This standard expresses all system states as numerical values;
 counts, current values, enumerations, and boolean states being common
 examples. Contrary to metrics, singular events occur at a specific
 time. Metrics tend to aggregate data temporally. While this can
 lose information, the reduction in overhead is an engineering trade-
 off commonly chosen in many modern monitoring systems.

 Time series are a record of changing information over time. While
 time series can support arbitrary strings or binary data, only
 numeric data is in scope for this RFC.

 Common examples of metric time series would be network interface
 counters, device temperatures, BGP connection states, and alert
 states.

3. Data Model

 This section MUST be read together with the ABNF section. In case of
 disagreements between the two, the ABNF's restrictions MUST take

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Hartmann, et al. Expires May 29, 2021 [Page 4]

Internet-Draft OpenMetrics November 2020

 precedence. This reduces repetition as the text wire format MUST be
 supported.

3.1. Data Types

3.1.1. Values

 Metric values in OpenMetrics MUST be either floating points or
 integers. Note that ingestors of the format MAY only support
 float64. The non-real values NaN, +Inf and -Inf MUST be supported.
 NaN MUST NOT be considered a missing value, but it MAY be used to
 signal a division by zero.

3.1.1.1. Booleans

 Boolean values MUST follow 1==true, 0==false.

3.1.2. Timestamps

 Timestamps MUST be Unix Epoch in seconds. Negative timestamps MAY be
 used.

3.1.3. Strings

 Strings MUST only consist of valid UTF-8 characters and MAY be zero
 length. NULL (ASCII 0x0) MUST be supported.

3.1.4. Label

 Labels are key-value pairs consisting of strings.

 Label names beginning with underscores are RESERVED and MUST NOT be
 used unless specified by this standard. Label names MUST follow the
 restrictions in the ABNF section.

 Empty label values SHOULD be treated as if the label was not present.

3.1.5. LabelSet

 A LabelSet MUST consist of Labels and MAY be empty. Label names MUST
 be unique within a LabelSet.

3.1.6. MetricPoint

 Each MetricPoint consists of a set of values, depending on the
 MetricFamily type.

Hartmann, et al. Expires May 29, 2021 [Page 5]

Internet-Draft OpenMetrics November 2020

3.1.7. Exemplars

 Exemplars are references to data outside of the MetricSet. A common
 use case are IDs of program traces.

 Exemplars MUST consist of a LabelSet and a value, and MAY have a
 timestamp. They MAY each be different from the MetricPoints'
 LabelSet and timestamp.

 The combined length of the label names and values of an Exemplar's
 LabelSet MUST NOT exceed 128 UTF-8 characters. Other characters in
 the text rendering of an exemplar such as ",= are not included in
 this limit for implementation simplicity and for consistency between
 the text and proto formats.

 Ingestors MAY discard exemplars.

3.1.8. Metric

 Metrics are defined by a unique LabelSet within a MetricFamily.
 Metrics MUST contain a list of one or more MetricPoints. Metrics
 with the same name for a given MetricFamily SHOULD have the same set
 of label names in their LabelSet.

 MetricPoints SHOULD NOT have explicit timestamps.

 If more than one MetricPoint is exposed for a Metric, then its
 MetricPoints MUST have monotonically increasing timestamps.

3.1.9. MetricFamily

 A MetricFamily MAY have zero or more Metrics. A MetricFamily MUST
 have a name, HELP, TYPE, and UNIT metadata. Every Metric within a
 MetricFamily MUST have a unique LabelSet.

3.1.9.1. Name

 MetricFamily names are a string and MUST be unique within a
 MetricSet. Names SHOULD be in snake_case. Metric names MUST follow
 the restrictions in the ABNF section.

 Colons in MetricFamily names are RESERVED to signal that the
 MetricFamily is the result of a calculation or aggregation of a
 general purpose monitoring system.

 MetricFamily names beginning with underscores are RESERVED and MUST
 NOT be used unless specified by this standard.

Hartmann, et al. Expires May 29, 2021 [Page 6]

Internet-Draft OpenMetrics November 2020

3.1.9.1.1. Suffixes

 The name of a MetricFamily MUST NOT result in a potential clash for
 sample metric names as per the ABNF with another MetricFamily in the
 Text Format within a MetricSet. An example would be a gauge called
 "foo_created" as a counter called "foo" could create a "foo_created"
 in the text format.

 Exposers SHOULD avoid names that could be confused with the suffixes
 that text format sample metric names use.

 o Suffixes for the respective types are:

 o Counter: '_total', '_created'

 o Summary: '_count', '_sum', '_created', '' (empty)

 o Histogram: '_count', '_sum', '_bucket', '_created'

 o GaugeHistogram: '_gcount', '_gsum', '_bucket'

 o Info: '_info'

 o Gauge: '' (empty)

 o StateSet: '' (empty)

 o Unknown: '' (empty)

3.1.9.2. Type

 Type specifies the MetricFamily type. Valid values are "unknown",
 "gauge", "counter", "stateset", "info", "histogram",
 "gaugehistogram", and "summary".

3.1.9.3. Unit

 Unit specifies MetricFamily units. If non-empty, it MUST be a suffix
 of the MetricFamily name separated by an underscore. Be aware that
 further generation rules might make it an infix in the text format.

3.1.9.4. Help

 Help is a string and SHOULD non-empty. It is used to give a brief
 description of the MetricFamily for human consumption and SHOULD be
 short enough to be used as a tooltip.

Hartmann, et al. Expires May 29, 2021 [Page 7]

Internet-Draft OpenMetrics November 2020

3.1.9.5. MetricSet

 A MetricSet is the top level object exposed by OpenMetrics. It MUST
 consist of MetricFamilies and MAY be empty.

 Each MetricFamily name MUST be unique. The same label name and value
 SHOULD NOT appear on every Metric within a MetricSet.

 There is no specific ordering of MetricFamilies required within a
 MetricSet. An exposer MAY make an exposition easier to read for
 humans, for example sort alphabetically if the performance tradeoff
 makes sense.

 If present, an Info MetricFamily called "target" per the "Supporting
 target metadata in both push-based and pull-based systems" section
 below SHOULD be first.

3.2. Metric Types

3.2.1. Gauge

 Gauges are current measurements, such as bytes of memory currently
 used or the number of items in a queue. For gauges the absolute
 value is what is of interest to a user.

 A MetricPoint in a Metric with the type gauge MUST have a single
 value.

 Gauges MAY increase, decrease, or stay constant over time. Even if
 they only ever go in one direction, they might still be gauges and
 not counters. The size of a log file would usually only increase, a
 resource might decrease, and the limit of a queue size may be
 constant.

 A gauge MAY be used to encode an enum where the enum has many states
 and changes over time, it is the most efficient but least user
 friendly.

3.2.2. Counter

 Counters measure discrete events. Common examples are the number of
 HTTP requests received, CPU seconds spent, or bytes sent. For
 counters how quickly they are increasing over time is what is of
 interest to a user.

 A MetricPoint in a Metric with the type Counter MUST have one value
 called Total. A Total is a non-NaN and MUST be monotonically non-
 decreasing over time, starting from 0.

Hartmann, et al. Expires May 29, 2021 [Page 8]

Internet-Draft OpenMetrics November 2020

 A MetricPoint in a Metric with the type Counter SHOULD have a
 Timestamp value called Created. This can help ingestors discern
 between new metrics and long-running ones it did not see before.

 A MetricPoint in a Metric's Counter's Total MAY reset to 0. If
 present, the corresponding Created time MUST also be set to the
 timestamp of the reset.

 A MetricPoint in a Metric's Counter's Total MAY have an exemplar.

3.2.3. StateSet

 StateSets represent a series of related boolean values, also called a
 bitset. If ENUMs need to be encoded this MAY be done via StateSet.

 A point of a StateSet metric MAY contain multiple states and MUST
 contain one boolean per State. States have a name which are Strings.

 A StateSet Metric's LabelSet MUST NOT have a label name which is the
 same as the name of its MetricFamily.

 If encoded as a StateSet, ENUMs MUST have exactly one Boolean which
 is true within a MetricPoint.

 This is suitable where the enum value changes over time, and the
 number of States isn't much more than a handful.

 EDITOR'S NOTE: This might be better as Consideration

 MetricFamilies of type StateSets MUST have an empty Unit string.

3.2.4. Info

 Info metrics are used to expose textual information which SHOULD NOT
 change during process lifetime. Common examples are an application's
 version, revision control commit, and the version of a compiler.

 A MetricPoint of an Info Metric contains a LabelSet. An Info
 MetricPoint's LabelSet MUST NOT have a label name which is the same
 as the name of a label of the LabelSet of its Metric.

 Info MAY be used to encode ENUMs whose values do not change over
 time, such as the type of a network interface.

 MetricFamilies of type Info MUST have an empty Unit string.

Hartmann, et al. Expires May 29, 2021 [Page 9]

Internet-Draft OpenMetrics November 2020

3.2.5. Histogram

 Histograms measure distributions of discrete events. Common examples
 are the latency of HTTP requests, function runtimes, or I/O request
 sizes.

 A Histogram MetricPoint MUST contain at least one bucket, and SHOULD
 contain Sum, and Created values. Every bucket MUST have a threshold
 and a value.

 Histogram MetricPoints MUST have at least a bucket with an +Inf
 threshold. Buckets MUST be cumulative. As an example for a metric
 representing request latency in seconds its values for buckets with
 thresholds 1, 2, 3, and +Inf MUST follow value_1 <= value_2 <=
 value_3 <= value_+Inf. If ten requests took 1 second each, the
 values of the 1, 2, 3, and +Inf buckets MUST equal 10.

 The +Inf bucket counts all requests. If present, the Sum value MUST
 equal the Sum of all the measured event values. Bucket thresholds
 within a MetricPoint MUST be unique.

