
Workgroup: Internet Engineering Task Force

Internet-Draft: draft-rieckers-emu-eap-ute-01

Published: 22 September 2022

Intended Status: Standards Track

Expires: 26 March 2023

Authors: J.-F. Rieckers

DFN

User-assisted Trust Establishment (EAP-UTE)

Abstract

The Extensible Authentication Protocol (EAP) provides support for

multiple authentication methods. This document defines the EAP-UTE

authentication method for a User-assisted Trust Establishment

between the peer and the server. The EAP method is intended for

bootstrapping Internet-of-Things (IoT) devices without preconfigured

authentication credentials. The trust establishment is achieved by

transmitting a one-directional out-of-band (OOB) message between the

peer and the server to authenticate the in-band exchange. The peer

must have a secondary input or output interface, such as a display,

camera, microphone, speaker, blinking light, or light sensor, so

that dynamically generated messages with tens of bytes in length can

be transmitted or received.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-rieckers-emu-eap-ute/.

Discussion of this document takes place on the EAP Method Update

(emu) Working Group mailing list (mailto:emu@ietf.org), which is

archived at https://mailarchive.ietf.org/arch/browse/emu/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-rieckers-emu-eap-ute/
https://datatracker.ietf.org/doc/draft-rieckers-emu-eap-ute/
mailto:emu@ietf.org
https://mailarchive.ietf.org/arch/browse/emu/
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 26 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. EAP-UTE protocol

3.1. Protocol Overview

3.2. Messages

3.2.1. General Message format

3.2.2. Server greeting

3.2.3. Client greeting

3.2.4. Server Keyshare

3.2.5. Client Finished

3.2.6. Client Completion Request

3.2.7. Server Completion Response

3.2.8. Client Keyshare

3.3. Protocol Sequence

3.3.1. Initial Exchange

3.3.2. User-assisted out-of-band step

3.3.3. Waiting Exchange

3.3.4. Completion Exchange

3.3.5. Reconnect Exchange

3.3.6. Upgrade Exchange

3.4. MAC and OOB calculation and Key derivation

3.4.1. MAC Calculation

3.4.2. Key derivation

3.4.3. Updating of keying materials

3.5. Error handling

4. Security Considerations

4.1. EAP Security Claims

5. IANA Considerations

6. Implementation Status

6.1. Server Implementation of EAP-UTE

¶

¶

¶

https://trustee.ietf.org/license-info

6.2. Client Implementation in ESP-IDF

7. Differences to RFC 9140 (EAP-NOOB)

7.1. Different encoding

7.2. Implicit transmission of peer state

7.3. Extensibility

8. References

8.1. Normative References

8.2. Informative References

Acknowledgements

Author's Address

1. Introduction

This document describes a method for registration, authentication,

and key derivation for network-connected devices, especially with

low computational power and small or no interaction interfaces, such

as devices that are part of the Internet of Things (IoT). These

devices may come without preconfigured trust anchors or have no

possibility to receive a network configuration that enables them to

connect securely to a network.

This document uses the basic design principle behind the EAP-NOOB

method described in [RFC9140] and aims to improve some key elements

of the protocol to better address the needs for IoT devices. This is

mainly achieved by using CBOR with numeric keys instead of JSON to

encode the exchanged messages and by modifying the message flow.

TODO: The EAP-UTE protocol also allows extensions, they are still

TBD. Basically, the messages can just include additional fields with

newly defined meanings.

The possible problems of EAP-NOOB are discussed in [I-D.draft-

rieckers-emu-eap-noob-observations]. This document provides a

specification which aims to address these concerns.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

TODO frequently used terms

authenticator

peer

server

¶

¶

¶

¶

¶

¶

¶

¶

¶

3. EAP-UTE protocol

This section defines the EAP-UTE method.

3.1. Protocol Overview

TODO: The introduction text is basically copied from RFC9140. Should

be reworded.

The EAP-UTE method execution spans two or more EAP conversations,

called Exchanges in this specification. Each Exchange consists of

several EAP request-response pairs. In order to give the user time

to deliver the OOB message between the peer and the server, at least

two separate EAP conversations are needed.

The overall protocol starts with a version and cryptosuite

negotiation and peer detection. Depending on the current state of

the peer and server, different exchanges are selected.

If the server or the peer are in the unregistered state, peer and

server exchange nonces and keys for the Ephemeral Elliptic Curve

Diffie-Hellman. This is called the Initial Exchange. The Initial

Exchange results in an EAP-Failure, since neither the server nor the

peer are authenticated.

