
Network Working Group P. Riikonen
Internet-Draft
draft-riikonen-silc-spec-09.txt 15 January 2007
Expires: 15 July 2007

Secure Internet Live Conferencing (SILC),
Protocol Specification

<draft-riikonen-silc-spec-09.txt>

Status of this Draft

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts. Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This memo describes a Secure Internet Live Conferencing (SILC)
 protocol which provides secure conferencing services over insecure
 network channel. SILC provides advanced and feature rich conferencing
 services with security as main design principal. Strong cryptographic
 methods are used to protect SILC packets inside the SILC network.
 Three other specifications relates very closely to this memo;
 SILC Packet Protocol [SILC2], SILC Key Exchange and Authentication
 Protocols [SILC3] and SILC Commands [SILC4].

Riikonen [Page 1]

https://datatracker.ietf.org/doc/html/draft-riikonen-silc-spec-09.txt
https://datatracker.ietf.org/doc/html/draft-riikonen-silc-spec-09.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet Draft 15 January 2007

Table of Contents

1 Introduction .. 3
1.1 Requirements Terminology 4

2 SILC Concepts ... 4
2.1 SILC Network Topology 5
2.2 Communication Inside a Cell 6
2.3 Communication in the Network 7
2.4 Channel Communication 7
2.5 Router Connections .. 8

3 SILC Specification .. 9
3.1 Client .. 9

3.1.1 Client ID ... 10
3.2 Server .. 11

3.2.1 Server's Local ID List 11
3.2.2 Server ID ... 12
3.2.3 SILC Server Ports 12

3.3 Router .. 13
3.3.1 Router's Local ID List 13
3.3.2 Router's Global ID List 14
3.3.3 Router's Server ID 15

3.4 Channels .. 15
3.4.1 Channel ID .. 16

3.5 Operators ... 17
3.6 SILC Commands ... 17
3.7 SILC Packets .. 17
3.8 Packet Encryption ... 18

3.8.1 Determination of the Source and the Destination 18
3.8.2 Client To Client 19
3.8.3 Client To Channel 20
3.8.4 Server To Server 21

3.9 Key Exchange And Authentication 21
3.9.1 Authentication Payload 22

3.10 Algorithms ... 24
3.10.1 Ciphers .. 24

3.10.1.1 CBC Mode 24
3.10.1.2 CTR Mode 25
3.10.1.3 Randomized CBC Mode 27

3.10.2 Public Key Algorithms 27
3.10.2.1 Multi-Precision Integers 28

3.10.3 Hash Functions 28
3.10.4 MAC Algorithms 28
3.10.5 Compression Algorithms 29

3.11 SILC Public Key .. 29
3.12 SILC Version Detection 32
3.13 UTF-8 Strings in SILC 33

3.13.1 UTF-8 Identifier Strings 33
3.14 Backup Routers ... 34

Riikonen [Page 2]

Internet Draft 15 January 2007

3.14.1 Switching to Backup Router 36
3.14.2 Resuming Primary Router 37

4 SILC Procedures ... 39
4.1 Creating Client Connection 39
4.2 Creating Server Connection 41

4.2.1 Announcing Clients, Channels and Servers 42
4.3 Joining to a Channel 43
4.4 Channel Key Generation 44
4.5 Private Message Sending and Reception 45
4.6 Private Message Key Generation 46
4.7 Channel Message Sending and Reception 47
4.8 Session Key Regeneration 47
4.9 Command Sending and Reception 48
4.10 Closing Connection 49
4.11 Detaching and Resuming a Session 49
4.12 UDP/IP Connections 51

5 Security Considerations 52
6 References .. 53
7 Author's Address .. 55
Appendix A .. 55
Appendix B .. 56
Appendix C .. 57
Appendix D .. 57

 Full Copyright Statement .. 58

List of Figures

 Figure 1: SILC Network Topology
 Figure 2: Communication Inside cell
 Figure 3: Communication Between Cells
 Figure 4: Router Connections
 Figure 5: SILC Public Key
 Figure 6: Counter Block
 Figure 7: CTR Mode Initialization Vector

1. Introduction

 This document describes a Secure Internet Live Conferencing (SILC)
 protocol which provides secure conferencing services over insecure
 network channel. SILC can be used as a secure conferencing service
 that provides rich conferencing features. Some of the SILC features
 are found in traditional chat protocols such as IRC [IRC] but many
 of the SILC features can also be found in Instant Message (IM) style
 protocols. SILC combines features from both of these chat protocol
 styles, and can be implemented as either IRC-like system or IM-like
 system. Some of the more advanced and secure features of the
 protocol are new to all conferencing protocols. SILC also supports

Riikonen [Page 3]

Internet Draft 15 January 2007

 multimedia messages and can also be implemented as a video and audio
 conferencing system.

 Strong cryptographic methods are used to protect SILC packets inside
 the SILC network. Three other specifications relates very closely
 to this memo; SILC Packet Protocol [SILC2], SILC Key Exchange and
 Authentication Protocols [SILC3] and SILC Commands [SILC4].

 The protocol uses extensively packets as conferencing protocol
 requires message and command sending. The SILC Packet Protocol is
 described in [SILC2] and should be read to fully comprehend this
 document and protocol. [SILC2] also describes the packet encryption
 and decryption in detail. The SILC Packet Protocol provides secured
 and authenticated packets, and the protocol is designed to be compact.
 This makes SILC also suitable in environment of low bandwidth
 requirements such as mobile networks. All packet payloads in SILC
 can be also compressed.

 The security of SILC protocol sessions are based on strong and secure
 key exchange protocol. The SILC Key Exchange protocol is described
 in [SILC3] along with connection authentication protocol and should
 be read to fully comprehend this document and protocol.

 The SILC protocol has been developed to work on both TCP/IP and UDP/IP
 network protocols. However, typical implementation would use only TCP/IP
 with SILC protocol. Typical implementation would be made in client-server
 model.

1.1 Requirements Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED,
 MAY, and OPTIONAL, when they appear in this document, are to be
 interpreted as described in [RFC2119].

2. SILC Concepts

 This section describes various SILC protocol concepts that forms the
 actual protocol, and in the end, the actual SILC network. The mission
 of the protocol is to deliver messages from clients to other clients
 through servers and routers in secure manner. The messages may also
 be delivered from one client to many clients forming a group, also
 known as a channel.

 This section does not focus to security issues. Instead, basic network
 concepts are introduced to make the topology of the SILC network
 clear.

https://datatracker.ietf.org/doc/html/rfc2119

Riikonen [Page 4]

Internet Draft 15 January 2007

2.1 SILC Network Topology

 SILC network forms a ring as opposed to tree style network topology that
 conferencing protocols usually have. The network has a cells which are
 constructed from a router and zero or more servers. The servers are
 connected to the router in a star like network topology. Routers in the
 network are connected to each other forming a ring. The rationale for
 this is to have servers that can perform specific kind of tasks what
 other servers cannot perform. This leads to two kinds of servers; normal
 SILC servers and SILC router servers.

 A difference between normal server and router server is that routers
 knows all global information and keep the global network state up to date.
 They also do the actual routing of the messages to the correct receiver
 within the cell and between other cells. Normal servers knows only local
 information and receive global information only when it is needed. They do
 not need to keep the global network state up to date. This makes the
 network faster and scalable as there are less servers that needs to
 maintain global network state.

 This, on the other hand, leads into a cellular like network, where
 routers are in the center of the cell and servers are connected to the
 router.

 The following diagram represents SILC network topology.

 ---- ---- ---- ---- ---- ----
 | S8 | S5 | S4 | | S7 | S5 | S6 |
 ----- ---- ----- ----- ---- -----
 | S7 | S/R1 | S2 | --- | S8 | S/R2 | S4 |
 ---- ------ ---- ---- ------ ----
 | S6 | S3 | S1 | | S1 | S3 | S2 | ---- ----
 ---- ---- ---- ---- ---- ---- | S3 | S1 |
 Cell 1. \ Cell 2. | ____ ----- -----
 | | | S4 | S/R4 |
 ---- ---- ---- ---- ---- ---- ---- ------
 | S7 | S4 | S2 | | S1 | S3 | S2 | | S2 | S5 |
 ----- ---- ----- ----- ---- ----- ---- ----
 | S6 | S/R3 | S1 | --- | S4 | S/R5 | S5 | ____/ Cell 4.
 ---- ------ ---- ---- ------ ----
 | S8 | S5 | S3 | | S6 | S7 | S8 | ... etc ...
 ---- ---- ---- ---- ---- ----
 Cell 3. Cell 5.