 Semantically, Sum, and buckets values are counters so MUST NOT be NaN
 or negative. Negative threshold buckets MAY be used, but then the
 Histogram MetricPoint MUST NOT contain a sum value as it would no
 longer be a counter semantically. Bucket thresholds MUST NOT equal
 NaN. Count and bucket values MUST be integers.

 A Histogram MetricPoint SHOULD have a Timestamp value called Created.
 This can help ingestors discern between new metrics and long-running
 ones it did not see before.

 A Histogram's Metric's LabelSet MUST NOT have a "le" label name.

 Bucket values MAY have exemplars. Buckets are cumulative to allow
 monitoring systems to drop any non-+Inf bucket for performance/anti-
 denial-of-service reasons in a way that loses granularity but is
 still a valid Histogram.

 EDITOR'S NOTE: The second sentence is a consideration, it can be
 moved if needed

 Each bucket covers the values less and or equal to it, and the value
 of the exemplar MUST be within this range. Exemplars SHOULD be put
 into the bucket with the highest value. A bucket MUST NOT have more
 than one exemplar.

Hartmann, et al. Expires May 29, 2021 [Page 10]

Internet-Draft OpenMetrics November 2020

3.2.6. GaugeHistogram

 GaugeHistograms measure current distributions. Common examples are
 how long items have been waiting in a queue, or size of the requests
 in a queue.

 A GaugeHistogram MetricPoint MUST have at least one bucket with an
 +Inf threshold, and SHOULD contain a Gsum value. Every bucket MUST
 have a threshold and a value.

 The buckets for a GaugeHistogram follow all the same rules as for a
 Histogram.

 The bucket and Gsum of a GaugeHistogram are conceptually gauges,
 however bucket values MUST NOT be negative or NaN. If negative
 threshold buckets are present, then sum MAY be negative. Gsum MUST
 NOT be NaN. Bucket values MUST be integers.

 A GaugeHistogram's Metric's LabelSet MUST NOT have a "le" label name.

 Bucket values can have exemplars.

 Each bucket covers the values less and or equal to it, and the value
 of the exemplar MUST be within this range. Exemplars SHOULD be put
 into the bucket with the highest value. A bucket MUST NOT have more
 than one exemplar.

3.2.7. Summary

 Summaries also measure distributions of discrete events and MAY be
 used when Histograms are too expensive and/or an average event size
 is sufficient.

 They MAY also be used for backwards compatibility, because some
 existing instrumentation libraries expose precomputed quantiles and
 do not support Histograms. Precomputed quantiles SHOULD NOT be used,
 because quantiles are not aggregatable and the user often can not
 deduce what timeframe they cover.

 A Summary MetricPoint MAY consist of a Count, Sum, Created, and a set
 of quantiles.

 Semantically, Count and Sum values are counters so MUST NOT be NaN or
 negative. Count MUST be an integer.

 A MetricPoint in a Metric with the type Summary which contains Count
 or Sum values SHOULD have a Timestamp value called Created. This can
 help ingestors discern between new metrics and long-running ones it

Hartmann, et al. Expires May 29, 2021 [Page 11]

Internet-Draft OpenMetrics November 2020

 did not see before. Created MUST NOT relate to the collection period
 of quantile values.

 Quantiles are a map from a quantile to a value. An example is a
 quantile 0.95 with value 0.2 in a metric called
 myapp_http_request_duration_seconds which means that the 95th
 percentile latency is 200ms over an unknown timeframe. If there are
 no events in the relevant timeframe, the value for a quantile MUST be
 NaN. A Quantile's Metric's LabelSet MUST NOT have "quantile" label
 name. Quantiles MUST be between 0 and 1 inclusive. Quantile values
 MUST NOT be negative. Quantile values SHOULD represent the recent
 values. Commonly this would be over the last 5-10 minutes.

3.2.8. Unknown

 Unknown SHOULD NOT be used. Unknown MAY be used when it is
 impossible to determine the types of individual metrics from 3rd
 party systems.

 A point in a metric with the unknown type MUST have a single value.

4. Data transmission & wire formats

 The text wire format MUST be supported and is the default. The
 protobuf wire format MAY be supported and MUST ONLY be used after
 negotiation.

 The OpenMetrics formats are Regular Chomsky Grammars, making writing
 quick and small parsers possible. The text format compresses well,
 and protobuf is already binary and efficiently encoded.

 Partial or invalid expositions MUST be considered erroneous in their
 entirety.

4.1. Protocol Negotiation

 All ingestor implementations MUST be able to ingest data secured with
 TLS 1.2 or later. All exposers SHOULD be able to emit data secured
 with TLS 1.2 or later. ingestor implementations SHOULD be able to
 ingest data from HTTP without TLS. All implementations SHOULD use
 TLS to transmit data.

 Negotiation of what version of the OpenMetrics format to use is out-
 of-band. For example for pull-based exposition over HTTP standard
 HTTP content type negotiation is used, and MUST default to the oldest
 version of the standard (i.e. 1.0.0) if no newer version is
 requested.

Hartmann, et al. Expires May 29, 2021 [Page 12]

Internet-Draft OpenMetrics November 2020

 Push-based negotiation is inherently more complex, as the exposer
 typically initiates the connection. Producers MUST use the oldest
 version of the standard (i.e. 1.0.0) unless requested otherwise by
 the ingestor. Text format

4.1.1. ABNF

 ABNF as per RFC 5234

 EDITOR'S NOTE: Should we update to RFC 7405, in particular the case
 insensitive bits?

 "exposition" is the top level token of the ABNF.

 exposition = metricset HASH SP eof [LF]

 metricset = *metricfamily

 metricfamily = *metric-descriptor *metric

 metric-descriptor = HASH SP type SP metricname SP metric-type LF
 metric-descriptor =/ HASH SP help SP metricname SP escaped-string LF
 metric-descriptor =/ HASH SP unit SP metricname SP 1*metricname-char LF

 metric = *sample

 metric-type = counter / gauge / histogram / gaugehistogram / stateset
 metric-type =/ info / summary / unknown

 sample = metricname [labels] SP number [SP timestamp] [exemplar] LF

 exemplar = SP HASH SP labels SP number [SP timestamp]

 labels = "{" [label *(COMMA label)] "}"

 label = label-name EQ DQUOTE escaped-string DQUOTE

 number = realnumber
 ; Case insensitive
 number =/ [SIGN] ("inf" / "infinity")
 number =/ "nan"

 timestamp = realnumber

 ; Not 100% sure this captures all float corner cases.
 ; Leading 0s explicitly okay
 realnumber = [SIGN] 1*DIGIT
 realnumber =/ [SIGN] 1*DIGIT ["." *DIGIT] ["e" [SIGN] 1*DIGIT]

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7405

Hartmann, et al. Expires May 29, 2021 [Page 13]

Internet-Draft OpenMetrics November 2020

 realnumber =/ [SIGN] *DIGIT "." 1*DIGIT ["e" [SIGN] 1*DIGIT]

 ; RFC 5234 is case insensitive.
 ; Uppercase
 eof = %d69.79.70
 type = %d84.89.80.69
 help = %d72.69.76.80
 unit = %d85.78.73.84
 ; Lowercase
 counter = %d99.111.117.110.116.101.114
 gauge = %d103.97.117.103.101
 histogram = %d104.105.115.116.111.103.114.97.109
 gaugehistogram = gauge histogram
 stateset = %d115.116.97.116.101.115.101.116
 info = %d105.110.102.111
 summary = %d115.117.109.109.97.114.121
 unknown = %d117.110.107.110.111.119.110

 BS = "\"
 EQ = "="
 COMMA = ","
 HASH = "#"
 SIGN = "-" / "+"

 metricname = metricname-initial-char 0*metricname-char

 metricname-char = metricname-initial-char / DIGIT
 metricname-initial-char = ALPHA / "_" / ":"

 label-name = label-name-initial-char *label-name-char

 label-name-char = label-name-initial-char / DIGIT
 label-name-initial-char = ALPHA / "_"

 escaped-string = *escaped-char

 escaped-char = normal-char
 escaped-char =/ BS ("n" / DQUOTE / BS)

 ; Any unicode character, except newline, double quote, and backslash
 normal-char = %x00-09 / %x0B-21 / %x23-5B / %x5D-D7FF / %xE000-10FFFF

4.1.2. Overall Structure

 UTF-8 MUST be used. Byte order markers (BOMs) MUST NOT be used. As
 an important reminder for implementers, byte 0 is valid UTF-8 while,
 for example, byte 255 is not.

https://datatracker.ietf.org/doc/html/rfc5234

Hartmann, et al. Expires May 29, 2021 [Page 14]

Internet-Draft OpenMetrics November 2020

 The content type MUST be: application/openmetrics-text;
 version=1.0.0; charset=utf-8

 Line endings MUST be signalled with line feed (\n) and MUST NOT
 contain carriage returns (\r). Expositions MUST end with EOF and
 SHOULD end with 'EOF\n'.

 An example of a complete exposition: ~~~~ # TYPE
 acme_http_router_request_seconds summary # UNIT
 acme_http_router_request_seconds seconds # HELP
 acme_http_router_request_seconds Latency though all of ACME's HTTP
 request router. acme_http_router_request_seconds_sum{path="/api/
 v1",method="GET"} 9036.32
 acme_http_router_request_seconds_count{path="/api/v1",method="GET"}
 807283.0 acme_http_router_request_seconds_created{path="/api/
 v1",method="GET"} 1605281325.0
 acme_http_router_request_seconds_sum{path="/api/v2",method="POST"}
 479.3 acme_http_router_request_seconds_count{path="/api/
 v2",method="POST"} 34.0
 acme_http_router_request_seconds_created{path="/api/
 v2",method="POST"} 1605281325.0 # TYPE go_goroutines gauge # HELP
 go_goroutines Number of goroutines that currently exist.
 go_goroutines 69 # TYPE process_cpu_seconds counter # UNIT
 process_cpu_seconds seconds # HELP process_cpu_seconds Total user and
 system CPU time spent in seconds. process_cpu_seconds_total
 4.20072246e+06 # EOF ~~~~

4.1.2.1. Escaping

 Where the ABNF notes escaping, the following escaping MUST be applied
 Line feed, '\n' (0x0A) -> literally '\n' (Bytecode 0x5c 0x6e) Double
 quotes -> '"' (Bytecode 0x5c 0x22) Backslash -> '\' (Bytecode 0x5c
 0x5c)

4.1.2.2. Numbers

 Integer numbers MUST NOT have a decimal point. Examples are "23",
 "0042", and "1341298465647914".