After the Initial Exchange, the user-assisted step of trust

establishment takes place. The user delivers one OOB message either

from the peer to the server or from the server to the peer.

While peer and server are waiting for completion of the OOB Step,

the peer MAY probe the server by reconnecting, to check for

successful transmission of the OOB message. This probe request will

result in a Waiting Exchange and EAP-Failure, if the server has not

yet received the OOB message.

If either the server or the peer have received the OOB message, the

probe request will result in a Completion Exchange. In the

Completion Exchange, peer and server exchange message authentication

codes over the previous in-band messages and the OOB message. The

Completion Exchange may result in EAP-Success. Once the peer and

server have performed a successful Completion Exchange, both

endpoints store the created association in persistent storage.

After a successful Completion Exchange, the peer and server can use

the Reconnect Exchange, to create a new association with new

cryptographic bindings. The user-assisted OOB step is not necessary,

since the peer and server can infer the mutual authentication by

using the persistent data stored after the Completion Exchange.

¶

¶

¶

¶

¶

¶

¶

¶

¶

type:

payload:

additional:

Figure 1: EAP-UTE Server-Peer Association State Machine

3.2. Messages

3.2.1. General Message format

All EAP-UTE messages consist of a CBOR Sequence with the following

elements

integer to indicate the type of the message

a byte-string containing a CBOR encoded map

an optional byte-string containing additional

information, e.g. a message authentication code, encoded as CBOR

map

Remark from the author:

This format is just a first draft. It allows a very simple MAC

calculation, since the MACs can just consist of the concatenated

previous messages. This also allows an easy addition of extensions,

since the extension payloads are automatically included in the MAC

calculation, if they are part of the CBOR payload. Additionally, the

additional section allows for extensions that do not need integrity

protection, e.g. for referal to a different server in the

background.

The message payloads are encoded in CBOR [RFC8949] as maps. In Table

1 the different message fields, their assigned mapkey and the type

are listed.

 Waiting

 .------.

 | V

 +------------------+ +---------------------+

.->| Unregistered (0) | Initial | Waiting for OOB (1) |

| | (ephemeral) |-------->| (ephemeral) |

| +------------------+ +---------------------+

| | |

| User Reset .-----------------' | OOB Input

| | Completion |

| | |

| V V

| +----------------+ +------------------+

'-| Registered (3) | Completion | OOB Received (2) |

 | (persistent) |<-----------| |

 +----------------+ +------------------+

¶

¶

¶

¶

¶

¶

Mapkey Type Label Description

1
Array of

Integers
Versions

The versions supported by

the server. For this

document the version is 1

2 Integer Version
The version selected by the

peer

3 Array Ciphers*

The ECDHE curves and Hash

algorithms supported by the

server.

4 Array Cipher*

The ECHDE curve and Hash

algorithm selected by the

peer

5 Integer Directions

The OOB-Directions

supported by the server.

0x01 for peer-to-server,

0x02 for server-to-peer,

0x03 for both

6 Integer Direction

The OOB-Direction selected

by the peer. SHOULD be

either 0x01 or 0x02, but

MAY be 0x03 for both

directions

7 Map ServerInfo

Information about the

server, e.g. a URL for OOB-

message-submission

8 Map PeerInfo

Information about the peer,

e.g. manufacturer/serial

number

9 bytes Nonce_P Peer Nonce

10 bytes Nonce_S Server Nonce

11 Map Key_P**
Peer's ECDHE key according

to the chosen cipher

12 Map Key_S** Server's ECDHE key

13
null/

bytes
MAC_S***

Indication that Server MAC

is included (null value)

and byte string in

additional section

14
null/

bytes
MAC_P***

Indication that Peer MAC is

included (null value) and

byte string in additional

section

15 text PeerId Peer Identifier

16 bytes OOB-Id
Identifier of the OOB

message

17 int RetryInterval

Number of seconds to wait

after a failed Completion

Exchange

18 Map AdditionalServerInfo

Mapkey Type Label Description

Additional information

about the server. TODO: not

sure about this yet.