 Figure 1: SILC Network Topology

 A cell is formed when a server or servers connect to one router. In

Riikonen [Page 5]

Internet Draft 15 January 2007

 SILC network normal server cannot directly connect to other normal
 server. Normal server may only connect to SILC router which then
 routes the messages to the other servers in the cell. Router servers
 on the other hand may connect to other routers to form the actual SILC
 network, as seen in above figure. However, router is also able to act
 as normal SILC server; clients may connect to it the same way as to
 normal SILC server. This, however is not a requirement and if needed
 router servers may be hidden from users by not allowing direct client
 connections. Normal server also cannot have active connections to more
 than one router. Normal server cannot be connected to two different
 cells. Router servers, on the other hand, may have as many router to
 router connections as needed. Other direct routes between other routers
 is also possible in addition of the mandatory ring connections. This
 leads into a hybrid ring-mesh network topology.

 There are many issues in this network topology that needs to be careful
 about. Issues like routing, the size of the cells, the number of the
 routers in the SILC network and the capacity requirements of the
 routers. These issues should be discussed in the Internet Community
 and additional documents on the issue may be written.

2.2 Communication Inside a Cell

 It is always guaranteed that inside a cell message is delivered to the
 recipient with at most two server hops. A client which is connected to
 server in the cell and is talking on channel to other client connected
 to other server in the same cell, will have its messages delivered from
 its local server first to the router of the cell, and from the router
 to the other server in the cell.

 The following diagram represents this scenario:

 1 --- S1 S4 --- 5
 S/R
 2 -- S2 S3
 / |
 4 3

 Figure 2: Communication Inside cell

 Example: Client 1. connected to Server 1. send message to
 Client 4. connected to Server 2. travels from Server 1.
 first to Router which routes the message to Server 2.
 which then sends it to the Client 4. All the other

Riikonen [Page 6]

Internet Draft 15 January 2007

 servers in the cell will not see the routed message.

 If the client is connected directly to the router, as router is also normal
 SILC server, the messages inside the cell are always delivered only with
 one server hop. If clients communicating with each other are connected
 to the same server, no router interaction is needed. This is the optimal
 situation of message delivery in the SILC network.

2.3 Communication in the Network

 If the message is destined to client that does not belong to local cell
 the message is routed to the router server to which the destination
 client belongs, if the local router is connected to destination router.
 If there is no direct connection to the destination router, the local
 router routes the message to its primary route. The following diagram
 represents message sending between cells.

 1 --- S1 S4 --- 5 S2 --- 1
 S/R - - - - - - - - S/R
 2 -- S2 S3 S1
 / | \
 4 3 2

 Cell 1. Cell 2.

 Figure 3: Communication Between Cells

 Example: Client 5. connected to Server 4. in Cell 1. sends message
 to Client 2. connected to Server 1. in Cell 2. travels
 from Server 4. to Router which routes the message to
 Router in Cell 2, which then routes the message to
 Server 1. All the other servers and routers in the
 network will not see the routed message.

 The optimal case of message delivery from the client point of view is
 when clients are connected directly to the routers and the messages
 are delivered from one router to the other.

Riikonen [Page 7]

Internet Draft 15 January 2007

2.4 Channel Communication

 Messages may be sent to group of clients as well. Sending messages to
 many clients works the same way as sending messages point to point, from
 message delivery point of view. Security issues are another matter
 which are not discussed in this section.

 Router server handles the message routing to multiple recipients. If
 any recipient is not in the same cell as the sender the messages are
 routed further.

 Server distributes the channel message to its local clients which are
 joined to the channel. Router also distributes the message to its
 local clients on the channel.

2.5 Router Connections

 Router connections play very important role in making the SILC like
 network topology to work. For example, sending broadcast packets in
 SILC network require special connections between routers; routers must
 be connected in a specific way.

 Every router has their primary route which is a connection to another
 router in the network. Unless there is only two routers in the network
 must not routers use each other as their primary routes. The router
 connections in the network must form a ring.

 Example with three routers in the network:

 S/R1 - < - < - < - < - < - < - S/R2
 \ /
 v ^
 \ - > - > - S/R3 - > - > - /

 Figure 4: Router Connections

 Example: Network with three routers. Router 1. uses Router 2. as its
 primary router. Router 2. uses Router 3. as its primary router,
 and Router 3. uses Router 1. as its primary router. When there
 are four or more routers in th enetwork, there may be other
 direct connections between the routers but they must not be used
 as primary routes.

 The above example is applicable to any amount of routers in the network

Riikonen [Page 8]

Internet Draft 15 January 2007

 except for two routers. If there are only two routers in the network both
 routers must be able to handle situation where they use each other as their
 primary routes.

 The issue of router connections are very important especially with SILC
 broadcast packets. Usually all router wide information in the network is
 distributed by SILC broadcast packets. This sort of ring network, with
 ability to have other direct routes in the network can cause interesting
 routing problems. The [SILC2] discusses the routing of packets in this
 sort of network in more detail.

3. SILC Specification

 This section describes the SILC protocol. However, [SILC2] and
 [SILC3] describes other important protocols that are part of this SILC
 specification and must be read.

3.1 Client

 A client is a piece of software connecting to SILC server. SILC client
 cannot be SILC server. Purpose of clients is to provide the user
 interface of the SILC services for end user. Clients are distinguished
 from other clients by unique Client ID. Client ID is a 128 bit ID that
 is used in the communication in the SILC network. The client ID is
 based on the user's IP address and nickname. User use logical nicknames
 in communication which are then mapped to the corresponding Client ID.
 Client IDs are low level identifications and should not be seen by the
 end user.

 Clients provide other information about the end user as well. Information
 such as the nickname of the user, username and the host name of the end
 user and user's real name. See section 3.2 Server for information of
 the requirements of keeping this information.

 The nickname selected by the user is not unique in the SILC network.
 There can be 2^8 same nicknames for one IP address. As for comparison to
 IRC [IRC] where nicknames are unique this is a fundamental difference
 between SILC and IRC. This typically causes the server names or client's
 host names to be used along with the nicknames on user interface to
 identify specific users when sending messages. This feature of SILC
 makes IRC style nickname-wars obsolete as no one owns their nickname;
 there can always be someone else with the same nickname. Also, any kind
 of nickname registering service becomes obsolete. See the section 3.13.1
 for more information about nicknames.

Riikonen [Page 9]

Internet Draft 15 January 2007

3.1.1 Client ID

 Client ID is used to identify users in the SILC network. The Client ID
 is unique to the extent that there can be 2^128 different Client IDs,
 and IDs based on IPv6 addresses extends this to 2^224 different Client
 IDs. Collisions are not expected to happen. The Client ID is defined
 as follows.

 128 bit Client ID based on IPv4 addresses:

 32 bit Server ID IP address (bits 1-32)
 8 bit Random number or counter
 88 bit Truncated MD5 hash value of the nickname

 224 bit Client ID based on IPv6 addresses:

 128 bit Server ID IP address (bits 1-128)
 8 bit Random number or counter
 88 bit Truncated MD5 hash value of the nickname

 o Server ID IP address - Indicates the server where this
 client is coming from. The IP address hence equals the
 server IP address where the client is connected.

 o Random number or counter - Random number to further
 randomize the Client ID. Another choice is to use
 a counter starting from the zero (0). This makes it
 possible to have 2^8 same nicknames from the same
 server IP address.

 o MD5 hash - MD5 hash value of the case folded nickname is
 truncated taking 88 bits from the start of the hash value.
 This hash value is used to search the user's Client ID
 from the ID lists. Note that the nickname MUST be prepared
 using the stringprep [RFC3454] profile described in the

Appendix A before computing the MD5 hash. See also the
section 3.13.1 for more information.