 Floating point numbers MUST be represented either with a decimal
 point or using scientific notation. Examples are "8903.123421" and
 "1.89e-7". Floating point numbers MUST fit within the range of a
 64-bit floating point value as defined by IEEE 754, but MAY require
 so many bits in the mantissa that results in lost precision. This
 MAY be used to encode nanosecond resolution timestamps.

Hartmann, et al. Expires May 29, 2021 [Page 15]

Internet-Draft OpenMetrics November 2020

 Arbitrary integer and floating point rendering of numbers MUST NOT be
 used for "quantile" and "le" label values as in section "Canonical
 Numbers". They MAY be used anywhere else numbers are used.

4.1.2.2.1. Considerations: Canonical Numbers

 Numbers in the "le" label values of histograms and "quantile" label
 values of summary metrics are special in that they're label values,
 and label values are intended to be opaque. As end users will likely
 directly interact with these string values, and as many monitoring
 systems lack the ability to deal with them as first-class numbers, it
 would be beneficial if a given number had the exact same text
 representation.

 Consistency is highly desirable, but real world implementations of
 languages and their runtimes make mandating this impractical. The
 most important common quantiles are 0.5, 0.95, 0.9, 0.99, 0.999 and
 bucket values representing values from a millisecond up to 10.0
 seconds, because those cover cases like latency SLAs and Apdex for
 typical web services. Powers of ten are covered to try to ensure
 that the switch between fixed point and exponential rendering is
 consistent as this varies across runtimes. The target rendering is
 equivalent to the default Go rendering of float64 values (i.e. %g),
 with a .0 appended in case there is no decimal point or exponent to
 make clear that they are floats.

 Exposers MUST produce output for positive infinity as +Inf.

 Exposers SHOULD produce output for the values 0.0 up to 10.0 in 0.001
 increments in line with the following examples: 0.0 0.001 0.002 0.01
 0.1 0.9 0.95 0.99 0.999 1.0 1.7 10.0

 Exposers SHOULD produce output for the values 1e-10 up to 1e+10 in
 powers of ten in line with the following examples: 1e-10 1e-09 1e-05
 0.0001 0.1 1.0 100000.0 1e+06 1e+10

 Parsers MUST NOT reject inputs which are outside of the canonical
 values merely because they are not consistent with the canonical
 values. For example 1.1e-4 must not be rejected, even though it is
 not the consistent rendering of 0.00011.

 Exposers SHOULD follow these patterns for non-canonical numbers, and
 the intention is by adjusting the rendering algorithm to be
 consistent for these values that the vast majority of other values
 will also have consistent rendering. Exposers using only a few
 particular le/quantile values could also hardcode. In languages such
 as C where a minimal floating point rendering algorithm such as

Hartmann, et al. Expires May 29, 2021 [Page 16]

Internet-Draft OpenMetrics November 2020

 Grisu3 such as Grisu3 is not readily available, exposers MAY use a
 different rendering.

 A warning to implementers in C and other languages that share its
 printf implementation: The standard precision of %f, %e and %g is
 only six significant digits. 17 significant digits are required for
 full precision, e.g. "printf("%.17g", d)".

4.1.2.3. Timestamps

 Timestamps SHOULD NOT use exponential float rendering for timestamps
 if nanosecond precision is needed as rendering of a float64 does not
 have sufficient precision, e.g. 1604676851.123456789.

4.1.3. MetricFamily

 There MUST NOT be an explicit separator between MetricFamilies. The
 next MetricFamily MUST be signalled with either metadata or a new
 sample metric name which cannot be part of the previous MetricFamily.

 MetricFamilies MUST NOT be interleaved.

4.1.3.1. MetricFamily metadata

 There are four pieces of metadata: The MetricFamily name, TYPE, UNIT
 and HELP. An example of the metadata for a counter Metric called foo
 is:

 # TYPE foo counter

 If no TYPE is exposed, the MetricFamily MUST be of type Unknown.

 If a unit is specified it MUST be provided in a UNIT metadata line.
 In addition, an underscore and the unit MUST be the suffix of the
 MetricFamily name.

 A valid example for a foo_seconds metric with a unit of "seconds":
   ~~~~ # TYPE foo_seconds counter # UNIT foo_seconds seconds ~~~~

   An invalid example, where the unit is not a suffix on the name: ~~~~
   # TYPE foo counter # UNIT foo seconds ~~~~

   It is also valid to have: ~~~~ # TYPE foo_seconds counter ~~~~

   If the unit is known it SHOULD be provided.

   The value of a UNIT or HELP line MAY be empty.  This MUST be treated
   as if no metadata line for the MetricFamily existed.



Hartmann, et al.          Expires May 29, 2021                 [Page 17]



Internet-Draft                 OpenMetrics                 November 2020

   # TYPE foo_seconds counter
   # UNIT foo_seconds seconds
   # HELP foo_seconds Some text and \n some \" escaping

   There MUST NOT be more than one of each type of metadata line for a
   MetricFamily.  The ordering SHOULD be TYPE, UNIT, HELP.

   Aside from this metadata and the EOF line at the end of the message,
   you MUST NOT expose lines beginning with a #.

4.1.3.2.  Metric

   Metrics MUST NOT be interleaved.

   See the example in "Text format -> MetricPoint".  Labels A sample
   without labels or a timestamp and the value 0 MUST be rendered either
   like:

   bar_seconds_count 0

   or like

   bar_seconds_count{} 0

   Label values MAY be any valid UTF-8 value, so escaping MUST be
   applied as per the ABNF.  A valid example with two labels: ~~~~
   bar_seconds_count{a="x",b="escaping" example \n "} 0 ~~~~

   The rendering of values for a MetricPoint can include additional
   labels (e.g. the "le" label for a Histogram type), which MUST be
   rendered in the same way as a Metric's own LabelSet.

4.1.4.  MetricPoint

   MetricPoints MUST NOT be interleaved.

   A correct example where there were multiple MetricPoints and Samples
   within a MetricFamily would be:



Hartmann, et al.          Expires May 29, 2021                 [Page 18]



Internet-Draft                 OpenMetrics                 November 2020

   # TYPE foo_seconds summary
   # UNIT foo_seconds seconds
   foo_seconds_count{a="bb"} 0 123
   foo_seconds_sum{a="bb"} 0 123
   foo_seconds_count{a="bb"} 0 456
   foo_seconds_sum{a="bb"} 0 456
   foo_seconds_count{a="ccc"} 0 123
   foo_seconds_sum{a="ccc"} 0 123
   foo_seconds_count{a="ccc"} 0 456
   foo_seconds_sum{a="ccc"} 0 456

   An incorrect example where Metrics are interleaved:

   # TYPE foo_seconds summary
   # UNIT foo_seconds seconds
   foo_seconds_count{a="bb"} 0 123
   foo_seconds_count{a="ccc"} 0 123
   foo_seconds_count{a="bb"} 0 456
   foo_seconds_count{a="ccc"} 0 456

   An incorrect example where MetricPoints are interleaved:

   # TYPE foo_seconds summary
   # UNIT foo_seconds seconds
   foo_seconds_count{a="bb"} 0 123
   foo_seconds_count{a="bb"} 0 456
   foo_seconds_sum{a="bb"} 0 123
   foo_seconds_sum{a="bb"} 0 456

4.1.5.  Metric types

4.1.5.1.  Gauge

   The Sample MetricName for the value of a MetricPoint for a
   MetricFamily of type Gauge MUST NOT have a suffix.

   An example MetricFamily with a Metric with no labels and a
   MetricPoint with no timestamp: ~~~~ # TYPE foo gauge foo 17.0 ~~~~

   An example of a MetricFamily with two Metrics with a label and
   MetricPoints with no timestamp: ~~~~ # TYPE foo gauge foo{a="bb"}
   17.0 foo{a="ccc"} 17.0 ~~~~

   An example of a MetricFamily with no Metrics: ~~~~ # TYPE foo gauge
   ~~~~

 An example with a Metric with a label and a MetricPoint with a
 timestamp: ~~~~ # TYPE foo gauge foo{a="b"} 17.0 1520879607.789 ~~~~

Hartmann, et al. Expires May 29, 2021 [Page 19]

Internet-Draft OpenMetrics November 2020

 An example with a Metric with no labels and MetricPoint with a
 timestamp: ~~~~ # TYPE foo gauge foo 17.0 1520879607.789 ~~~~

 An example with a Metric with no labels and two MetricPoints with
 timestamps: ~~~~ # TYPE foo gauge foo 17.0 123 foo 18.0 456 ~~~~

4.1.5.2. Counter

 The MetricPoint's Total Value Sample MetricName MUST have the suffix
 "_total". If present the MetricPoint's Created Value Sample
 MetricName MUST have the suffix "_created".