Table 1: Mapkeys for CBOR encoding

*: The Ciphers field consists of an array of two arrays. The first

array contains all supported ECDHE curves using the identifiers from

the COSE Elliptic Curves registry. The server MUST NOT offer and the

peer MUST NOT accept curves not suited for ECDH. The second array

contains all supported Hash algorithms using the indentifiers from

the COSE Algorithms registry. The server MUST only offer and the

peer MUST only accept Hash algorithms. The Cipher field consists of

an array of two items, first the selected ECDHE curve, second the

selected Hash algorithm.

**: The peer and server Key are encoded as COSE key [RFC8152].

***: The inclusion of MAC_S or MAC_P map keys with a NULL map value

indicate that the MAC value is included in the additional field of

the CBOR sequence. The MAC field is encoded with the same map key as

byte string, its length is determined by the used cryptosuite.

A message MUST NOT contain both MAC_S and MAC_P, only one of these

values can be present in a message.

3.2.1.1. Thoughts about the message format

EAP-NOOB [RFC9140] uses JSON as encoding. Problems of using JSON are

discussed in section 2.1 of [I-D.draft-rieckers-emu-eap-noob-

observations].

For this specification, the following encodings have been

considered:

Static encoding

This allows a minimal number of bytes and requires a minimal

amount of parsing, since the format and order of the message

fields is specified exactly. However, this encoding severely

affects the extensibility, unless a specific extension format is

used. The specification of this protocol also has optional fields

in some message types, so this would also have to be addressed.

CBOR with static fields (e.g. Array)

This approach has a slightly higher number of bytes than the

static encoding, but allows an easier extensibility. The required

fields can be specified, so the order of the protocol field is

static and a parser has minimal effort to parse the protocol

fields. However, this might be problematic in future protocol

¶

¶

¶

¶

¶

¶

*

¶

*

versions, when new fields are introduced. Like with static

encoding, this also requires a mechanism for optional fields in

the different message types.

CBOR map with numeric keys

To mitigate the problems of optional fields while keeping the

parsing effort low, CBOR maps with numeric keys can be used. All

protocol fields are identified by a unique identifier, specified

in this document. A parser can simply loop through the CBOR map.

Since CBOR maps have a canonical order, minimal implementations

may rely on this fact to parse the information needed.

On the basis of this discussion, this draft will use a CBOR map as

message encoding. However, this is just a first draft and

suggestions for other message formats are highly welcome.

3.2.2. Server greeting

Message Type: 1

Required Attributes:

Versions

Ciphers

Directions

Optional Attributes:

ServerInfo

RetryInterval?

3.2.3. Client greeting

Message Type: 2

Required Attributes:

Version

Cipher

Nonce_P

Key_P

Optional Attributes:

PeerId

¶

*

¶

¶

* ¶

* ¶

- ¶

- ¶

- ¶

* ¶

- ¶

- ¶

* ¶

* ¶

- ¶

- ¶

- ¶

- ¶

* ¶

- ¶

PeerInfo

Direction

3.2.4. Server Keyshare

Message Type: 3

Required Attributes:

Key_S

Nonce_S

Optional Attributes:

MAC_S

PeerId

AdditionalServerInfo?

RetryInterval?

3.2.5. Client Finished

Message Type: 4

Optional Attributes:

MAC_P

3.2.6. Client Completion Request

Message Type: 5

Required Attributes:

Nonce_P

PeerId

Optional Attributes:

OOB-Id

3.2.7. Server Completion Response

Message Type: 6

- ¶

- ¶

* ¶

* ¶

- ¶

- ¶

* ¶

- ¶

- ¶

- ¶

- ¶

* ¶

* ¶

- ¶

* ¶

* ¶

- ¶

- ¶

* ¶

- ¶

* ¶

Required Attributes:

Nonce_S

MAC_S

Optional Attributes:

OOB-Id

3.2.8. Client Keyshare

Message Type: 7

Required Attributes:

PeerId

Nonce_P

Key_P

3.3. Protocol Sequence

After reception of the EAP-Response/Identity packet, the server

always answers with a Server Greeting packet (Type 1). This Server

Greeting contains the supported protocol versions, ciphers and OOB

directions along with the ServerInfo.

Depending on the peer state, the peer chooses the next packet. If

the peer is in the unregistered state and thus does not yet have an

ephemeral or persistent state, it chooses the Client Greeting, which

starts the Initial Handshake.

If the peer is in the Waiting for OOB or OOB Received state, the

Initial Exchange has completed and the OOB step needs to take place.