 Collisions could occur when more than 2^8 clients using same nickname
 from the same server IP address is connected to the SILC network.
 Server MUST be able to handle this situation by refusing to accept
 anymore of that nickname.

 Another possible collision may happen with the truncated hash value of
 the nickname. It could be possible to have same truncated hash value
 for two different nicknames. However, this is not expected to happen
 nor cause any serious problems if it would occur. Nicknames are usually
 logical and it is unlikely to have two distinct logical nicknames

https://datatracker.ietf.org/doc/html/rfc3454

Riikonen [Page 10]

Internet Draft 15 January 2007

 produce same truncated hash value. Use of MD5 in nickname hash is not
 a security feature.

3.2 Server

 Servers are the most important parts of the SILC network. They form the
 basis of the SILC, providing a point to which clients may connect to.
 There are two kinds of servers in SILC; normal servers and router servers.
 This section focus on the normal server and router server is described
 in the section 3.3 Router.

 Normal servers MUST NOT directly connect to other normal server. Normal
 servers may only directly connect to router server. If the message sent
 by the client is destined outside the local server it is always sent to
 the router server for further routing. Server may only have one active
 connection to router on same port. Normal server MUST NOT connect to other
 cell's router except in situations where its cell's router is unavailable.

3.2.1 Server's Local ID List

 Normal server keeps various information about the clients and their end
 users connected to it. Every normal server MUST keep list of all locally
 connected clients, Client IDs, nicknames, usernames and host names and
 user's real name. Normal servers only keeps local information and it
 does not keep any global information. Hence, normal servers knows only
 about their locally connected clients. This makes servers efficient as
 they do not have to worry about global clients. Server is also responsible
 of creating the Client IDs for their clients.

 Normal server also keeps information about locally created channels and
 their Channel IDs.

 Hence, local list for normal server includes:

 server list - Router connection
 o Server name
 o Server IP address
 o Server ID
 o Sending key
 o Receiving key
 o Public key

 client list - All clients in server
 o Nickname
 o Username@host
 o Real name

Riikonen [Page 11]

Internet Draft 15 January 2007

 o Client ID
 o Sending key
 o Receiving key
 o Public key

 channel list - All channels in server
 o Channel name
 o Channel ID
 o Client IDs on channel
 o Client ID modes on channel
 o Channel key

3.2.2 Server ID

 Servers are distinguished from other servers by unique 64 bit Server ID
 (for IPv4) or 160 bit Server ID (for IPv6). The Server ID is used in
 the SILC to route messages to correct servers. Server IDs also provide
 information for Client IDs, see section 3.1.1 Client ID. Server ID is
 defined as follows.

 64 bit Server ID based on IPv4 addresses:

 32 bit IP address of the server
 16 bit Port
 16 bit Random number

 160 bit Server ID based on IPv6 addresses:

 128 bit IP address of the server
 16 bit Port
 16 bit Random number

 o IP address of the server - This is the real IP address of
 the server.

 o Port - This is the port the server is bound to.

 o Random number - This is used to further randomize the Server ID.

 Collisions are not expected to happen in any conditions. The Server ID
 is always created by the server itself and server is responsible of
 distributing it to the router.

3.2.3 SILC Server Ports

 The following ports has been assigned by IANA for the SILC protocol:

Riikonen [Page 12]

Internet Draft 15 January 2007

 silc 706/tcp SILC
 silc 706/udp SILC

 If there are needs to create new SILC networks in the future the port
 numbers must be officially assigned by the IANA.

 Server on network above privileged ports (>1023) SHOULD NOT be trusted
 as they could have been set up by untrusted party.

3.3 Router

 Router server in SILC network is responsible for keeping the cell together
 and routing messages to other servers and to other routers. Router server
 may also act as normal server when clients may connect to it. This is not
 requirement and router servers may be hidden from clients.

 However, router servers have a lot of important tasks that normal servers
 do not have. Router server knows everything and keeps the global state.
 They know all clients currently on SILC, all servers and routers and all
 channels in SILC. Routers are the only servers in SILC that care about
 global information and keeping them up to date at all time.

3.3.1 Router's Local ID List

 Router server as well MUST keep local list of connected clients and
 locally created channels. However, this list is extended to include all
 the informations of the entire cell, not just the server itself as for
 normal servers.

 However, on router this list is a lot smaller since routers do not need
 to keep information about user's nickname, username and host name and real
 name since these are not needed by the router. The router keeps only
 information that it needs.

 Hence, local list for router includes:

 server list - All servers in the cell
 o Server name
 o Server ID
 o Router's Server ID
 o Sending key
 o Receiving key

 client list - All clients in the cell
 o Client ID

Riikonen [Page 13]

Internet Draft 15 January 2007

 channel list - All channels in the cell
 o Channel ID
 o Client IDs on channel
 o Client ID modes on channel
 o Channel key

 Note that locally connected clients and other information include all the
 same information as defined in section section 3.2.1 Server's Local ID
 List. Router MAY also cache same detailed information for other clients
 if needed.

3.3.2 Router's Global ID List

 Router server MUST also keep global list. Normal servers do not have
 global list as they know only about local information. Global list
 includes all the clients on SILC, their Client IDs, all created channels
 and their Channel IDs and all servers and routers on SILC and their
 Server IDs. That is said, global list is for global information and the
 list must not include the local information already on the router's local
 list.

 Note that the global list does not include information like nicknames,
 usernames and host names or user's real names. Router does not need to
 keep these informations as they are not needed by the router. This
 information is available from the client's server which maybe queried
 when needed.

 Hence, global list includes:

 server list - All servers in SILC
 o Server name
 o Server ID
 o Router's Server ID

 client list - All clients in SILC
 o Client ID

 channel list - All channels in SILC
 o Channel ID
 o Client IDs on channel
 o Client ID modes on channel

Riikonen [Page 14]

Internet Draft 15 January 2007

3.3.3 Router's Server ID

 Router's Server ID is equivalent to normal Server ID. As routers are
 normal servers same types of IDs applies for routers as well. See

section 3.2.2 Server ID.

3.4 Channels

 A channel is a named group of one or more clients which will all receive
 messages addressed to that channel. The channel is created when first
 client requests JOIN command to the channel, and the channel ceases to
 exist when the last client has left it. When channel exists, any client
 can reference it using the Channel ID of the channel. If the channel has
 a founder mode set and last client leaves the channel the channel does
 not cease to exist. The founder mode can be used to make permanent
 channels in the network. The founder of the channel can regain the
 channel founder privileges on the channel later when he joins the
 channel.

 Channel names are unique although the real uniqueness comes from 64 bit
 Channel ID. However, channel names are still unique and no two global
 channels with same name may exist. See the section 3.13.1 for more
 information about channel names.

 Channels can have operators that can administrate the channel and operate
 all of its modes. The following operators on channel exist on the
 SILC network.

 o Channel founder - When channel is created the joining client becomes
 channel founder. Channel founder is channel operator with some more
 privileges. Basically, channel founder can fully operate the channel
 and all of its modes. The privileges are limited only to the
 particular channel. There can be only one channel founder per
 channel. Channel founder supersedes channel operator's privileges.

 Channel founder privileges cannot be removed by any other operator on
 channel. When channel founder leaves the channel there is no channel
 founder on the channel. However, it is possible to set a mode for
 the channel which allows the original channel founder to regain the
 founder privileges even after leaving the channel. Channel founder
 also cannot be removed by force from the channel.

 o Channel operator - When client joins to channel that has not existed
 previously it will become automatically channel operator (and channel
 founder discussed above). Channel operator is able to administrate the

Riikonen [Page 15]

Internet Draft 15 January 2007

 channel, set some modes on channel, remove a badly behaving client
 from the channel and promote other clients to become channel
 operator. The privileges are limited only to the particular channel.

 Normal channel user may be promoted (opped) to channel operator
 gaining channel operator privileges. Channel founder or other
 channel operator may also demote (deop) channel operator to normal
 channel user.