 An example with a Metric with no labels, and a MetricPoint with no
 timestamp and no created: ~~~~ # TYPE foo counter foo_total 17.0 ~~~~

 An example with a Metric with no labels, and a MetricPoint with a
 timestamp and no created: ~~~~ # TYPE foo counter foo_total 17.0
 1520879607.789 ~~~~

 An example with a Metric with no labels, and a MetricPoint with no
 timestamp and a created: ~~~~ # TYPE foo counter foo_total 17.0
 foo_created 1520430000.123 ~~~~

 An example with a Metric with no labels, and a MetricPoint with a
 timestamp and a created: ~~~~ # TYPE foo counter foo_total 17.0
 1520879607.789 foo_created 1520430000.123 1520879607.789 ~~~~

 Exemplars MAY be attached to the MetricPoint's Total sample.

4.1.5.3. StateSet

 The Sample MetricName for the value of a MetricPoint for a
 MetricFamily of type StateSet MUST NOT have a suffix.

 StateSets MUST have one sample per State in the MetricPoint. Each
 State's sample MUST have a label with the MetricFamily name as the
 label name and the State name as the label value. The State sample's
 value MUST be 1 if the State is true and MUST be 0 if the State is
 false.

 An example with the states "a", "bb", and "ccc" in which only the
 value b is enabled and the metric name is foo:

 # TYPE foo stateset
 foo{foo="a"} 0
 foo{foo="bb"} 1
 foo{foo="ccc"} 0

Hartmann, et al. Expires May 29, 2021 [Page 20]

Internet-Draft OpenMetrics November 2020

 An example of an "entity" label on the Metric: ~~~~ # TYPE foo
 stateset foo{entity="controller",foo="a"} 1.0
 foo{entity="controller",foo="bb"} 0.0
 foo{entity="controller",foo="ccc"} 0.0 foo{entity="replica",foo="a"}
 1.0 foo{entity="replica",foo="bb"} 0.0
 foo{entity="replica",foo="ccc"} 1.0 ~~~~

4.1.5.4. Info

 The Sample MetricName for the value of a MetricPoint for a
 MetricFamily of type Info MUST have the suffix "_info". The Sample
 value MUST always be 1.

 An example of a Metric with no labels, and one MetricPoint value with
 "name" and "version" labels: ~~~~ # TYPE foo info
 foo_info{name="pretty name",version="8.2.7"} 1 ~~~~