If the negotiated direction is from server to peer, the peer SHOULD

NOT try to reconnect until the peer received an OOB message. If the

negotiated direction is from peer to server, the peer can probe the

server at regular intervals to check if the OOB message to the

server has been delivered. The peer will send a Client Completion

Request to initiate the Waiting/Completion Exchange.

If the peer is in the Registered state, it may choose between three

different Reconnect Exchanges. If the peer wants a reconnect without

new key exchanges, it will send a Client Completion Request,

starting the Reconnect Exchange without ECDHE. If the peer wants to

reconnect with new key exchanges, it will send a Client Key Share

packet, which starts the Reconnect Exchange with new ECDHE exchange.

If the peer wants to upgrade to a new protocol version or change the

* ¶

- ¶

- ¶

* ¶

- ¶

* ¶

* ¶

- ¶

- ¶

- ¶

¶

¶

¶

used cipher suites, it will send a Client Greeting, starting the

Upgrade exchange.

3.3.1. Initial Exchange

The Initial Exchange comprises of the following packets:

After the Server Greeting common to all exchanges, the peer sends a

Client Greeting packet. The Client Greeting contains the peer's

chosen protocol version, cipher and direction of the OOB message.

The peer MUST only choose values for these fields offered by the

server in it's Server Greeting. For Direction the peer SHOULD choose

either 0x01 (peer-to-server) or 0x02 (server-to-peer) if the server

offered 0x03 (both directions). Additionally, the Client Greeting

contains PeerInfo, a nonce and the peer's ECDHE public key.

The server will then answer with a Server Keyshare packet. The

packet contains a newly allocated PeerId, the server's nonce and the

ECDHE public key.

The peer then answers with a Client Finished packet without any

payload.

Since no authentication has yet been achieved, the server then

answers with an EAP-Failure.

¶

¶

¶

¶

¶

¶

Figure 2: Initial Exchange

3.3.2. User-assisted out-of-band step

After the completed Initial Exchange, the peer or the server,

depending on the negotiated direction, will generate an OOB message.

This message consists of a 16-byte freshly generated nonce (OOB-

Nonce), the authentication value OOB-Auth and the PeerId. The

calculation of the OOB-Auth field is described in Section 3.4.

The devices MAY also include the OOB-Id field, if size of the OOB

message is not important.

Devices SHOULD export the message as a CBOR sequence of byte strings

in the order PeerId, OOB-Nonce, OOB-Auth (, optionally OOB-Id). The

format of the OOB message MAY be altered by the application,

depending on the available interfaces.

EAP Peer Authenticator EAP Server

 | | |

 |<- EAP-Request/Identity -| |

 | |

 |-- EAP-Response/Identity ------------->|

 | (NAI=new@eap-ute.arpa) |

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER GREETING (1) |

 | Versions, Ciphers, ServerInfo, |

 | Directions |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT GREETING (2) |

 | Version, Cipher, PeerInfo, |

 | Direction, Nonce_P, Key_P |

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER KEYSHARE (3) |

 | PeerId, Key_S, Nonce_S |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT FINISHED (4) |

 | |

 | |

 |<- EAP-Failure ------------------------|

 | |

¶

¶

¶

¶

3.3.3. Waiting Exchange

The Waiting Exchange is performed if neither the server nor the peer

have received an OOB message yet.

The peer probes the server with a Client Completion Request. In this

packet the peer omits the optional OOB-Id field. If the OOB message

is delivered from the peer to the server, the server may have

received an OOB message already. To allow the server to complete the

association, the peer includes a nonce, along with the allocated

PeerId. The nonce MAY be repeated for all Client Completion Requests

while waiting for the completion, but MUST be recalculated if a new

initial handshake is performed.

If the server did not receive an OOB message, it answers with an

EAP-Failure.

Figure 3: Waiting Exchange

3.3.4. Completion Exchange

The Completion Exchange is performed to finish the mutual trust

establishment.

As in the Waiting Exchange, the peer probes the server with a Client

Completion Request. The nonce of the previous Client Completion

Requests which did not lead to a completion MAY be repeated. If the

peer has received an OOB message, the peer will include the OOB-Id

in the Completion Request. If the peer did not include an OOB-Id,

the server will include the OOB-Id of its received OOB message. In

¶

¶

¶

EAP Peer Authenticator EAP Server

 | | |

 |<- EAP-Request/Identity -| |

 | |

 |-- EAP-Response/Identity ------------->|

 | (NAI=waiting@eap-ute.arpa) |

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER GREETING (1) |

 | Versions, Ciphers, Server Info, |

 | Directions |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT COMPLETION REQUEST (5) |

 | PeerId, Nonce_P |

 | |

 |<- EAP-Failure ------------------------|

 | |

¶

the unlikely case that both directions are negotiated and an OOB

message is delivered from the peer to the server and from the server

to the peer at the same time, as a tiebreaker, the OOB message from

the server to the peer is chosen.