3.4.1 Channel ID

 Channels are distinguished from other channels by unique Channel ID.
 The Channel ID is a 64 bit ID (for IPv4) or 160 bit ID (for IPv6), and
 collisions are not expected to happen in any conditions. Channel names
 are just for logical use of channels. The Channel ID is created by the
 server where the channel is created. The Channel ID is defined as
 follows.

 64 bit Channel ID based on IPv4 addresses:

 32 bit Router's Server ID IP address (bits 1-32)
 16 bit Router's Server ID port (bits 33-48)
 16 bit Random number or counter

 160 bit Channel ID based on IPv6 addresses:

 128 bit Router's Server ID IP address (bits 1-128)
 16 bit Router's Server ID port (bits 129-144)
 16 bit Random number or counter

 o Router's Server ID IP address - Indicates the IP address of
 the router of the cell where this channel is created. This is
 taken from the router's Server ID. This way SILC routers know
 where this channel resides in the SILC network.

 o Router's Server ID port - Indicates the port of the channel on
 the server. This is taken from the router's Server ID.

 o Random number or counter - To further randomize the Channel ID.
 Another choice is to use a counter starting from zero (0).
 This makes sure that there are no collisions. This also means
 that in a cell there can be 2^16 different channels.

Riikonen [Page 16]

Internet Draft 15 January 2007

3.5 Operators

 Operators are normal users with extra privileges to their server or
 router. Usually these people are SILC server and router administrators
 that take care of their own server and clients on them. The purpose of
 operators is to administrate the SILC server or router. However, even
 an operator with highest privileges is not able to enter invite-only
 channels, to gain access to the contents of encrypted and authenticated
 packets traveling in the SILC network or to gain channel operator
 privileges on public channels without being promoted. They have the
 same privileges as any normal user except they are able to administrate
 their server or router.

3.6 SILC Commands

 Commands are very important part on SILC network especially for client
 which uses commands to operate on the SILC network. Commands are used
 to set nickname, join to channel, change modes and many other things.

 Client usually sends the commands and server replies by sending a reply
 packet to the command. Server MAY also send commands usually to serve
 the original client's request. Usually server cannot send commands to
 clients, however there MAY be commands that allow the server to send
 commands to client. By default servers MAY send commands only to other
 servers and routers.

 Note that the command reply is usually sent only after client has sent
 the command request but server is allowed to send command reply packet
 to client even if client has not requested the command. Client MAY
 choose to ignore the command reply.

 It is expected that some of the commands may be misused by clients
 resulting various problems on the server side. Every implementation
 SHOULD assure that commands may not be executed more than once, say,
 in two (2) seconds. However, to keep response rate up, allowing for
 example five (5) commands before limiting is allowed. It is RECOMMENDED
 that commands such as SILC_COMMAND_NICK, SILC_COMMAND_JOIN,
 SILC_COMMAND_LEAVE and SILC_COMMAND_KILL SHOULD be limited in all cases
 as they require heavy operations. This should be sufficient to prevent
 the misuse of commands.

 SILC commands are described in [SILC4].

3.7 SILC Packets

 Packets are naturally the most important part of the protocol and the

Riikonen [Page 17]

Internet Draft 15 January 2007

 packets are what actually makes the protocol. Packets in SILC network
 are always encrypted using, usually the shared secret session key
 or some other key, for example, channel key, when encrypting channel
 messages. It is not possible to send a packet in SILC network without
 encryption. The SILC Packet Protocol is a wide protocol and is described
 in [SILC2]. This document does not define or describe details of
 SILC packets.

3.8 Packet Encryption

 All packets passed in SILC network MUST be encrypted. This section
 gives generic description of how packets must be encrypted in the SILC
 network. The detailed description of the actual encryption process
 of the packets are described in [SILC2].

 Client and its server shares secret symmetric session key which is
 established by the SILC Key Exchange Protocol, described in [SILC3].
 Every packet sent from client to server, with exception of packets for
 channels, are encrypted with this session key.

 Channels have a channel key that are shared by every client on the channel.
 However, the channel keys are cell specific thus one cell does not know
 the channel key of the other cell, even if that key is for same channel.
 Channel key is also known by the routers and all servers that have clients
 on the channel. However, channels MAY have channel private keys that are
 entirely local setting for the client. All clients on the channel MUST
 know the channel private key beforehand to be able to talk on the
 channel. In this case, no server or router knows the key for the channel.

 Server shares secret symmetric session key with router which is
 established by the SILC Key Exchange Protocol. Every packet passed from
 server to router, with exception of packets for channels, are encrypted
 with the shared session key. Same way, router server shares secret
 symmetric key with its primary router. However, every packet passed
 from router to other router, including packets for channels, are
 encrypted with the shared session key. Every router connection MUST
 have their own session keys.

3.8.1 Determination of the Source and the Destination

 The source and the destination of the packet needs to be determined
 to be able to route the packets to correct receiver. This information
 is available in the SILC Packet Header which is included in all packets
 sent in SILC network. The SILC Packet Header is described in [SILC2].

 The header MUST be encrypted with the session key of who is the next

Riikonen [Page 18]

Internet Draft 15 January 2007

 receiver of the packet along the route. The receiver of the packet, for
 example a router along the route, is able to determine the sender and the
 destination of the packet by decrypting the SILC Packet Header and
 checking the IDs attached to the header. The IDs in the header will
 tell to where the packet needs to be sent and where it is coming from.

 The header in the packet MUST NOT change during the routing of the
 packet. The original sender, for example client, assembles the packet
 and the packet header and server or router between the sender and the
 receiver MUST NOT change the packet header. Note however, that some
 packets such as commands may be resent by a server to serve the client's
 original command. In this case the command packet sent by the server
 includes the server's IDs as it is a different packet. When server
 or router receives a packet it MUST verify that the Source ID is
 valid and correct ID for that sender.

 Note that the packet and the packet header may be encrypted with
 different keys. For example, packets to channels are encrypted with
 the channel key, however, the header is encrypted with the session key
 as described above. Most other packets have both header and packet
 payload encrypted with the same key, such as command packets.

3.8.2 Client To Client

 The process of message delivery and encryption from client to another
 client is as follows.

 Example: Private message from client to another client on different
 servers. Clients do not share private message delivery
 keys; normal session keys are used.

 o Client 1 sends encrypted packet to its server. The packet is
 encrypted with the session key shared between client and its
 server.

 o Server determines the destination of the packet and decrypts
 the packet. Server encrypts the packet with session key shared
 between the server and its router, and sends the packet to the
 router.

 o Router determines the destination of the packet and decrypts
 the packet. Router encrypts the packet with session key
 shared between the router and the destination server, and sends
 the packet to the server.

 o Server determines the client to which the packet is destined
 to and decrypts the packet. Server encrypts the packet with

Riikonen [Page 19]

Internet Draft 15 January 2007

 session key shared between the server and the destination client,
 and sends the packet to the client.

 o Client 2 decrypts the packet.

 Example: Private message from client to another client on different
 servers. Clients have established a secret shared private
 message delivery key with each other and that is used in
 the message encryption.

 o Client 1 sends encrypted packet to its server. The packet header
 is encrypted with the session key shared between the client and
 server, and the private message payload is encrypted with the
 private message delivery key shared between clients.

 o Server determines the destination of the packet and sends the
 packet to the router. Header is encrypted with the session key.

 o Router determines the destination of the packet and sends the
 packet to the server. Header is encrypted with the session key.

 o Server determines the client to which the packet is destined
 to and sends the packet to the client. Header is encrypted with
 the session key.

 o Client 2 decrypts the packet with the secret shared key.

 If clients share secret key with each other the private message
 delivery is much simpler since servers and routers between the
 clients do not need to decrypt and re-encrypt the entire packet.
 The packet header however is always encrypted with session key and
 is decrypted and re-encrypted with the session key of next recipient.

 The process for clients on same server is much simpler as there is
 no need to send the packet to the router. The process for clients
 on different cells is same as above except that the packet is routed
 outside the cell. The router of the destination cell routes the
 packet to the destination same way as described above.

3.8.3 Client To Channel

 Process of message delivery from client on channel to all the clients
 on the channel.

