
Workgroup: Internet Engineering Task Force

Internet-Draft:

draft-rieckers-emu-eap-noob-observations-00

Published: 7 March 2022

Intended Status: Informational

Expires: 8 September 2022

Authors: J.-F. Rieckers

DFN

Observations about EAP-NOOB (RFC 9140)

Abstract

This memo is a random list of things the author noticed about EAP-

NOOB when looking at the draft and running the implementation while

capturing the packets (https://github.com/Vogeltak/hostap).

Most of the statements were written down before the author started

the implementation. By the time of writing this draft, a mostly

complete server implementation has been written. The implementation-

specific remarks are mostly thoughts the author had while planning

their own implementation.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-rieckers-emu-eap-noob-observations/.

Discussion of this document takes place on the EAP Method Update

(emu) Working Group mailing list (mailto:emu@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/emu/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-rieckers-emu-eap-noob-observations/
https://datatracker.ietf.org/doc/draft-rieckers-emu-eap-noob-observations/
mailto:emu@ietf.org
https://mailarchive.ietf.org/arch/browse/emu/
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Areas of observations

2.1. Why use JSON?

2.2. IANA-Registries

2.3. Unnecessarily long messages

2.4. Unclear status of ServerInfo and PeerInfo

2.5. Number of messages exchanged

2.6. Reconnecting State in state machine

2.7. Missing Specification

3. IANA Considerations

4. Security Considerations

5. References

5.1. Normative References

5.2. Informative References

Acknowledgements

Contributors

Author's Address

1. Introduction

(see abstract)

2. Areas of observations

2.1. Why use JSON?

The author's initial reaction when they first read the draft was:

Why use JSON and not a binary protocol? Almost no advantages of

using JSON (dynamic keys, reordering, flexible and possible deep

structure) are needed for or used in this protocol, while on the

other hand the JSON serialization is problematic for the calculation

of MAC/Hoob/... Especially the need to extract the JSON value of the

PeerInfo and ServerInfo field may cause problems in the Hash/HMAC

¶

¶

¶

https://trustee.ietf.org/license-info

calculation, if peer and server do not agree on a JSON

serialization.

The protocol has many static parts (always the field "Type", mostly

fixed parameters depending on the type, ...), so it seems as if the

number of bytes and the parsing effort could be significantly

reduced if static protocol messages (e.g. like in the TLS Handshake

messages) were used.

If the message format should be more flexible, CBOR seems to be a

good idea as well. Here a simple map (best with numbers as keys)

could be used, combined with deterministic encoding (Section 4.2 of

[RFC8949]).

2.2. IANA-Registries

EAP-NOOB has a striking number of IANA-registered protocol

parameters with a dedicated IANA registry page only for EAP-NOOB. At

first glance this seems a bit odd, since the protocol does not seem

to be this complex.

Especially the choice for a designated registry for cryptosuites

seems odd. With the current situation, every new curve has to be

respecified instead of just using existing registries. This requires

implementers to update their EAP-NOOB implementation instead of just

updating the cryptographic library behind it. The current

specification specifies only two cryptosuites, which may not be

feasible for all use cases, especially if higher security levels are

required.

As a possible alternative, the COSE algorithms registry provides

short identifiers for many relevant parameters.

Another odd thing is the Server-/PeerInfo Registry, see Section 2.4.

2.3. Unnecessarily long messages

It seems that the protocol uses an unnecessarily high number of

bytes to transfer the information. Though this should not lead to

issues on the EAP/WPA2 level, it seems that the protocol is not

well-suited for constrained devices.

This is especially prominent for the encoding of the ServerInfo and

PeerInfo fields. Since the IANA policy is "Specification required",

shorter identifiers could have been used instead of human-readable

names, leading to shorter messages.

The author was also a little confused about the reason why the

PeerId is always retransmitted. Other EAP-Methods do just fine

without any explicit information to identify the exact EAP instance

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8949#section-4.2

running, so it seems a bit odd that the server and the peer keep

telling each other what the PeerId is. From the author's

understanding, the PeerId only has to be transmitted once, either in

the first EAP-NOOB message from the peer to the server, if the

PeerId was assigned in a previous EAP-NOOB conversation, or in the

second EAP-NOOB message from the server to the peer, if a new PeerId

has to be allocated. The PeerId can then be saved to the current EAP

state information. This also seems useful to prevent bad

implementations where the PeerId is not checked every time (since it

is always the same anyway), but for the calculation of Hoob/...,

only the one transmitted last is used, which an attacker could have

modified. However, this is a random thought of how broken

implementations could be; the author has not yet analyzed the actual

attack vector or its effects.

In the server implementation by the author, the PeerId sent by the

client is ignored in all messages except the aforementioned.

2.4. Unclear status of ServerInfo and PeerInfo

The specification is somewhat ambiguous regarding the ServerInfo and

PeerInfo fields. Section 3.3.2 of [RFC9140] specifies them as "The

format and semantics of these objects MUST be defined by the

application that uses the EAP-NOOB method." On the other hand,

specific fields are defined in Section 5.4 and 5.5. In Section 6.7

(Channel Binding) the RFC states: "The peer MAY include in PeerInfo

any data items that it wants to bind to the EAP-NOOB association and

to the exported keys."

This is especially interesting for the calculation of Hoob/MACs/

MACp/... since the PeerInfo and ServerInfo fields are encoded as

JSON, both the Server and the Peer have to somehow agree on a

serialization of the JSON object inside. This could become extremely

tricky once either side sends attributes the other one does not

expect, e.g. a field with an additional object inside. Since it is

JSON and not a JSON-encoded string, the client has to parse the

whole JSON tree in order to compute the correct Hoob/MACs/MACp/...

value. Again, this could be easier with other data representation

formats. With CBOR, the specification could simply use the bytes,

which the CBOR parser could easily distinguish. Additionally,

[RFC8949] specifies a canonical encoding, so both peer and server

can generate the Hash/HMAC deterministically, even if the

implementation only saves the content of the fields, not the encoded

message.