 An example of a Metric with label "entity" and one MetricPoint value
 with "name" and "version" labels: ~~~~ # TYPE foo info
 foo_info{entity="controller",name="pretty name",version="8.2.7"} 1.0
 foo_info{entity="replica",name="prettier name",version="8.1.9"} 1.0
   ~~~~

   Metric labels and MetricPoint value labels MAY be in any order.

4.1.5.5.  Summary

   If present, the MetricPoint's Sum Value Sample MetricName MUST have
   the suffix "_sum".  If present, the MetricPoint's Count Value Sample
   MetricName MUST have the suffix "_count".  If present, the
   MetricPoint's Created Value Sample MetricName MUST have the suffix
   "_created".  If present, the MetricPoint's Quantile Values MUST
   specify the quantile measured using a label with a label name of
   "quantile" and with a label value of the quantile measured.

   An example of a Metric with no labels and a MetricPoint with Sum,
   Count and Created values: ~~~~ # TYPE foo summary foo_count 17.0
   foo_sum 324789.3 foo_created 1520430000.123 ~~~~

   An example of a Metric with no labels and a MetricPoint with two
   quantiles: ~~~~ # TYPE foo summary foo{quantile="0.95"} 123.7
   foo{quantile="0.99"} 150.0 ~~~~

   Quantiles MAY be in any order.



Hartmann, et al.          Expires May 29, 2021                 [Page 21]



Internet-Draft                 OpenMetrics                 November 2020

4.1.5.6.  Histogram

   The MetricPoint's Bucket Values Sample MetricNames MUST have the
   suffix "_bucket".  If present, the MetricPoint's Sum Value Sample
   MetricName MUST have the suffix "_sum".  If present, the
   MetricPoint's Created Value Sample MetricName MUST have the suffix
   "_created".  If and only if a Sum Value is present in a MetricPoint,
   then the MetricPoint's +Inf Bucket value MUST also appear in a Sample
   with a MetricName with the suffix "_count".

   Buckets MUST be sorted in number increasing order of "le", and the
   value of the "le" label MUST follow the rules for Canonical Numbers.

   An example of a Metric with no labels and a MetricPoint with Sum,
   Count, and Created values, and with 12 buckets.  A wide and atypical
   but valid variety of "le" values is shown on purpose: ~~~~ # TYPE foo
   histogram foo_bucket{le="0.0"} 0 foo_bucket{le="1e-05"} 0
   foo_bucket{le="0.0001"} 5 foo_bucket{le="0.1"} 8 foo_bucket{le="1.0"}
   10 foo_bucket{le="10.0"} 11 foo_bucket{le="100000.0"} 11
   foo_bucket{le="1e+06"} 15 foo_bucket{le="1e+23"} 16
   foo_bucket{le="1.1e+23"} 17 foo_bucket{le="+Inf"} 17 foo_count 17
   foo_sum 324789.3 foo_created 1520430000.123 ~~~~

4.1.5.6.1.  Exemplars

   Exemplars without Labels MUST represent an empty LabelSet as {}.

   An example of Exemplars showcasing several valid cases: The "0.01"
   bucket has no Exemplar.  The 0.1 bucket has an Exemplar with no
   Labels.  The 1 bucket has an Exemplar with one Label.  The 10 bucket
   has an Exemplar with a Label and a timestamp.  In practice all
   buckets SHOULD have the same style of Exemplars.  ~~~~ # TYPE foo
   histogram foo_bucket{le="0.01"} 0 foo_bucket{le="0.1"} 8 # {} 0.054
   foo_bucket{le="1"} 11 # {trace_id="KOO5S4vxi0o"} 0.67
   foo_bucket{le="10"} 17 # {trace_id="oHg5SJYRHA0"} 9.8 1520879607.789
   foo_bucket{le="+Inf"} 17 foo_count 17 foo_sum 324789.3 foo_created
   1520430000.123 ~~~~

4.1.5.7.  GaugeHistogram

   The MetricPoint's Bucket Values Sample MetricNames MUST have the
   suffix "_bucket".  If present, the MetricPoint's Sum Value Sample
   MetricName MUST have the suffix "_gsum".  If present, the
   MetricPoint's Created Value Sample MetricName MUST have the suffix
   "_created".  If and only if a Sum Value is present in a MetricPoint,
   then the MetricPoint's +Inf Bucket value MUST also appear in a Sample
   with a MetricName with the suffix "_gcount".



Hartmann, et al.          Expires May 29, 2021                 [Page 22]



Internet-Draft                 OpenMetrics                 November 2020

   Buckets MUST be sorted in number increasing order of "le", and the
   value of the "le" label MUST follow the rules for Canonical Numbers.

   An example of a Metric with no labels, and one MetricPoint value with
   no Exemplar with no Exemplars in the buckets: ~~~~ # TYPE foo
   gaugehistogram foo_bucket{le="0.01"} 20.0 foo_bucket{le="0.1"} 25.0
   foo_bucket{le="1"} 34.0 foo_bucket{le="10"} 34.0
   foo_bucket{le="+Inf"} 42.0 foo_gcount 42.0 foo_gsum 3289.3
   foo_created 1520430000.123 ~~~~

4.1.5.8.  Unknown

   The sample metric name for the value of the MetricPoint for a
   MetricFamily of type Unknown MUST NOT have a suffix.

   An example with a Metric with no labels and a MetricPoint with no
   timestamp: ~~~~ # TYPE foo unknown foo 42.23 ~~~~

4.2.  Protobuf format

4.2.1.  Overall Structure

   Protobuf messages MUST be encoded in binary and MUST have
   "application/openmetrics-protobuf; version=1.0.0" as their content
   type.

   All payloads MUST be a single binary encoded MetricSet message, as
   defined by the OpenMetrics protobuf schema.

4.2.1.1.  Version

   The protobuf format MUST follow the proto3 version of the protocol
   buffer language.

4.2.1.2.  Strings

   All string fields MUST be UTF-8 encoded.

4.2.1.3.  Timestamps

   Timestamp representations in the OpenMetrics protobuf schema MUST
   follow the published google.protobuf.Timestamp [timestamp] message.
   The timestamp message MUST be in Unix epoch seconds as an int64 and a
   non-negative fraction of a second at nanosecond resolution as an
   int32 that counts forward from the seconds timestamp component.  It
   MUST be within 0 to 999,999,999 inclusive.



Hartmann, et al.          Expires May 29, 2021                 [Page 23]



Internet-Draft                 OpenMetrics                 November 2020

4.2.2.  Protobuf schema

syntax = "proto3";

// The OpenMetrics protobuf schema which defines the protobuf wire
// format.
// Ensure to interpret "required" as semantically required for a valid
// message.
// All string fields MUST be UTF-8 encoded strings.
package openmetrics;

import "google/protobuf/timestamp.proto";

// The top-level container type that is encoded and sent over the wire.
message MetricSet {
  // Each MetricFamily has one or more MetricPoints for a single Metric.
  repeated MetricFamily metric_families = 1;
}

// One or more Metrics for a single MetricFamily, where each Metric
// has one or more MetricPoints.
message MetricFamily {
  // Required.
  string name = 1;

  // Optional.
  MetricType type = 2;

  // Optional.
  string unit = 3;

  // Optional.
  string help = 4;

  // Optional.
  repeated Metric metrics = 5;
}

// The type of a Metric.
enum MetricType {
  // Unknown must use unknown MetricPoint values.
  UNKNOWN = 0;
  // Gauge must use gauge MetricPoint values.
  GAUGE = 1;
  // Counter must use counter MetricPoint values.
  COUNTER = 2;
  // State set must use state set MetricPoint values.
  STATE_SET = 3;



Hartmann, et al.          Expires May 29, 2021                 [Page 24]



Internet-Draft                 OpenMetrics                 November 2020

  // Info must use info MetricPoint values.
  INFO = 4;
  // Histogram must use histogram value MetricPoint values.
  HISTOGRAM = 5;
  // Gauge histogram must use histogram value MetricPoint values.
  GAUGE_HISTOGRAM = 6;
  // Summary quantiles must use summary value MetricPoint values.
  SUMMARY = 7;
}

// A single metric with a unique set of labels within a metric family.
message Metric {
  // Optional.
  repeated Label labels = 1;

  // Optional.
  repeated MetricPoint metric_points = 2;
}

// A name-value pair. These are used in multiple places: identifying
// timeseries, value of INFO metrics, and exemplars in Histograms.
message Label {
  // Required.
  string name = 1;

  // Required.
  string value = 2;
}

// A MetricPoint in a Metric.
message MetricPoint {
  // Required.
  oneof value {
    UnknownValue unknown_value = 1;
    GaugeValue gauge_value = 2;
    CounterValue counter_value = 3;
    HistogramValue histogram_value = 4;
    StateSetValue state_set_value = 5;
    InfoValue info_value = 6;
    SummaryValue summary_value = 7;
  }

  // Optional.
  google.protobuf.Timestamp timestamp = 8;
}

// Value for UNKNOWN MetricPoint.
message UnknownValue {



Hartmann, et al.          Expires May 29, 2021                 [Page 25]



Internet-Draft                 OpenMetrics                 November 2020

  // Required.
  oneof value {
    double double_value = 1;
    int64 int_value = 2;
  }
}

// Value for GAUGE MetricPoint.
message GaugeValue {
  // Required.
  oneof value {
    double double_value = 1;
    int64 int_value = 2;
  }
}

// Value for COUNTER MetricPoint.
message CounterValue {
  // Required.
  oneof total {
    double double_value = 1;
    uint64 int_value = 2;
  }

  // The time values began being collected for this counter.
  // Optional.
  google.protobuf.Timestamp created = 3;

  // Optional.
  Exemplar exemplar = 4;
}

// Value for HISTOGRAM or GAUGE_HISTOGRAM MetricPoint.
message HistogramValue {
  // Optional.
  oneof sum {
    double double_value = 1;
    int64 int_value = 2;
  }

  // Optional.
  uint64 count = 3;

  // The time values began being collected for this histogram.
  // Optional.
  google.protobuf.Timestamp created = 4;

  // Optional.



Hartmann, et al.          Expires May 29, 2021                 [Page 26]



Internet-Draft                 OpenMetrics                 November 2020

  repeated Bucket buckets = 5;

  // Bucket is the number of values for a bucket in the histogram
  // with an optional exemplar.
  message Bucket {
    // Required.
    uint64 count = 1;

    // Optional.
    double upper_bound = 2;

    // Optional.
    Exemplar exemplar = 3;
  }
}

message Exemplar {
  // Required.
  double value = 1;

  // Optional.
  google.protobuf.Timestamp timestamp = 2;

  // Labels are additional information about the exemplar value
  // (e.g. trace id).
  // Optional.
  repeated Label label = 3;
}

// Value for STATE_SET MetricPoint.
message StateSetValue {
  // Optional.
  repeated State states = 1;

  message State {
    // Required.
    bool enabled = 1;

    // Required.
    string name = 2;
  }
}

// Value for INFO MetricPoint.
message InfoValue {
  // Optional.
  repeated Label info = 1;
}



Hartmann, et al.          Expires May 29, 2021                 [Page 27]



Internet-Draft                 OpenMetrics                 November 2020

// Value for SUMMARY MetricPoint.
message SummaryValue {
  // Optional.
  oneof sum {
    double double_value = 1;
    int64 int_value = 2;
  }

  // Optional.
  uint64 count = 2;

  // The time sum and count values began being collected for this
  // summary.
  // Optional.
  google.protobuf.Timestamp created = 3;

  // Optional.
  repeated Quantile quantile = 4;

  message Quantile {
    // Required.
    double quantile = 1;

    // Required.
    double value = 2;
  }
}

5.  Design Considerations

5.1.  Scope

   OpenMetrics is intended to provide telemetry for online systems.  It
   runs over protocols which do not provide hard or soft real time
   guarantees, so it can not make any real time guarantees itself.
   Latency and jitter properties of OpenMetrics are as imprecise as the
   underlying network, operating systems, CPUs, and the like.  It is
   sufficiently accurate for aggregations to be used as a basis for
   decision-making, but not to reflect individual events.

   Systems of all sizes should be supported, from applications that
   receive a few requests an hour up to monitoring bandwidth usage on a
   400Gb network port.  Aggregation and analysis of transmitted
   telemetry should be possible over arbitrary time periods.

   It is intended to transport snapshots of state at the time of data
   transmission at a regular cadence.



Hartmann, et al.          Expires May 29, 2021                 [Page 28]



Internet-Draft                 OpenMetrics                 November 2020

5.1.1.  Out of scope

   How ingestors discover which exposers exist, and vice-versa, is out
   of scope for and thus not defined in this standard.

5.2.  Extensions and Improvements

   This first version of OpenMetrics is based upon well established and
   de facto standard Prometheus text format 0.0.4, deliberately without
   adding major syntactic or semantic extensions, or optimisations on
   top of it.  For example no attempt has been made to make the text
   representation of Histogram buckets more compact, relying on
   compression in the underlying stack to deal with their repetitive
   nature.

   This is a deliberate choice, so that the standard can take advantage
   of the adoption and momentum of the existing user base.  This ensures
   a relatively easy transition from the Prometheus text format 0.0.4.

   It also ensures that there is a basic standard which is easy to
   implement.  This can be built upon in future versions of the
   standard.  The intention is that future versions of the standard will
   always require support for this 1.0 version, both syntactically and
   semantically.

   We want to allow monitoring systems to get usable information from an
   OpenMetrics exposition without undue burden.  If one were to strip
   away all metadata and structure and just look at an OpenMetrics
   exposition as an unordered set of samples that should be usable on
   its own.  As such, there are also no opaque binary types, such as
   sketches or t-digests which could not be expressed as a mix of gauges
   and counters as they would require custom parsing and handling.

   This principle is applied consistently throughout the standard.  For
   example a MetricFamily's unit is duplicated in the name so that the
   unit is available for systems that don't understand the unit
   metadata.  The "le" label is a normal label value, rather than
   getting its own special syntax, so that ingestors don't have to add
   special histogram handling code to ingest them.  As a further
   example, there are no composite data types.  For example, there is no
   geolocation type for latitude/longitude as this can be done with
   separate gauge metrics.

5.3.  Units and Base Units

   For consistency across systems and to avoid confusion, units are
   largely based on SI base units.  Base units include seconds, bytes,



Hartmann, et al.          Expires May 29, 2021                 [Page 29]



Internet-Draft                 OpenMetrics                 November 2020

   joules, grams, meters, ratios, volts, amperes, and celsius.  Units
   should be provided where they are applicable.

   For example, having all duration metrics in seconds, there is no risk
   of having to guess whether a given metric is nanoseconds,
   microseconds, milliseconds, seconds, minutes, hours, days or weeks
   nor having to deal with mixed units.  By choosing unprefixed units,
   we avoid situations like ones in which kilomilliseconds were the
   result of emergent behaviour of complex systems.

   As values can be floating point, sub-base-unit precision is built
   into the standard.

   Similarly, mixing bits and bytes is confusing, so bytes are chosen as
   the base.  While Kelvin is a better base unit in theory, in practice
   most existing hardware exposes Celsius.  Kilograms are the SI base
   unit, however the kilo prefix is problematic so grams are chosen as
   the base unit.

   While base units SHOULD be used in all possible cases, Kelvin is a