 Example: Channel of four users; two on same server, other two on
 different cells. Client sends message to the channel.

Riikonen [Page 20]

Internet Draft 15 January 2007

 Packet header is encrypted with the session key, message
 data is encrypted with channel key.

 o Client 1 encrypts the packet with channel key and sends the
 packet to its server.

 o Server determines local clients on the channel and sends the
 packet to the Client on the same server. Server then sends
 the packet to its router for further routing.

 o Router determines local clients on the channel, if found
 sends packet to the local clients. Router determines global
 clients on the channel and sends the packet to its primary
 router or fastest route.

 o (Other router(s) do the same thing and sends the packet to
 the server(s).)

 o Server determines local clients on the channel and sends the
 packet to the client.

 o All clients receiving the packet decrypts it.

3.8.4 Server To Server

 Server to server packet delivery and encryption is described in above
 examples. Router to router packet delivery is analogous to server to
 server. However, some packets, such as channel packets, are processed
 differently. These cases are described later in this document and
 more in detail in [SILC2].

3.9 Key Exchange And Authentication

 Key exchange is done always when for example client connects to server
 but also when server and router, and router and another router connect
 to each other. The purpose of key exchange protocol is to provide secure
 key material to be used in the communication. The key material is used
 to derive various security parameters used to secure SILC packets. The
 SILC Key Exchange protocol is described in detail in [SILC3].

 Authentication is done after key exchange protocol has been successfully
 completed. The purpose of authentication is to authenticate for example
 client connecting to the server. However, clients MAY be accepted
 to connect to server without explicit authentication. Servers are
 REQUIRED to use authentication protocol when connecting. The
 authentication may be based on passphrase (pre-shared secret) or public

Riikonen [Page 21]

Internet Draft 15 January 2007

 key based on digital signatures. All passphrases sent in SILC protocol
 MUST be UTF-8 [RFC3629] encoded. The connection authentication protocol
 is described in detail in [SILC3].

3.9.1 Authentication Payload

 Authentication Payload is used separately from the SKE and the Connection
 Authentication protocols. It can be used during the session to
 authenticate with a remote. For example, a client can authenticate
 itself to a server to become server operator. In this case,
 Authentication Payload is used.

 The format of the Authentication Payload is as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Payload Length | Authentication Method |
 +-+
 | Public Data Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ~ Public Data ~
 | |
 +-+
 | Authentication Data Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ~ Authentication Data ~
 | |
 +-+

 Figure 5: Authentication Payload

 o Payload Length (2 bytes) - Length of the entire payload.

 o Authentication Method (2 bytes) - The method of the
 authentication. The authentication methods are defined
 in [SILC2] in the Connection Auth Request Payload. The NONE
 authentication method SHOULD NOT be used.

 o Public Data Length (2 bytes) - Indicates the length of
 the Public Data field.

 o Public Data (variable length) - This is defined only if
 the authentication method is public key. If it is any other

https://datatracker.ietf.org/doc/html/rfc3629

Riikonen [Page 22]

Internet Draft 15 January 2007

 this field MAY include random data for padding purposes.
 However, in this case the field MUST be ignored by the
 receiver.

 When the authentication method is public key this includes
 128 to 4096 bytes of non-zero random data that is used in
 the signature process, described subsequently.

 o Authentication Data Length (2 bytes) - Indicates the
 length of the Authentication Data field. If zero (0)
 value is found in this field the payload MUST be
 discarded.

 o Authentication Data (variable length) - Authentication
 method dependent authentication data.

 If the authentication method is passphrase-based, the Authentication
 Data field includes the plaintext UTF-8 encoded passphrase. It is safe
 to send plaintext passphrase since the entire payload is encrypted. In
 this case the Public Data Length is set to zero (0), but MAY also include
 random data for padding purposes. It is also RECOMMENDED that maximum
 amount of padding is applied to SILC packet when using passphrase-based
 authentication. This way it is not possible to approximate the length
 of the passphrase from the encrypted packet.

 If the authentication method is public key based (or certificate)
 the Authentication Data is computed as follows:

 HASH = hash(random bytes | ID | public key (or certificate));
 Authentication Data = sign(HASH);

 The hash() and the sign() are the hash function and the public key
 cryptography function selected in the SKE protocol, unless otherwise
 stated in the context where this payload is used. The public key
 is SILC style public key unless certificates are used. The ID is the
 entity's ID (Client or Server ID) which is authenticating itself. The
 ID encoding is described in [SILC2]. The random bytes are non-zero
 random bytes of length between 128 and 4096 bytes, and will be included
 into the Public Data field as is.

 The receiver will compute the signature using the random data received
 in the payload, the ID associated to the connection and the public key
 (or certificate) received in the SKE protocol. After computing the
 receiver MUST verify the signature. Also in case of public key
 authentication this payload is always encrypted. This payload is
 always sent as part of some other payload.

Riikonen [Page 23]

Internet Draft 15 January 2007

3.10 Algorithms

 This section defines all the allowed algorithms that can be used in
 the SILC protocol. This includes mandatory cipher, mandatory public
 key algorithm and MAC algorithms.

3.10.1 Ciphers

 Cipher is the encryption algorithm that is used to protect the data
 in the SILC packets. See [SILC2] for the actual encryption process and
 definition of how it must be done. SILC has a mandatory algorithm that
 must be supported in order to be compliant with this protocol.

 The following ciphers are defined in SILC protocol:

 aes-256-cbc AES in CBC mode, 256 bit key (REQUIRED)
 aes-256-ctr AES in CTR mode, 256 bit key (RECOMMENDED)
 aes-256-rcbc AES in randomized CBC mode, 256 bit key (OPTIONAL)
 aes-192-<mode> AES in <mode> mode, 192 bit key (OPTIONAL)
 aes-128-<mode> AES in <mode> mode, 128 bit key (RECOMMENDED)
 twofish-256-<mode> Twofish in <mode> mode, 256 bit key (OPTIONAL)
 twofish-192-<mode> Twofish in <mode> mode, 192 bit key (OPTIONAL)
 twofish-128-<mode> Twofish in <mode> mode, 128 bit key (OPTIONAL)
 cast-256-<mode> CAST-256 in <mode> mode, 256 bit key (OPTIONAL)
 cast-192-<mode> CAST-256 in <mode> mode, 192 bit key (OPTIONAL)
 cast-128-<mode> CAST-256 in <mode> mode, 128 bit key (OPTIONAL)
 serpent-<len>-<mode> Serpent in <mode> mode, <len> bit key (OPTIONAL)
 rc6-<len>-<mode> RC6 in <mode> mode, <len> bit key (OPTIONAL)
 mars-<len>-<mode> MARS in <mode> mode, <len> bit key (OPTIONAL)
 none No encryption (OPTIONAL)

 The <mode> is either "cbc", "ctr" or "rcbc". Other encryption modes MAY
 be defined to be used in SILC using the same name format. The <len> is
 either 256, 192 or 128 bit key length. Also, additional ciphers MAY be
 defined to be used in SILC by using the same name format as above.

 Algorithm "none" does not perform any encryption process at all and
 thus is not recommended to be used. It is recommended that no client
 or server implementation would accept "none" algorithm except in special
 debugging mode.

3.10.1.1 CBC Mode

 The "cbc" encryption mode is the standard cipher-block chaining mode.
 The very first IV is derived from the SILC Key Exchange protocol.
 Subsequent IVs for encryption is the previous ciphertext block. The very

Riikonen [Page 24]

Internet Draft 15 January 2007

 first IV MUST be random and is generated as described in [SILC3].

3.10.1.2 CTR Mode

 The "ctr" encryption mode is Counter Mode (CTR). The CTR mode in SILC is
 stateful in encryption and decryption. Both sender and receiver maintain
 the counter for the CTR mode and thus can precompute the key stream for
 encryption and decryption. By default, CTR mode does not require
 plaintext padding, however implementations MAY apply padding to the
 packets. If the last key block is larger than the last plaintext block
 the resulted value is truncated to the size of the plaintext block and
 the most significant bits are used. When sending authentication data
 inside packets the maximum amount of padding SHOULD be applied with
 CTR mode as well.