The server generates a new nonce, calculates MAC_S according to

Section 3.4 and sends a Server Completion Response to the peer.

The peer will then calculate the MAC_P value and send a Client

Finished message to the server.

After checking the MAC_P value, the server then answers with an EAP-

Success.

Figure 4: Completion Exchange

3.3.5. Reconnect Exchange

The Reconnect Exchange is performed if both the peer and the server

are in the registered state.

¶

¶

¶

¶

EAP Peer Authenticator EAP Server

 | | |

 |<- EAP-Request/Identity -| |

 | |

 |-- EAP-Response/Identity ------------->|

 | (NAI=waiting@eap-ute.arpa) |

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER GREETING (1) |

 | Versions, Ciphers, Server Info, |

 | Directions |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT COMPLETION REQUEST (5) |

 | PeerId, Nonce_P, [OOB-Id] |

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER COMPLETION RESPONSE (6) |

 | [OOB-Id], Nonce_S, MAC_S |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT FINISHED (4) |

 | MAC_P |

 | |

 |<- EAP-Success ------------------------|

 | |

¶

For a reconnect without new exchanging of ECDHE keys, the peer will

answer to the Server Greeting with a Client Completion Request,

including the PeerId and a nonce.

To distinguish a Reconnect Exchange from a Waiting/Completion

Exchange, the server will look up the saved states for the

transmitted PeerId. If the server has a persistent state saved, it

will choose the Reconnect Exchange, otherwise it will choose the

Waiting Exchange.

The server will then generate a nonce and the MAC_S value according

to Section 3.4 and send a Server Completion Response with the nonce

and MAC_S value.

The peer then sends a Client Finished message, containing the

computed MAC_P value.

The server then answers with an EAP-Success.

Figure 5: Reconnect Exchange without new ECDHE exchange

¶

¶

¶

¶

¶

EAP Peer Authenticator EAP Server

 | | |

 |<- EAP-Request/Identity -| |

 | |

 |-- EAP-Response/Identity ------------->|

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER GREETING (1) |

 | Versions, Ciphers, Server Info, |

 | Directions |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT COMPLETION REQUEST (5) |

 | PeerId, Nonce_P |

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER COMPLETION RESPONSE (6) |

 | Nonce_S, MAC_S |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT FINISHED (4) |

 | MAC_P |

 | |

 |<- EAP-Success ------------------------|

 | |

For a Reconnect Exchange with new ECDHE exchange, the peer will send

a Client Keyshare in response to the Server Greeting. The Client

Keyshare will include the PeerId, a nonce and a new ECDHE key.

The server will also generate a new ECDHE key, a nonce and compute

MAC_S according to Section 3.4.

The peer will then calculate the MACs and keying material according

to Section 3.4.3 and send a Client Finished message to the server,

including its MAC_P value.

The server checks the MAC_P value and answers with an EAP-Success.

Figure 6: Reconnect Exchange with new ECDHE exchange

3.3.6. Upgrade Exchange

The Upgrade Exchange is performed to upgrade either the EAP-UTE

version or the used cipher suite, or refresh the cryptographic

keying material.

A client may choose to perform this exchange instead of a reconnect

exchange. The client SHOULD only choose this if the server offers a

¶

¶

¶

¶

EAP Peer Authenticator EAP Server

 | | |

 |<- EAP-Request/Identity -| |

 | |

 |-- EAP-Response/Identity ------------->|

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER GREETING (1) |

 | Versions, Ciphers, Server Info, |

 | Directions |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT KEYSHARE (7) |

 | PeerId, Nonce_P, Key_P |

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER KEYSHARE (3) |

 | Nonce_S, Key_S, MAC_S |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT FINISHED (4) |

 | MAC_P |

 | |

 |<- EAP-Success ------------------------|

 | |

¶

better version or cipher suite in its Server Greeting or if the

current set of cryptographic keys has been used for an application

specific amount of reconnect exchanges or time.