   well-established unit which MAY be used instead of Celsius for use
   cases such as color or black body temperatures where a comparison
   between a Celsius and Kelvin metric are unlikely.

   Ratios are the base unit, not percentages.  Where possible, raw data
   in the form of gauges or counters for the given numerator and
   denominator should be exposed.  This has better mathematical
   properties for analysis and aggregation in the ingestors.

   Decibels are not a base unit as firstly, deci is a SI prefix and
   secondly, bels are logarithmic.  To expose signal/energy/power ratios
   exposing the ratio directly would be better, or better still the raw
   power/energy if possible.  Floating point exponents are more than
   sufficient to cover even extreme scientific uses.  An electron volt
   (~1e-19 J) all the way up to the energy emitted by a supernova (~1e44
   J) is 63 orders of magnitude, and a 64-bit floating point number can
   cover over 2000 orders of magnitude.

   If non-base units can not be avoided and conversion is not feasible,
   the actual unit should still be included in the metric name for
   clarity.  For example, joule is the base unit for both energy and
   power, as watts can be expressed as a counter with a joule unit.  In
   practice a given 3rd party system may only expose watts, so a gauge
   expressed in watts would be the only realistic choice in that case.

   Not all MetricFamilies have units.  For example a count of HTTP
   requests wouldn't have a unit.  Technically the unit would be HTTP
   requests, but in that sense the entire MetricFamily name is the unit.



Hartmann, et al.          Expires May 29, 2021                 [Page 30]



Internet-Draft                 OpenMetrics                 November 2020

   Going to that extreme would not be useful.  The possibility of having
   good axes on graphs in downstream systems for human consumption
   should always be kept in mind.

5.4.  Statelessness

   The wire format defined by OpenMetrics is stateless across
   expositions.  What information has been exposed before MUST have no
   impact on future expositions.  Each exposition is a self-contained
   snapshot of the current state of the exposer.

   The same self-contained exposition MUST be provided to existing and
   new ingestors.

   A core design choice is that exposers MUST NOT exclude a metric
   merely because it has had no recent changes, or observations.  An
   exposer must not make any assumptions about how often ingestors are
   consuming expositions.

5.5.  Exposition Across Time and Metric Evolution

   Metrics are most useful when their evolution over time can be
   analysed, so accordingly expositions must make sense over time.
   Thus, it is not sufficient for one single exposition on its own to be
   useful and valid.  Some changes to metric semantics can also break
   downstream users.

   Parsers commonly optimize by caching previous results.  Thus,
   changing the order in which labels are exposed across expositions
   SHOULD be avoided even though it is technically not breaking This
   also tends to make writing unit tests for exposition easier.

   Metrics and samples SHOULD NOT appear and disappear from exposition
   to exposition, for example a counter is only useful if it has
   history.  In principle, a given Metric should be present in
   exposition from when the process starts until the process terminates.
   It is often not possible to know in advance what Metrics a
   MetricFamily will have over the lifetime of a given process (e.g. a
   label value of a latency histogram is a HTTP path, which is provided
   by an end user at runtime), but once a counter-like Metric is exposed
   it should continue to be exposed until the process terminates.  That
   a counter is not getting increments doesn't invalidate that it still
   has its current value.  There are cases where it may make sense to
   stop exposing a given Metric; see the section on Missing Data.

   In general changing a MetricFamily's type, or adding or removing a
   label from its Metrics will be breaking to ingestors.



Hartmann, et al.          Expires May 29, 2021                 [Page 31]



Internet-Draft                 OpenMetrics                 November 2020

   A notable exception is that adding a label to the value of an Info
   MetricPoints is not breaking.  This is so that you can add additional
   information to an existing Info MetricFamily where it makes sense to
   be, rather than being forced to create a brand new info metric with
   an additional label value. ingestor systems should ensure that they
   are resilient to such additions.

   Changing a MetricFamily's Help is not breaking.  For values where it
   is possible, switching between floats and ints is not breaking.
   Adding a new state to a stateset is not breaking.  Adding unit
   metadata where it doesn't change the metric name is not breaking.

   Histogram buckets SHOULD NOT change from exposition to exposition, as
   this is likely to both cause performance issues and break ingestors
   and cause.  Similarly all expositions from any consistent binary and
   environment of an application SHOULD have the same buckets for a
   given Histogram MetricFamily, so that they can be aggregated by all
   ingestors without ingestors having to implement histogram merging
   logic for heterogeneous buckets.  An exception might be occasional
   manual changes to buckets which are considered breaking, but may be a
   valid tradeoff when performance characteristics change due to a new
   software release.

   Even if changes are not technically breaking, they still carry a
   cost.  For example frequent changes may cause performance issues for
   ingestors.  A Help string that varies from exposition to exposition
   may cause each Help value to be stored.  Frequently switching between
   int and float values could prevent efficient compression.

5.6.  NaN

   NaN is a number like any other in OpenMetrics, usually resulting from
   a division by zero such as for a summary quantile if there have been
   no observations recently.  NaN does not have any special meaning in
   OpenMetrics, and in particular MUST NOT be used as a marker for
   missing or otherwise bad data.

5.7.  Missing Data

   There are valid cases when data stops being present.  For example a
   filesystem can be unmounted and thus its Gauge Metric for free disk
   space no longer exists.  There is no special marker or signal for
   this situation.  Subsequent expositions simply do not include this
   Metric.



Hartmann, et al.          Expires May 29, 2021                 [Page 32]



Internet-Draft                 OpenMetrics                 November 2020

5.8.  Exposition Performance

   Metrics are only useful if they can be collected in reasonable time
   frames.  Metrics that take minutes to expose are not considered
   useful.

   As a rule of thumb, exposition SHOULD take no more than a second.

   Metrics from legacy systems serialized through OpenMetrics may take
   longer.  For this reason, no hard performance assumptions can be
   made.

   Exposition SHOULD be of the most recent state.  For example, a thread
   serving the exposition request SHOULD NOT rely on cached values, to
   the extent it is able to bypass any such caching

5.9.  Concurrency

   For high availability and ad-hoc access a common approach is to have
   multiple ingestors.  To support this, concurrent expositions MUST be
   supported.  All BCPs for concurrent systems SHOULD be followed,
   common pitfalls include deadlocks, race conditions, and overly-coarse
   grained locking preventing expositions progressing concurrently.

5.10.  Metric Naming and Namespaces

   EDITOR'S NOTE: This section might be good for a BCP paper.

   We aim for a balance between understandability, avoiding clashes, and
   succinctness in the naming of metrics and label names.  Names are
   separated through underscores, so metric names end up being in
   "snake_case".

   To take an example "http_request_seconds" is succinct but would clash
   between large numbers of applications, and it's also unclear exactly
   what this metric is measuring.  For example, it might be before or
   after auth middleware in a complex system.

   Metric names should indicate what piece of code they come from.  So a
   company called A Company Manufacturing Everything might prefix all
   metrics in their code with "acme_", and if they had a HTTP router
   library measuring latency it might have a metric such as
   "acme_http_router_request_seconds" with a Help string indicating that
   it is the overall latency.

   It is not the aim to prevent all potential clashes across all
   applications, as that would require heavy handed solutions such as a
   global registry of metric namespaces or very long namespaces based on



Hartmann, et al.          Expires May 29, 2021                 [Page 33]



Internet-Draft                 OpenMetrics                 November 2020

   DNS.  Rather the aim is to keep to a lightweight informal approach,
   so that for a given application that it is very unlikely that there
   is clash across its constituent libraries.

   Across a given deployment of a monitoring system as a whole the aim
   is that clashes where the same metric name means different things are
   uncommon.  For example acme_http_router_request_seconds might end up
   in hundreds of different applications developed by A Company
   Manufacturing Everything, which is normal.  If Another Corporation
   Making Entities also used the metric name
   acme_http_router_request_seconds in their HTTP router that's also
   fine.  If applications from both companies were being monitored by
   the same monitoring system the clash is undesirable, but acceptable
   as no application is trying to expose both names and no one target is
   trying to (incorrectly) expose the same metric name twice.  If an
   application wished to contain both My Example Company's and Mega
   Exciting Company's HTTP router libraries that would be a problem, and
   one of the metric names would need to be changed somehow.

   As a corollary, the more public a library is the better namespaced
   its metric names should be to reduce the risk of such scenarios
   arising. acme_ is not a bad choice for internal use within a company,
   but these companies might for example choose the prefixes
   acmeverything_ or acorpme_ for code shared outside their company.

   After namespacing by company or organisation, namespacing and naming
   should continue by library/subsystem/application fractally as needed
   such as the http_router library above.  The goal is that if you are
   familiar with the overall structure of a codebase, you could make a
   good guess at where the instrumentation for a given metric is given
   its metric name.

   For a common very well known existing piece of software, the name of
   the software itself may be sufficiently distinguishing.  For example
   bind_ is probably sufficient for the DNS software, even though
   isc_bind_ would be the more usual naming.

   Metric names prefixed by scrape_ are used by ingestors to attach
   information related to individual expositions, so should not be
   exposed by applications directly.  Metrics that have already been
   consumed and passed through a general purpose monitoring system may
   include such metric names on subsequent expositions.  If an exposer
   wishes to provide information about an individual exposition, a
   metric prefix such as myexposer_scrape_ may be used.  A common
   example is a gauge myexposer_scrape_duration_seconds for how long
   that exposition took from the exposer's standpoint.



Hartmann, et al.          Expires May 29, 2021                 [Page 34]



Internet-Draft                 OpenMetrics                 November 2020

   Within the Prometheus ecosystem a set of per-process metrics has
   emerged that are consistent across all implementations, prefixed with
   process_. For example for open file ulimits the MetricFamiles
   process_open_fds and process_max_fds gauges provide both the current
   and maximum value.  (These names are legacy, if such metrics were
   defined today they would be more likely called process_fds_open and
   process_fds_limit).  In general it is very challengings to get names
   with identical semantics like this, which is why different
   instrumentation should use different names.

   Avoid redundancy in metric names.  Avoid substrings like "metric",
   "timer", "stats", "counter", "total", "float64" and so on - by virtue
   of being a metric with a given type (and possibly unit) exposed via
   OpenMetrics information like this is already implied so should not be
   included explicitly.  You should not include label names of a metric
   in the metric name for the same reasons, and in addition subsequent
   aggregation of the metric by a monitoring system could make such
   information incorrect.

   Avoid including implementation details from other layers of your
   monitoring system in the metric names contained in your
   instrumentation.  For example a MetricFamily name should not contain
   the string "openmetrics" merely because it happens to be currently
   exposed via OpenMetrics somewhere, or "prometheus" merely because
   your current monitoring system is Prometheus.

5.11.  Label Namespacing

   For label names no explicit namespacing by company or library is
   recommended, namespacing from the metric name is sufficient for this
   when considered against the length increase of the label name.
   However some minimal care to avoid common clashes is recommended.

   There are label names such as region, zone, cluster,
   availability_zone, az, datacenter, dc, owner, customer, stage,
   service, team, job, instance, environment, and env which are highly
   likely to clash with labels used to identify targets which a general
   purpose monitoring system may add.  Try to avoid them, adding minimal
   namespacing may be appropriate in these cases.

   The label name "type" is highly generic and should be avoided.  For
   example for HTTP-related metrics "method" would be a better label
   name if you were distinguishing between GET, POST, and PUT requests.

   While there is metadata about metric names such as HELP, TYPE and
   UNIT there is no metadata for label names.  This is as it would be
   bloating the format for little gain.  Out-of-band documentation is
   one way for exposers could present this their ingestors.



Hartmann, et al.          Expires May 29, 2021                 [Page 35]



Internet-Draft                 OpenMetrics                 November 2020

5.12.  Metric Names versus Labels

   There are situations in which both using multiple Metrics within a
   MetricFamily or multiple MetricFamilies seem to make sense.  Summing
   or averaging aMetricFamily should be meaningful even if it's not
   always useful.  For example, mixing voltage and fan speed is not
   meaningful.

   As a reminder, OpenMetrics is built with the assumption that
   ingestors can process and perform aggregations on data.

   Exposing a total sum alongside other metrics is wrong, as this would
   result in double-counting upon aggregation in downstream ingestors.
   ~~~~ wrong_metric{label="a"} 1 wrong_metric{label="b"} 6
 wrong_metric{label="total"} 7 ~~~~