 In CTR mode only the encryption operation of the cipher is used. The
 decryption operation is not needed since both encryption and decryption
 process is simple XOR with the plaintext block and the key stream block.

 The counter block is used to create the key for the CTR mode. The format
 of the 128 bit counter block is as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Truncated HASH from SKE |
 +-+
 | Sending/Receiving IV from SKE |
 +-+
 | Packet Counter |
 +-+
 | Block Counter |
 +-+

 Figure 6: Counter Block

 o Truncated HASH from SKE (4 bytes) - This value is the first 4
 bytes from the HASH value that was computed as a result of SKE
 protocol. This acts as session identifier and each rekey MUST
 produce a new HASH value.

 o Sending/Receiving IV from SKE (4 bytes) - If the CTR mode is fully
 stateful this field MUST include the first 4 bytes from the Sending
 IV or Receiving IV generated in SKE protocol. When this mode is
 used to encrypt sending traffic the Sending IV is used, when used
 to decrypt receiving traffic the Receiving IV is used. This assures
 that two parties of the protocol use different IV for sending

Riikonen [Page 25]

Internet Draft 15 January 2007

 traffic. Each rekey MUST produce a new value.

 If the IV Included flag is negotiated in SKE or CTR mode is used
 where the IV is included in the data payload, this field is the
 Nonce field from the IV received in the packet, defined below.

 o Packet Counter (4 bytes) - This is MSB first ordered monotonically
 increasing packet counter. It is set value 1 for first packet and
 increases for subsequent packets. After rekey the counter MUST
 restart from 1.

 If the IV Included flag is negotiated in SKE or CTR mode is used
 where the IV is included in the data payload, this field is the
 Packet Counter field from the IV received in the packet, defined
 below.

 o Block Counter (4 bytes) - This is an MSB first ordered block
 counter starting from 1 for first block and increasing for
 subsequent blocks. The counter is always set to value 1 for
 a new packet.

 CTR mode MUST NOT be used with "none" MAC. Implementations also MUST
 assure that the same counter block is not used to encrypt more than
 one block. None of the counters must be allowed to wrap without rekey.
 Also, the key material used with CTR mode MUST be fresh key material.
 Static keys (pre-shared keys) MUST NOT be used with CTR mode. For this
 reason using CTR mode to encrypt for example channel messages or private
 messages with a pre-shared key is inappropriate. For private messages,
 the Key Agreement [SILC2] could be performed to produce fresh key material.

 If the IV Included flag was negotiated in SKE, or CTR mode is used to
 protect channel messages where the IV will be included in the Message
 Payload, the Initialization Vector (IV) to be used is a 64-bit block
 containing randomness and packet counter. Also note, that in this case
 the decryption process is not stateful and receiver cannot precompute
 the key stream. Hence, the Initialization Vector (IV) when CTR mode is
 used is as follows.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Nonce |
 +-+
 | Packet Counter |
 +-+

 Figure 7: CTR Mode Initialization Vector

Riikonen [Page 26]

Internet Draft 15 January 2007

 o Nonce (4 bytes) - This field should be random or otherwise not
 easily determinable and SHOULD change for each packet.

 o Packet Counter (4 bytes) - This is MSB first ordered monotonically
 increasing packet counter. It is set value 1 for first packet and
 increases for subsequent packets. After rekey the counter MUST
 restart from 1.

 When decrypting the packet the Counter Block is assembled by concatenating
 the truncated hash, with the received nonce and packet counter, and with
 the block counter. The Counter Block is then used to compute the key
 stream to perform the decryption.

3.10.1.3 Randomized CBC Mode

 The "rcbc" encryption mode is CBC mode with randomized IV. This means
 that each IV for each packet MUST be chosen randomly. When encrypting
 more than one block the normal IV chaining is used, but for the first
 block new random IV is selected in each packet. In this mode the IV
 is appended to the ciphertext. If this mode is used to secure the SILC
 session, the IV Included flag must be negotiated in SILC Key Exchange
 protocol. It may also be used to secure Message Payloads which can
 deliver the IV to the recipient.

3.10.2 Public Key Algorithms

 Public keys are used in SILC to authenticate entities in SILC network
 and to perform other tasks related to public key cryptography. The
 public keys are also used in the SILC Key Exchange protocol [SILC3].

 The following public key algorithms are defined in SILC protocol:

 rsa RSA (REQUIRED)
 dss DSS (OPTIONAL)

 DSS is described in [Menezes]. The RSA MUST be implemented according
 PKCS #1 [PKCS1]. When using SILC Public Key version 2 the PKCS #1
 implementation MUST be compliant with PKCS #1 version 1.5. The signatures
 are computed with appendix; the hash OID is included in the signature.
 The user may always select the hash algorithm for the signatures. When
 using SILC Public Key version 1 the PKCS #1 implementation MUST be
 compliant with PKCS #1 version 1.5 where signatures are computed without
 appendix; the hash OID is not present in the signature. The hash
 algorithm used is specified separately or the default hash algorithm is
 used, as defined below.

Riikonen [Page 27]

Internet Draft 15 January 2007

 Additional public key algorithms MAY be defined to be used in SILC.

 When signatures are computed in SILC the computing of the signature is
 denoted as sign(). The signature computing procedure is dependent of
 the public key algorithm, and the public key or certificate encoding.
 When using SILC public key the signature is computed as described in
 previous paragraph for RSA and DSS keys. If the hash function is not
 specified separately for signing process SHA-1 MUST be used, except with
 SILC public key version 2 and RSA algorithm when the user MAY always
 select the hash algorithm. In this case the hash algorithm is included
 in the signature and can be retrieved during verification. When using
 SSH2 public keys the signature is computed as described in [SSH-TRANS].
 When using X.509 version 3 certificates the signature is computed as
 described in [PKCS7]. When using OpenPGP certificates the signature is
 computed as described in [PGP] and the PGP signature type used is 0x00.

3.10.2.1 Multi-Precision Integers

 Multi-Precision (MP) integers in SILC are encoded and decoded as defined
 in PKCS #1 [PKCS1]. MP integers are unsigned, encoded with the exact
 octet length of the integer. No extra leading zero octets may appear.
 The actual length of the integer is the bit size of the integer not
 counting any leading zero bits. The octet length is derived by calculating
 (bit_length + 7) / 8.

3.10.3 Hash Functions

 Hash functions are used as part of MAC algorithms defined in the next
 section. They are also used in the SILC Key Exchange protocol defined
 in the [SILC3].

 The following Hash algorithm are defined in SILC protocol:

 sha1 SHA-1, length = 20 bytes (REQUIRED)
 sha256 SHA-256, length = 32 bytes (RECOMMENDED)
 md5 MD5, length = 16 bytes (RECOMMENDED)

3.10.4 MAC Algorithms

 Data integrity is protected by computing a message authentication code
 (MAC) of the packet data. See [SILC2] for details how to compute the
 MAC for a packet.

 The following MAC algorithms are defined in SILC protocol:

Riikonen [Page 28]

Internet Draft 15 January 2007

 hmac-sha1-96 HMAC-SHA1, length = 12 bytes (REQUIRED)
 hmac-sha256-96 HMAC-SHA256, length = 12 bytes (RECOMMENDED)
 hmac-md5-96 HMAC-MD5, length = 12 bytes (OPTIONAL)
 hmac-sha1 HMAC-SHA1, length = 20 bytes (OPTIONAL)
 hmac-sha256 HMAC-SHA256, length = 32 bytes (OPTIONAL)
 hmac-md5 HMAC-MD5, length = 16 bytes (OPTIONAL)
 none No MAC (OPTIONAL)

 The "none" MAC is not recommended to be used as the packet is not
 authenticated when MAC is not computed. It is recommended that no
 client or server would accept none MAC except in special debugging
 mode.

 The HMAC algorithm is described in [HMAC]. The hash algorithms used
 in HMACs, the SHA-1 is described in [RFC3174] and MD5 is described
 in [RFC1321]. The SHA-256 algorithm and its used with HMAC is described
 in [SHA256].

 Additional MAC algorithms MAY be defined to be used in SILC.