If the client cooses the Upgrade Exchange, it answers to the Server

Greeting with a Client Greeting and includes the PeerId field. To

distinguish the Upgrade Exchange from the Intial Exchange, the

server will look up the PeerId and, if a persistent association is

found, answer with its Server Keyshare, including the optional MAC_S

field, calculated according to Section 3.4.

The peer will then calculate the MACs and keying material according

to Section 3.4.3 and send a Client Finished message to the server,

including its MAC_P value.

The server checks the MAC_P value of the client and answers with an

EAP-Success. Afterwards the server updates the association stored

for the client.

Figure 7: Upgrade Exchange

¶

¶

¶

¶

EAP Peer Authenticator EAP Server

 | | |

 |<- EAP-Request/Identity -| |

 | |

 |-- EAP-Response/Identity ------------->|

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER GREETING (1) |

 | Versions, Ciphers, ServerInfo, |

 | Directions |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT GREETING (2) |

 | Version, Cipher, PeerInfo, |

 | PeerId, Nonce_P, Key_P |

 | |

 |<- EAP-Request/EAP-UTE ----------------|

 | SERVER KEYSHARE (3) |

 | Key_S, Nonce_S, MAC_S |

 | |

 |-- EAP-Response/EAP-UTE -------------->|

 | CLIENT FINISHED (4) |

 | MAC_P |

 | |

 |<- EAP-Failure ------------------------|

 | |

3.4. MAC and OOB calculation and Key derivation

3.4.1. MAC Calculation

For the MAC calculation, the exchanged messages up to the current

message are concatenated into the "Messages" field. This field

consists for each message of the CBOR sequence of the message type

and the CBOR encoded message payload as byte-string. The optional

MAC value at the end of the message is omitted.

For the following definition || denotes a concatenation.

Messages = Type_1 || Length_1 || Payload_1 || ... || Type_n ||

Length_n || Payload_n

The Messages field is calculated separately for each exchange, i.e.

the Messages field for the Initial Exchange will include the Server

Greeting, Client Greeting, Server Keyshare and Client Finished

message.

The OOB-Auth field is calculated as hash over the concatenation of

the Messages field of the Initial Exchange, the generated OOB-Nonce

and the direction of the Out-of-band message. The length of the OOB-

Auth field is determined by the used hash algorithm.

OOB-Auth = H(Messages || OOB-Nonce || Direction)

The OOB-Id, used to identify the used OOB message, is calculated

over the string "OOB-Id" concatenated with the OOB-Auth field. The

hash result is truncated to 16 bytes.

OOB-Id = H("OOB-Id" || OOB-Auth)[0..15]

For the calculation of the MAC_S and MAC_P value, the Messages field

will only include the messages sent up to the point of the MAC

calculation. For MAC_S this also includes the Server Keyshare/Server

Completion Response message. For MAC_P the Client Finished message

is omitted from the Messages field, so both MAC_P and MAC_S have the

same input for the Messages field.

Depending on the performed Exchange, the MAC calculation differs.

For the Completion Exchange, the MAC calculation includes the

direction (0x01 for peer to server, 0x02 for server to peer), a Hash

of the Messages field of the Initial Exchange, a hash of the

Messages of the Completion exchange and the OOB-Nonce.

MAC_P = HMAC(K_p, 0x01 || H(Messages (Initial Exchange)) ||

H(Messages) || OOB-Nonce)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

MAC_S = HMAC(K_s, 0x02 || H(Messages (Initial Exchange)) ||

H(Messages) || OOB-Nonce)

For the reconnect exchanges the MAC calculation will include only

the direction and a hash of the Messages field of the Reconnect

Exchange.

MAC_P = HMAC(K_p, 0x01 || H(Messages))

MAC_S = HMAC(K_s, 0x02 || H(Messages))

3.4.2. Key derivation

The key derivation is performed differently depending on the

performed Exchange.

Performed Exchange
KDF input

field
Value

Length

(bytes)

Completion Exchange Z

ECDHE shared secret

from Key_P and

Key_S

variable

AlgorithmId "EAP-UTE" 7

PartyUInfo Nonce_P 32

PartyVInfo Nonce_S 32

SuppPrivInfo OOB-Nonce 32

Reconnect Exchange

without ECDHE
Z Association_Key 32

AlgorithmId "EAP-UTE" 7

PartyUInfo Nonce_P 32

PartyVInfo Nonce_S 32

SuppPrivInfo (null) 0

Reconnect Exchange

with new ECHDE

exchange or

cryptosuite change

Z

ECDHE shared secret

from Key_P and

Key_S

variable

AlgorithmId "EAP-UTE" 7

PartyUInfo Nonce_P 32

PartyVInfo Nonce_S 32

SuppPrivInfo Association_Key 32

Table 2

The output of the key derivation also depends on the used exchange

method.