Since the IANA registration procedure for PeerInfo/ServerInfo is

"Specification required", additional use cases for these fields

cannot easily be added. For a Masters project at the University of

Bremen, students are looking into MUD ([RFC8520]), and it would be

¶

¶

¶

¶

interesting to transmit the MUD URL in the PeerInfo, or the server

could transmit some initial (public) configuration parameters for

the device, e.g. the URI for a SmartHome controller. Since RFC 9140

does not specify how to deal with unexpected or unknown fields, this

could lead to unexpected behavior, if the peer does not understand

the server's parameters.

2.5. Number of messages exchanged

The number of messages exchanged seems to be on the high side.

For the initial exchange this leads to 4 roundtrips, for the

reconnect exchange 5 roundtrips, which seems unnecessarily high.

(The counts given start with the EAP-Response/Identity packet.)

Let's describe one straightforward way to reduce the number of

messages needed, primarily for the initial handshake:

The server could send its supported Versions, Cryptosuites and

Directions in the first EAP-NOOB message.

If the peer is in the initial state, in the last message of the

common handshake, the peer already knows that it wants to negotiate

a new set of connection parameters, so it could already transmit its

ECDHE parameters along with the PeerInfo. If the server had already

sent its supported versions, cryptosuites and directions, it could

already choose the suitable methods.

In the answer the server could then transmit its ServerInfo and its

ECDHE parameters. This saves at least one roundtrip. It also gives

the server the ability to send different ServerInfo parameters

depending on the type of the peer device. This would also enable

configuration provisioning; for instance, if a light bulb is

connected, the server could already send the address of the light

controller to which the bulb should connect to once the EAP-NOOB

connection is established. (See previous point on ServerInfo and

PeerInfo.)

If the peer is already connected, sending the supported versions and

cryptosuites in the first message would also give the peer enough

information to decide whether a renegotiation with a newer version

or updated cryptographic keys is necessary and could already

transmit new ECDHE parameters.

Details of these thoughts have been put into the draft [I-D.draft-

rieckers-emu-eap-ute]. In this draft, all standard exchanges consist

of 3 roundtrips.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC9140]

[I-D.draft-rieckers-emu-eap-ute]

[RFC8520]

2.6. Reconnecting State in state machine

The existence of the "Reconnecting" state in the state diagram is a

bit confusing, since the differentiation between Reconnecting and

Registered State does not serve a further purpose other than to

determine if the peer is currently connected to a network. For the

server, the difference between Reconnecting and Registered state

should not be relevant at all, since it is never the initiator of

the EAP conversation. Once the peer loses its connection, a

reconnect attempt has to be started anyway, so the peer should never

start an EAP-NOOB handshake when in state 4 (this behavior is also

specified). Specifying this state may help with implementation, but

it might also confuse the implementer.

2.7. Missing Specification

RFC 9140 never explicitly specifies which value should be used for

the Protocol Version field. Only example values are given in Section

3.3.2 for Vers and Verp, from which the version number 1 could be

guessed.

3. IANA Considerations

This memo includes no request to IANA.

4. Security Considerations

This document discusses a specification that is intended to provide

security when initiating Internet access.

5. References

5.1. Normative References

Aura, T., Sethi, M., and A. Peltonen, "Nimble Out-of-Band

Authentication for EAP (EAP-NOOB)", RFC 9140, DOI

10.17487/RFC9140, December 2021, <https://www.rfc-

editor.org/info/rfc9140>.

5.2. Informative References

Rieckers, J.-F., "User-assisted Trust Establishment (EAP-

UTE)", Work in Progress, Internet-Draft, draft-rieckers-

emu-eap-ute-00, 2022, <https://www.ietf.org/archive/id/

draft-rieckers-emu-eap-ute-00.txt>.

Lear, E., Droms, R., and D. Romascanu, "Manufacturer

Usage Description Specification", RFC 8520, DOI 10.17487/

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc9140
https://www.rfc-editor.org/info/rfc9140
https://www.ietf.org/archive/id/draft-rieckers-emu-eap-ute-00.txt
https://www.ietf.org/archive/id/draft-rieckers-emu-eap-ute-00.txt

[RFC8949]

RFC8520, March 2019, <https://www.rfc-editor.org/info/

rfc8520>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

Acknowledgements

TBD

Contributors

Carsten Bormann

Universität Bremen TZI

Postfach 330440

D-28359 Bremen

Germany

Phone: +49-421-218-63921

Email: cabo@tzi.org

Author's Address

Jan-Frederik Rieckers

Deutsches Forschungsnetz | German National Research and Education

Network

Alexanderplatz 1

10178 Berlin

Germany

Email: rieckers@dfn.de

URI: www.dfn.de

¶

https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:rieckers@dfn.de
https://datatracker.ietf.org/www.dfn.de

	Observations about EAP-NOOB (RFC 9140)
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Areas of observations
	2.1. Why use JSON?
	2.2. IANA-Registries
	2.3. Unnecessarily long messages
	2.4. Unclear status of ServerInfo and PeerInfo
	2.5. Number of messages exchanged
	2.6. Reconnecting State in state machine
	2.7. Missing Specification

	3. IANA Considerations
	4. Security Considerations
	5. References
	5.1. Normative References
	5.2. Informative References

	Acknowledgements
	Contributors
	Author's Address