3.10.5 Compression Algorithms

 SILC protocol supports compression that may be applied to unencrypted
 data. It is recommended to use compression on slow links as it may
 significantly speed up the data transmission. By default, SILC does not
 use compression which is the mode that must be supported by all SILC
 implementations.

 The following compression algorithms are defined:

 none No compression (REQUIRED)
 zlib GNU ZLIB (LZ77) compression (OPTIONAL)

 Additional compression algorithms MAY be defined to be used in SILC.

3.11 SILC Public Key

 This section defines the type and format of the SILC public key. All
 implementations MUST support this public key type. See [SILC3] for
 other optional public key and certificate types allowed in the SILC
 protocol. Public keys in SILC may be used to authenticate entities
 and to perform other tasks related to public key cryptography.

 The format of the SILC Public Key is as follows:

https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc1321

Riikonen [Page 29]

Internet Draft 15 January 2007

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Public Key Length |
 +-+
 | Algorithm Name Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ~ Algorithm Name ~
 | |
 +-+
 | Identifier Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 ~ Identifier ~
 | |
 +-+
 | |
 ~ Public Data ~
 | |
 +-+

 Figure 5: SILC Public Key

 o Public Key Length (4 bytes) - Indicates the full length
 of the SILC Public Key, not including this field.

 o Algorithm Name Length (2 bytes) - Indicates the length
 of the Algorithm Length field, not including this field.

 o Algorithm name (variable length) - Indicates the name
 of the public key algorithm that the key is. See the

section 3.10.2 Public Key Algorithms for defined names.

 o Identifier Length (2 bytes) - Indicates the length of
 the Identifier field, not including this field.

 o Identifier (variable length) - Indicates the identifier
 of the public key. This data can be used to identify the
 owner of the key. The identifier may be of the following
 format:

 UN User name
 HN Host name or IP address
 RN Real name
 E EMail address
 O Organization

Riikonen [Page 30]

Internet Draft 15 January 2007

 C Country
 V Version

 Examples of an identifier:

 'UN=priikone, HN=poseidon.pspt.fi, E=priikone@poseidon.pspt.fi'

 'UN=sam, HN=dummy.fi, RN=Sammy Sam, C=Finland, V=2'

 At least user name (UN) and host name (HN) MUST be provided as
 identifier. The fields are separated by commas (','). If
 comma is in the identifier string it must be escaped as '\,',
 for example, 'O=Company XYZ\, Inc.'. Other characters that
 require escaping are listed in [RFC2253] and are to be escaped
 as defined therein. The Version (V) may only be a decimal digit.

 o Public Data (variable length) - Includes the actual
 public data of the public key.

 The format of this field for RSA algorithm is
 as follows:

 4 bytes Length of e
 variable length e
 4 bytes Length of n
 variable length n

 The format of this field for DSS algorithm is
 as follows:

 4 bytes Length of p
 variable length p
 4 bytes Length of q
 variable length q
 4 bytes Length of g
 variable length g
 4 bytes Length of y
 variable length y

 The variable length fields are multiple precession
 integers encoded as strings in both examples.

 Other algorithms must define their own type of this
 field if they are used.

 The SILC Public Key is version is 2. If the Version (V) identifier is
 not present the SILC Public Key version is expected to be 1. All new

https://datatracker.ietf.org/doc/html/rfc2253

Riikonen [Page 31]

Internet Draft 15 January 2007

 implementations SHOULD support version 1 but SHOULD only generate version 2.
 In this case the Version (V) identifier MUST be present.

 All fields in the public key are in MSB (most significant byte first)
 order. All strings in the public key MUST be UTF-8 encoded.

 If an external protocol needs to refer to SILC Public Key by name, the
 names "silc-rsa" and "silc-dss" for SILC Public Key based on RSA algorithm
 and SILC Public Key based on DSS algorithm, respectively, are to be used.
 However, this SILC specification does not use these names directly, and
 they are defined here for external protocols (protocols that may like
 to use SILC Public Key).

 A fingerprint from SILC Public Key is computed from the whole encoded
 public key data block. All fields are included in computation. Compliant
 implementations MUST support computing a 160-bit SHA-1 fingerprint.

3.12 SILC Version Detection

 The version detection of both client and server is performed at the
 connection phase while executing the SILC Key Exchange protocol. The
 version identifier is exchanged between initiator and responder. The
 version identifier is of the following format:

 SILC-<protocol version>-<software version>

 The version strings are of the following format:

 protocol version = <major>.<minor>
 software version = <major>[.<minor>[.<build or vendor string>]]

 Protocol version MUST provide both major and minor version. Currently
 implementations MUST set the protocol version and accept at least the
 protocol version as SILC-1.2-<software version>. If new protocol version
 causes incompatibilities with older version the <minor> version number
 MUST be incremented. The <major> is incremented if new protocol version
 is fully incompatible.

 Software version MAY provide major, minor and build (vendor) version.
 The software version MAY be freely set and accepted. The version string
 MUST consist of printable US-ASCII characters.

 Thus, the version strings could be, for example:

 SILC-1.1-2.0.2
 SILC-1.0-1.2
 SILC-1.2-1.0.VendorXYZ

Riikonen [Page 32]

Internet Draft 15 January 2007

 SILC-1.2-2.4.5 Vendor Limited

3.13 UTF-8 Strings in SILC

 By default all strings that are sent in SILC protocol MUST be UTF-8
 [RFC3269] encoded, unless otherwise defined. This means that any string
 sent inside for example, command, command reply, notify or any packet
 payload is UTF-8 encoded. Also nicknames, channel names, server names,
 and hostnames are UTF-8 encoded. This definition does not affect
 messages sent in SILC, as the Message Payload provides its own mechanism
 to indicate whether a message is UTF-8 text message, data message, which
 may use its own character encoding, or pure binary message [SILC2].

 Certain limitations are imposed on the UTF-8 encoded strings in SILC.
 The UTF-8 encoded strings MUST NOT include any characters that are
 marked in the Unicode standard as control codes, noncharacters,
 reserved or private range characters, or any other illegal Unicode
 characters. Also the BOM (Byte-Order Mark) MUST NOT be used as byte
 order signature in UTF-8 encoded strings. A string containing these
 characters MUST be treated as malformed UTF-8 encoding.

 The Unicode standard defines that malformed sequences shall be signalled
 by replacing the sequence with a replacement character. Even though,
 in case of SILC these strings may not be malformed UTF-8 encodings
 they MUST be treated as malformed strings. Implementation MAY use
 a replacement character, however, the character Unicode standard defines
 MUST NOT be used, but another character must be chosen. It is, however,
 RECOMMENDED that an error is returned instead of using replacement
 character if it is possible. For example, when setting a nickname
 with SILC_COMMAND_NICK command, implementation is able to send error
 indication back to the command sender. It must be noted that on server
 implementation if a character sequence is merely outside of current
 character subset, but is otherwise valid character, it MUST NOT be
 replaced by a replacement character.

 On user interface where UTF-8 strings are displayed the implementation
 is RECOMMENDED to escape any character that it is unable to render
 properly. The escaping may be done for example as described in
 [RFC2253]. The escaping makes it possible to retrieve the original
 UTF-8 encoding. Alternatively, a replacement character may be used
 if it does not cause practical problems to the implementation.

3.13.1 UTF-8 Identifier Strings

 Identifier strings are special strings in SILC protocol that require
 more careful processing, than the general UTF-8 strings described in the

https://datatracker.ietf.org/doc/html/rfc3269
https://datatracker.ietf.org/doc/html/rfc2253

Riikonen [Page 33]

Internet Draft 15 January 2007

 previous section. These strings include the nicknames, server names,
 hostnames and some other identifier strings. These strings are prepared
 using the stringprep [RFC3454] standard. The Appendix A defines the
 stringprep profile for SILC identifier strings and conforming
 implementation MUST use the profile to prepare any identifier string.

 The stringprep profile describes how identifier strings are prepared,
 what characters they may include, and which characters are prohibited.
 Identifier strings with prohibited characters MUST be treated as
 malformed strings.