Performed Exchange
KDF output

bytes
Used as

Length

(bytes)

Completion Exchange or

Upgrade Exchange
0..63 MSK 64

¶

¶

¶

¶

¶

¶

Performed Exchange
KDF output

bytes
Used as

Length

(bytes)

64..127 EMSK 64

128..191 AMSK 64

192..223 MethodId 32

224..255 K_s 32

256..287 K_p 32

288..319 Association_Key 32

Reconect exchanges 0..63 MSK 64

64..127 EMSK 64

128..191 AMSK 64

192..223 MethodId 32

224..255 K_s 32

256..287 K_p 32

Table 3

3.4.3. Updating of keying materials

The client and server commit to new keying material at different

positions in the protocol. If the final Client Finished message is

lost, this leads to the client committing to the change and the

server keeping the old state.

To circumvent this issue, the client will save the previous keying

material until the change is authenticated by a following reconnect

exchange.

Upon Reception of the MAC_S value from the server in a Reconnect or

Upgrade Exchange, the client will perform the following steps:

The client will execute the key derivation using the current

Association_Key and calculate the MAC_S value. If the received

MAC_S value matches the locally computed one, the client purges

the Prev_Association_Key, Prev_Cipher and Prev_Version values, if

they are present. The previous values can be purged since this

authentication proves that the server committed to the state

change in a previous Upgrade Exchange. Afterwards the client

calculates the MAC_P value and sends the Client Finished message.

If the MAC_S value does not match, and the Prev_* values are

empty, the client sends an error message and aborts the key

derivation.

The client will execute the key derivation using the

Prev_Association_Key and calculate the MAC_S value. If the

received MAC_S value matches the new locally computed MAC_S, this

indicates that the server has not commited to a previous update

of cryptographic keys in the last Upgrade Exchange. As a result,

the client will move the values of Prev_Association_Key,

¶

¶

¶

*

¶

*

¶

*

Prev_Cipher and Prev_Version values to Association_Key, Cipher

and Version and pures the Prev_* values. Afterwards the client

calculates the MAC_P value and sends the Client Finished message.

If the second MAC_S value did not match either, the client sends

an error message and aborts the key derivation.

Finally, if the current exchange is an Upgrade Exchange, the

client will save the newly generated Association_Key along with

the current cipher and version into the persistent storage. The

previous values of these fields are moved to the Prev_* slots.

3.5. Error handling

TBD

4. Security Considerations

This document has a lot of security considerations, however they

remain TBD

4.1. EAP Security Claims

TODO. See [RFC3748], section 7.2.1

5. IANA Considerations

This document has IANA actions, if approved. What they are exactly

needs to be defined in detail.

The EAP Method Type number for EAP-UTE needs to be assigned. The

reference implementation will use 255 (Experimental) for now.

Like EAP-NOOB, this draft will probably use a .arpa domain, in this

case probably eap-ute.arpa, as default NAI realm.

Additionally, the IANA should create registries for the message

types and the message field mapkeys.

6. Implementation Status

Note to RFC Editor: Please remove this entire section before

publication.

As of now, only a partial implementation exists.

6.1. Server Implementation of EAP-UTE

Responsible Organization: DFN-Verein/University of Bremen

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

Location: https://github.com/namib-project/eap-noob-ute-server

Coverage: Only Initial and Completion Exchange implemented

Level of Maturity: research

Version Compatibility: Version 01 of the individual draft

partially implemented

Licensing: MIT / Apache 2.0

Contact Information: Jan-Frederik Rieckers, rieckers@dfn.de

6.2. Client Implementation in ESP-IDF

Responsible Organization: DFN-Verein/University of Bremen

Location: https://github.com/namib-project/esp-idf/tree/namib/

eap-ute

Coverage: Only Initial and Completion Exchange implemented

Level of Maturity: research

Version Compatibility: Version 01 of the individual draft

partially implemented

Licensing: Apache 2.0

Contact Information: Jan-Frederik Rieckers, rieckers@dfn.de

7. Differences to RFC 9140 (EAP-NOOB)

In this section the main differences between EAP-NOOB and EAP-UTE

are discussed. Some problems of [RFC9140] are discussed in [I-

D.draft-rieckers-emu-eap-noob-observations].