 Labels of a Metric should be to the minimum needed to ensure
 uniqueness as every extra label is one more that users need to
 consider when determining what Labels to work with downstream.
 Labels which could be applied many MetricFamilies are candidates for
 being moved into _info metrics similar to database [normalization].
 If virtually all users of a Metric could be expected to want the
 additional label, it may be a better trade-off to add it to all
 MetricFamilies. For example if you had a MetricFamily relating to
 different SQL statements where uniqueness was provided by a label
 containing a hash of the full SQL statements, it would be okay to
 have another label with the first 500 characters of the SQL statement
 for human readability.

 Experience has shown that downstream ingestors find it easier to work
 with separate total and failure MetricFamiles rather than using
 {result="success"} and {result="failure"} Labels within one
 MetricFamily. Also it is usually better to expose separate read &
 write and send & receive MetricFamiles as full duplex systems are
 common and downstream ingestors are more likely to care about those
 values separately than in aggregate.

 All of this is not as easy as it may sound. It's an area where
 experience and engineering trade-offs by domain-specific experts in
 both exposition and the exposed system are required to find a good
 balance. Metric and Label Name Characters

 OpenMetrics builds on the existing widely adopted Prometheus text
 exposition format and the ecosystem which formed around it.
 Backwards compatibility is a core design goal. Expanding or
 contracting the set of characters that are supported by the
 Prometheus text format would work against that goal. Breaking
 backwards compatibility would have wider implications than just the

Hartmann, et al. Expires May 29, 2021 [Page 36]

Internet-Draft OpenMetrics November 2020

 wire format. In particular, the query languages created or adopted
 to work with data transmitted within the Prometheus ecosystem rely on
 these precise character sets. Label values support full UTF-8, so
 the format can represent multi-lingual metrics.

5.13. Types of Metadata

 Metadata can come from different sources. Over the years, two main
 sources have emerged. While they are often functionally the same, it
 helps in understanding to talk about their conceptual differences.

 "Target metadata" is metadata commonly external to an exposer.
 Common examples would be data coming from service discovery, a CMDB,
 or similar, like information about a datacenter region, if a service
 is part of a particular deployment, or production or testing. This
 can be achieved by either the exposer or the ingestor adding labels
 to all Metrics that capture this metadata. Doing this through the
 ingestor is preferred as it is more flexible and carries less
 overhead. On flexibility, the hardware maintenance team might care
 about which server rack a machine is located in, whereas the database
 team using that same machine might care that it contains replica
 number 2 of the production database. On overhead, hardcoding or
 configuring this information needs an additional distribution path.

 "Exposer metadata" is coming from within an exposer. Common examples
 would be software version, compiler version, or Git commit SHA.

5.13.1. Supporting Target Metadata in both Push-based and Pull-based
 Systems

 In push-based consumption, it is typical for the exposer to provide
 the relevant target metadata to the ingestor. In pull-based
 consumption the push-based approach could be taken, but more
 typically the ingestor already knows the metadata of the target
 a-priori such as from a machine database or service discovery system,
 and associates it with the metrics as it consumes the exposition.

 OpenMetrics is stateless and provides the same exposition to all
 ingestors, which is in conflict with the push-style approach. In
 addition the push-style approach would break pull-style ingestors, as
 unwanted metadata would be exposed.

 One approach would be for push-style ingestors to provide target
 metadata based on operator configuration out-of-band, for example as
 a HTTP header. While this would transport target metadata for push-
 style ingestors, and is not precluded by this standard, it has the
 disadvantage that even though pull-style ingestors should use their

Hartmann, et al. Expires May 29, 2021 [Page 37]

Internet-Draft OpenMetrics November 2020

 own target metadata, it is still often useful to have access to the
 metadata the exposer itself is aware of.

 The preferred solution is to provide this target metadata as part of
 the exposition, but in a way that does not impact on the exposition
 as a whole. Info MetricFamilies are designed for this. An exposer
 may include an Info MetricFamily called "target" with a single Metric
 with no labels with the metadata. An example in the text format
 might be: ~~~~ # TYPE target info # HELP target Target metadata targe
 t_info{env="prod",hostname="myhost",datacenter="sdc",region="europe",
 owner="frontend"} 1 ~~~~

 When an exposer is providing this metric for this purpose it SHOULD
 be first in the exposition. This is for efficiency, so that
 ingestors relying on it for target metadata don't have to buffer up
 the rest of the exposition before applying business logic based on
 its content.

 Exposers MUST NOT add target metadata labels to all Metrics from an
 exposition, unless explicitly configured for a specific ingestor.
 Exposers MUST NOT prefix MetricFamily names or otherwise vary
 MetricFamily names based on target metadata. Generally, the same
 Label should not appear on every Metric of an exposition, but there
 are rare cases where this can be the result of emergent behaviour.
 Similarly all MetricFamily names from an exposer may happen to share
 a prefix in very small expositions. For example an application
 written in the Go language by A Company Manufacturing Everything
 would likely include metrics with prefixes of acme_, go_, process_,
 and metric prefixes from any 3rd party libraries in use.

 Exposers can expose exposer metadata as Info MetricFamilies.

 The above discussion is in the context of individual exposers. An
 exposition from a general purpose monitoring system may contain
 metrics from many individual targets, and thus may expose multiple
 target info Metrics. The metrics may already have had target
 metadata added to them as labels as part of ingestion. The metric
 names MUST NOT be varied based on target metadata. For example it
 would be incorrect for all metrics to end up being prefixed with
 staging_ even if they all originated from targets in a staging
 environment).

5.14. Client Calculations and Derived Metrics

 Exposers should leave any math or calculation up to ingestors. A
 notable exception is the Summary quantile which is unfortunately
 required for backwards compatibility. Exposition should be of raw
 values which are useful over arbitrary time periods.

Hartmann, et al. Expires May 29, 2021 [Page 38]

Internet-Draft OpenMetrics November 2020

 As an example, you should not expose a gauge with the average rate of
 increase of a counter over the last 5 minutes. Letting the ingestor
 calculate the increase over the data points they have consumed across
 expositions has better mathematical properties and is more resilient
 to scrape failures.

 Another example is the average event size of a histogram/summary.
 Exposing the average rate of increase of a counter since an
 application started or since a Metric was created has the problems
 from the earlier example and it also prevents aggregation.

 Standard deviation also falls into this category. Exposing a sum of
 squares as a counter would be the correct approach. It was not
 included in this standard as a Histogram value because 64bit floating
 point precision is not sufficient for this to work in practice. Due
 to the squaring only half the 53bit mantissa would be available in
 terms of precision. As an example a histogram observing 10k events
 per second would lose precision within 2 hours. Using 64bit integers
 would be no better due to the loss of the floating decimal point
 because a nanosecond resolution integer typically tracking events of
 a second in length would overflow after 19 observations. This design
 decision can be revisited when 128bit floating point numbers become
 common.

 Another example is to avoid exposing a request failure ratio,
 exposing separate counters for failed requests and total requests
 instead.

5.15. Number Types

 For a counter that was incremented a million times per second it
 would take over a century to begin to lose precision with a float64
 as it has a 53 bit mantissa. Yet a 100 Gbps network interface's
 octet throughput precision could begin to be lost with a float64
 within around 20 hours. While losing 1KB of precision over the
 course of years for a 100Gbps network interface is unlikely to be a
 problem in practice, int64s are an option for integral data with such
 a high throughput.

 Summary quantiles must be float64, as they are estimates and thus
 fundamentally inaccurate.

5.16. Exposing Timestamps

 One of the core assumptions of OpenMetrics is that exposers expose
 the most up to date snapshot of what they're exposing.

Hartmann, et al. Expires May 29, 2021 [Page 39]

Internet-Draft OpenMetrics November 2020

 While there are limited use cases for attaching timestamps to exposed
 data, these are very uncommon. Data which had timestamps previously
 attached, in particular data which has been ingested into a general
 purpose monitoring system may carry timestamps. Live or raw data
 should not carry timestamps. It is valid to expose the same metric
 MetricPoint value with the same timestamp across expositions, however
 it is invalid to do so if the underlying metric is now missing.

 Time synchronization is a hard problem and data should be internally
 consistent in each system. As such, ingestors should be able to
 attach the current timestamp from their perspective to data rather
 than based on the system time of the exposer device.

 With timestamped metrics it is not generally possible to detect the
 time when a Metric went missing across expositions. However with
 non-timestamped metrics the ingestor can use its own timestamp from
 the exposition where the Metric is no longer present.

 All of this is to say that, in general, MetricPoint timestamps should
 not be exposed, as it should be up to the ingestor to apply their own
 timestamps to samples they ingest.