7.1. Different encoding

EAP-UTE uses CBOR instead of JSON. More text TBD.

7.2. Implicit transmission of peer state

In EAP-NOOB all EAP exchanges start with the same common handshake,

which mainly serves the purpose of detecting the current peer state.

The server initiates the EAP conversation by sending a Type 1

message without any further content, to which the peer responds by

sending its PeerId, if it was assigned, and its PeerState.

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

¶

[RFC2119]

[RFC3748]

[RFC8174]

[RFC8949]

[I-D.draft-rieckers-emu-eap-noob-observations]

In EAP-UTE, this peer state transmission is done implicitly by the

peer's choice of response to the Server Greeting.

This adds probably unnecessary bytes in the first packet from the

server to the peer, since the peer already knows the server's

supported versions, ciphers and the ServerInfo in the later

exchanges, especially in the Waiting/Completion Exchange. However,

this increased number of bytes is negligible in comparison to the

elevated expense of an additional roundtrip, since this would

significantly increase the authentication time, especially if the

EAP packets are routed through a number of proxies.

7.3. Extensibility

The EAP-NOOB standard does not specify how to deal with unexpected

labels in the message, which could be used to extend the protocol.

This specification will explicitly allow extensions. They are still

TBD.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.

Levkowetz, Ed., "Extensible Authentication Protocol

(EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,

<https://www.rfc-editor.org/info/rfc3748>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/

RFC8949, December 2020, <https://www.rfc-editor.org/info/

rfc8949>.

8.2. Informative References

Rieckers, J., "Observations about EAP-NOOB (RFC 9140)",

Work in Progress, Internet-Draft, draft-rieckers-emu-eap-

noob-observations-00, 7 March 2022, <https://

www.ietf.org/archive/id/draft-rieckers-emu-eap-noob-

observations-00.txt>.

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3748
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.ietf.org/archive/id/draft-rieckers-emu-eap-noob-observations-00.txt
https://www.ietf.org/archive/id/draft-rieckers-emu-eap-noob-observations-00.txt
https://www.ietf.org/archive/id/draft-rieckers-emu-eap-noob-observations-00.txt

[RFC8152]

[RFC9140]

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Aura, T., Sethi, M., and A. Peltonen, "Nimble Out-of-Band

Authentication for EAP (EAP-NOOB)", RFC 9140, DOI

10.17487/RFC9140, December 2021, <https://www.rfc-

editor.org/info/rfc9140>.

Acknowledgements

TBD

Author's Address

Jan-Frederik Rieckers

Deutsches Forschungsnetz | German National Research and Education

Network

Alexanderplatz 1

10178 Berlin

Germany

Email: rieckers@dfn.de

URI: www.dfn.de

¶

https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc9140
https://www.rfc-editor.org/info/rfc9140
mailto:rieckers@dfn.de
https://datatracker.ietf.org/www.dfn.de

	User-assisted Trust Establishment (EAP-UTE)
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. EAP-UTE protocol
	3.1. Protocol Overview
	3.2. Messages
	3.2.1. General Message format
	3.2.1.1. Thoughts about the message format

	3.2.2. Server greeting
	3.2.3. Client greeting
	3.2.4. Server Keyshare
	3.2.5. Client Finished
	3.2.6. Client Completion Request
	3.2.7. Server Completion Response
	3.2.8. Client Keyshare

	3.3. Protocol Sequence
	3.3.1. Initial Exchange
	3.3.2. User-assisted out-of-band step
	3.3.3. Waiting Exchange
	3.3.4. Completion Exchange
	3.3.5. Reconnect Exchange
	3.3.6. Upgrade Exchange

	3.4. MAC and OOB calculation and Key derivation
	3.4.1. MAC Calculation
	3.4.2. Key derivation
	3.4.3. Updating of keying materials

	3.5. Error handling

	4. Security Considerations
	4.1. EAP Security Claims

	5. IANA Considerations
	6. Implementation Status
	6.1. Server Implementation of EAP-UTE
	6.2. Client Implementation in ESP-IDF

	7. Differences to RFC 9140 (EAP-NOOB)
	7.1. Different encoding
	7.2. Implicit transmission of peer state
	7.3. Extensibility

	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgements
	Author's Address