5.16.1. Tracking When Metrics Last Changed

 Presume you had a counter my_counter which was initialized, and then
 later incremented by 1 at time 123. This would be a correct way to
 expose it in the text format: ~~~~ # HELP my_counter Good increment
 example # TYPE my_counter counter my_counter_total 1 ~~~~ As per the
 parent section, ingestors should be free to attach their own
 timestamps, so this would be incorrect: ~~~~ # HELP my_counter Bad
 increment example # TYPE my_counter counter my_counter_total 1 123
   ~~~~

   In case the specific time of the last change of a counter matters,
   this would be the correct way: ~~~~ # HELP my_counter Good increment
   example # TYPE my_counter counter my_counter_total 1 # HELP
   my_counter_last_increment_timestamp_seconds When my_counter was last
   incremented # TYPE my_counter_last_increment_timestamp_seconds gauge
   # UNIT my_counter_last_increment_timestamp_seconds seconds
   my_counter_last_increment_timestamp_seconds 123 ~~~~

   By putting the timestamp of last change into its own Gauge as a
   value, ingestors are free to attach their own timestamp to both
   Metrics.

   Experience has shown that exposing absolute timestamps (epoch is
   considered absolute here) is more robust than time elapsed, seconds
   since, or similar.  In either case, they would be gauges.  For



Hartmann, et al.          Expires May 29, 2021                 [Page 40]



Internet-Draft                 OpenMetrics                 November 2020

   example ~~~~ # TYPE my_boot_time_seconds gauge # HELP
   my_boot_time_seconds Boot time of the machine # UNIT
   my_boot_time_seconds seconds my_boot_time_seconds 1256060124 ~~~~

   Is better than ~~~~ # TYPE my_time_since_boot_seconds gauge # HELP
   my_time_since_boot_seconds Time elapsed since machine booted # UNIT
   my_time_since_boot_seconds seconds my_time_since_boot_seconds 123
   ~~~~

 Conversely, there are no best practice restrictions on exemplars
 timestamps. Keep in mind that due to race conditions or time not
 being perfectly synced across devices, that an exemplar timestamp may
 appear to be slightly in the future relative to a ingestor's system
 clock or other metrics from the same exposition. Similarly it is
 possible that a "_created" for a MetricPoint could appear to be
 slightly after an exemplar or sample timestamp for that same
 MetricPoint.

 Keep in mind that there are monitoring systems in common use which
 support everything from nanosecond to second resolution, so having
 two MetricPoints that have the same timestamp when truncated to
 second resolution may cause an apparent duplicate in the ingestor.
 In this case the MetricPoint with the earliest timestamp MUST be
 used.

5.17. Thresholds

 Exposing desired bounds for a system can make sense, but proper care
 needs to be taken. For values which are universally true, it can
 make sense to emit Gauge metrics for such thresholds. For example, a
 data center HVAC system knows the current measurements, the
 setpoints, and the alert setpoints. It has a globally valid and
 correct view of the desired system state. As a counter example, some
 thresholds can change with scale, deployment model, or over time. A
 certain amount of CPU usage may be acceptable in one setting and
 undesirable in another. Aggregation of values can further change
 acceptable values. In such a system, exposing bounds could be
 counter-productive.

 For example a the maximum size of a queue may be exposed alongside
 the number of items currently in the queue like: ~~~~ # HELP
 acme_notifications_queue_capacity The capacity of the notifications
 queue. # TYPE acme_notifications_queue_capacity gauge
 acme_notifications_queue_capacity 10000 # HELP
 acme_notifications_queue_length The number of notifications in the
 queue. # TYPE acme_notifications_queue_length gauge
 acme_notifications_queue_length 42 ~~~~

Hartmann, et al. Expires May 29, 2021 [Page 41]

Internet-Draft OpenMetrics November 2020

5.18. Size Limits

 This standard does not prescribe any particular limits on the number
 of samples exposed by a single exposition, the number of labels that
 may be present, the number of states a stateset may have, the number
 of labels in an info value, or metric name/label name/label value/
 help character limits.

 Specific limits run the risk of preventing reasonable use cases, for
 example while a given exposition may have an appropriate number of
 labels after passing through a general purpose monitoring system a
 few target labels may have been added that would push it over the
 limit. Specific limits on numbers such as these would also not
 capture where the real costs are for general purpose monitoring
 systems. These guidelines are thus both to aid exposers and
 ingestors in understanding what is reasonable.

 On the other hand, an exposition which is too large in some dimension
 could cause significant performance problems compared to the benefit
 of the metrics exposed. Thus some guidelines on the size of any
 single exposition would be useful.

 ingestors may choose to impose limits themselves, for in particular
 to prevent attacks or outages. Still, ingestors need to consider
 reasonable use cases and try not to disproportionately impact them.
 If any single value/metric/exposition exceeds such limits then the
 whole exposition must be rejected.

 In general there are three things which impact the performance of a
 general purpose monitoring system ingestion time series data: the
 number of unique time series, the number of samples over time in
 those series, and the number of unique strings such as metric names,
 label names, label values, and HELP. ingestors can control how often
 they ingest, so that aspect does not need further consideration.

 The number of unique time series is roughly equivalent to the number
 of non-comment lines in the text format. As of 2020, 10 million time
 series in total is considered a large amount and is commonly the
 order of magnitude of the upper bound of any single-instance
 ingestor. Any single exposition should not go above 10k time series
 without due diligence. One common consideration is horizontal
 scaling: What happens if you scale your instance count by 1-2 orders
 of magnitude? Having a thousand top-of-rack switches in a single
 deployment would have been hard to imagine 30 years ago. If a target
 was a singleton (e.g. exposing metrics relating to an entire cluster)
 then several hundred thousand time series may be reasonable. It is
 not the number of unique MetricFamilies or the cardinality of
 individual labels/buckets/statesets that matters, it is the total

Hartmann, et al. Expires May 29, 2021 [Page 42]

Internet-Draft OpenMetrics November 2020

 order of magnitude of the time series. 1,000 gauges with one Metric
 each are as costly as a single gauge with 1,000 Metrics.

 If all targets of a particular type are exposing the same set of time
 series, then each additional targets' strings poses no incremental
 cost to most reasonably modern monitoring systems. If however each
 target has unique strings, there is such a cost. As an extreme
 example, a single 10k character metric name used by many targets is
 on its own very unlikely to be a problem in practice. To the
 contrary, a thousand targets each exposing a unique 36 character UUID
 is over three times as expensive as that single 10k character metric
 name in terms of strings to be stored assuming modern approaches. In
 addition, if these strings change over time older strings will still
 need to be stored for at least some time, incurring extra cost.
 Assuming the 10 million times series from the last paragraph, 100MB
 of unique strings per hour might indicate a use case for then the use
 case may be more like event logging, not metric time series.

 There is a hard 128 UTF-8 character limit on exemplar length, to
 prevent misuse of the feature for tracing span data and other event
 logging.

6. Security Considerations

 Implementors MAY choose to offer authentication, authorization, and
 accounting; if they so choose, this SHOULD be handled outside of
 OpenMetrics.

 All exposer implementations SHOULD be able to secure their HTTP
 traffic with TLS 1.2 or later. If an exposer implementation does not
 support encryption, operators SHOULD use reverse proxies,
 firewalling, and/or ACLs where feasible.

 Metric exposition should be independent of production services
 exposed to end users; as such, having a /metrics endpoint on ports
 like TCP/80, TCP/443, TCP/8080, and TCP/8443 is generally discouraged
 for publicly exposed services using OpenMetrics.

7. IANA Considerations

 While currently most implementations of the Prometheus exposition
 format are using non-IANA-registered ports from an informal registry
 at [PrometheusPorts], OpenMetrics can be found on a well-defined
 port.

 The port assigned by IANA for clients exposing data is <9099
 requested for historical consistency>.

Hartmann, et al. Expires May 29, 2021 [Page 43]

Internet-Draft OpenMetrics November 2020

 If more than one metric endpoint needs to be reachable at a common IP
 address and port, operators might consider using a reverse proxy that
 communicates with exposers over localhost addresses. To ease
 multiplexing, endpoints SHOULD carry their own name in their path,
 i.e. "/node_exporter/metrics". Expositions SHOULD NOT be combined
 into one exposition, for the reasons covered under "Supporting target
 metadata in both push-based and pull-based systems" and to allow for
 independent ingestion without a single point of failure.

 OpenMetrics would like to register two MIME types, "application/
 openmetrics-text" and "application/openmetrics-proto".

 EDITOR'S NOTE: "application/openmetrics-text" is in active use since
 2018, "application/openmetrics-proto" is not yet in active use.

 EDITOR'S NOTE: We would like to thank Sumeer Bhola, but kramdown 2.x
 does not support "Contributor:" any more so we will add this by hand
 once consensus has been achieved.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [normalization]
 "Database Normalization", n.d.,
 <https://en.wikipedia.org/wiki/Database_normalization>.

 [PrometheusPorts]
 "Prometheus informal port allocation", n.d.,
 <https://github.com/prometheus/prometheus/wiki/Default-

port-allocations>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://en.wikipedia.org/wiki/Database_normalization
https://github.com/prometheus/prometheus/wiki/Default-port-allocations
https://github.com/prometheus/prometheus/wiki/Default-port-allocations

Hartmann, et al. Expires May 29, 2021 [Page 44]

Internet-Draft OpenMetrics November 2020

 [timestamp]
 "Go Timestamp ProtoBuf", n.d., <https://github.com/protoco

lbuffers/protobuf/blob/2f6a7546e4539499bc08abc6900dc929782
f5dcd/src/google/protobuf/timestamp.proto>.

Authors' Addresses

 Richard Hartmann (editor)
 Grafana Labs

 Email: richih@richih.org

 Ben Kochie
 GitLab

 Email: superq@gmail.com

 Brian Brazil
 Robust Perception

 Email: brian.brazil@gmail.com

 Rob Skillington
 Chronosphere

 Email: rob.skillington@gmail.com

https://github.com/protocolbuffers/protobuf/blob/2f6a7546e4539499bc08abc6900dc929782f5dcd/src/google/protobuf/timestamp.proto
https://github.com/protocolbuffers/protobuf/blob/2f6a7546e4539499bc08abc6900dc929782f5dcd/src/google/protobuf/timestamp.proto
https://github.com/protocolbuffers/protobuf/blob/2f6a7546e4539499bc08abc6900dc929782f5dcd/src/google/protobuf/timestamp.proto

Hartmann, et al. Expires May 29, 2021 [Page 45]