 The channel name is also special identifier strings with some slight
 differences to other identifier strings. The Appendix B defines the
 stringprep profile for the channel name strings and conforming
 implementation MUST use the profile to prepare any channel name string.

 Because of the profile the identifier strings in SILC may generally
 include only letters, numbers, most punctuation characters, and some
 other characters. For practical reasons most symbol characters and
 many other special characters are prohibited. All identifier strings
 are case folded and comparing the identifier strings MUST be done as
 caseless matching.

 In general, the identifier strings does not have a maximum length.
 However, the length of a nickname string MUST NOT exceed 128 bytes, and
 the length of a channel name string MUST NOT exceed 256 bytes. Since
 these strings are UTF-8 encoded the length of one character may be
 longer than one byte. This means that the character length of these
 strings may be shorter than the maximum length of the string in bytes.
 The minimum length of an identifier string MUST be at least one character,
 which may be one byte or more in length. Implementation MAY limit the
 maximum length of an identifier string, with exception of the nickname
 and channel name strings which has the explicit length definition.

3.14 Backup Routers

 Backup routers may exist in the cell in addition to the primary router.
 However, they must not be active routers or act as routers in the cell.
 Only one router may be acting as primary router in the cell. In the case
 of failure of the primary router one of the backup routers becomes active.
 The purpose of backup routers are in case of failure of the primary router
 to maintain working connections inside the cell and outside the cell and
 to avoid netsplits.

 Backup routers are normal servers in the cell that are prepared to take
 over the tasks of the primary router if needed. They need to have at
 least one direct and active connection to the primary router of the cell.

https://datatracker.ietf.org/doc/html/rfc3454

Riikonen [Page 34]

Internet Draft 15 January 2007

 This communication channel is used to send the router information to
 the backup router. When the backup router connects to the primary router
 of the cell it MUST present itself as router server in the Connection
 Authentication protocol, even though it is normal server as long as the
 primary router is available. Reason for this is that the configuration
 needed in the responder end requires usually router connection level
 configuration. The responder, however must understand and treat the
 connection as normal server (except when feeding router level data to
 the backup router).

 Backup router must know everything that the primary router knows to be
 able to take over the tasks of the primary router. It is the primary
 router's responsibility to feed the data to the backup router. If the
 backup router does not know all the data in the case of failure some
 connections may be lost. The primary router of the cell must consider
 the backup router being an actual router server when it feeds the data
 to it.

 In addition to having direct connection to the primary router of the
 cell, the backup router must also have connection to the same router
 to which the primary router of the cell is connected. However, it must
 not be the active router connection meaning that the backup router must
 not use that channel as its primary route and it must not notify the
 router about having connected servers, channels and clients behind it.
 It merely connects to the router. This sort of connection is later
 referred to as being a passive connection. Some keepalive actions may
 be needed by the router to keep the connection alive.

 It is required that other normal servers have passive connections to
 the backup router(s) in the cell. Some keepalive actions may be needed
 by the server to keep the connection alive. After they notice the
 failure of the primary router they must start using the connection to
 the first backup router as their primary route.

 Also, if any other router in the network is using the cell's primary
 router as its own primary router, it must also have passive connection
 to the cell's backup router. It too is prepared to switch to use the
 backup router as its new primary router as soon as the original primary
 router becomes unresponsive.

 All of the parties of this protocol know which one is the backup router
 of the cell from their local configuration. Each of the entities must
 be configured accordingly and care must be taken when configuring the
 backup routers, servers and other routers in the network.

 It must be noted that some of the channel messages and private messages
 may be lost during the switch to the backup router, unless the message
 flag SILC_MESSAGE_FLAG_ACK is set in the message. The announcements

Riikonen [Page 35]

Internet Draft 15 January 2007

 assure that the state of the network is not lost during the switch.

 It is RECOMMENDED that there would be at least one backup router in
 the cell. It is NOT RECOMMENDED to have all servers in the cell acting
 as backup routers as it requires establishing several connections to
 several servers in the cell. Large cells can easily have several
 backup routers in the cell.

 The order of the backup routers are decided at the local configuration
 phase. All the parties of this protocol must be configured accordingly to
 understand the order of the backup routers. It is not required that the
 backup server is actually an active server in the cell. The backup router
 may be a redundant server in the cell that does not accept normal client
 connections at all. It may be reserved purely for the backup purposes.

 If also the first backup router is down as well and there is another
 backup router in the cell then it will start acting as the primary
 router as described above.

3.14.1 Switching to Backup Router

 When the primary router of the cell becomes unresponsive, for example
 by sending EOF to the connection, all the parties of this protocol MUST
 replace the old connection to the primary router with first configured
 backup router. The backup router usually needs to do local modifications
 to its database in order to update all the information needed to maintain
 working routes. The backup router must understand that clients that
 were originated from the primary router are now originated from some of
 the existing server connections and must update them accordingly. It
 must also remove those clients that were owned by the primary router
 since those connections were lost when the primary router became
 unresponsive.

 All the other parties of the protocol must also update their local
 database to understand that the route to the primary router will now go
 to the backup router.

 Servers connected to the backup router MUST send SILC_PACKET_RESUME_ROUTER
 packet with type value 21, to indicate that the server will start using
 the backup router as primary router. The backup router MUST NOT allow
 this action if it detects that primary is still up and running. If
 backup router knows that primary is up and running it MUST send
 SILC_PACKET_FAILURE with type value 21 (4 bytes, MSB first order) back
 to the server. The server then MUST NOT use the backup as primary
 router, but must try to establish connection back to the primary router.
 If the action is allowed type value 21 is sent back to the server from
 the backup router. It is RECOMMENDED that implementations use the

Riikonen [Page 36]

Internet Draft 15 January 2007

 SILC_COMMAND_PING command to detect whether primary router is responsive.
 If the backup router notices that the primary router is unresponsive
 it SHOULD NOT start sending data to server links before the server has
 sent the SILC_PACKET_RESUME_ROUTER with type value 21.

 The servers connected to the backup router must then announce their
 clients, channels, channel users, channel user modes, channel modes,
 topics and other information to the backup router. This is to assure
 that none of the important notify packets were lost during the switch
 to the backup router. The backup router must check which of these
 announced entities it already has and distribute the new ones to the
 primary router.

 The backup router too must announce its servers, clients, channels
 and other information to the new primary router. The primary router
 of the backup router too must announce its information to the backup
 router. Both must process only the ones they do not know about. If
 any of the announced modes do not match then they are enforced in
 normal manner as defined in section 4.2.1 Announcing Clients, Channels
 and Servers.

3.14.2 Resuming Primary Router

 Usually the primary router is unresponsive only a short period of time
 and it is intended that the original router of the cell will resume
 its position as primary router when it comes back online. The backup
 router that is now acting as primary router of the cell must constantly
 try to connect to the original primary router of the cell. It is
 RECOMMENDED that it would try to reconnect in 30 second intervals to
 the primary router.

 When the connection is established to the primary router the backup
 resuming protocol is executed. The protocol is advanced as follows:

 1. Backup router sends SILC_PACKET_RESUME_ROUTER packet with type
 value 1 to the primary router that came back online. The packet
 will indicate the primary router has been replaced by the backup
 router. After sending the packet the backup router will announce
 all of its channels, channel users, modes etc. to the primary
 router.

 If the primary knows that it has not been replaced (for example
 the backup itself disconnected from the primary router and thinks
 that it is now primary in the cell) the primary router send
 SILC_PACKET_FAILURE with the type value 1 (4 bytes, MSB first
 order) back to the backup router. If backup receives this it
 MUST NOT continue with the backup resuming protocol.

Riikonen [Page 37]

Internet Draft 15 January 2007

 2. Backup router sends SILC_PACKET_RESUME_ROUTER packet with type
 value 1 to its current primary router to indicate that it will
 resign as being primary router. Then, backup router sends the
 SILC_PACKET_RESUME_ROUTER packet with type value 1 to all
 connected servers to also indicate that it will resign as being
 primary router.

 3. Backup router also send SILC_PACKET_RESUME_ROUTER packet with
 type value 1 to the router that is using the backup router
 currently as its primary router.

 4. Any server and router that receives the SILC_PACKET_RESUME_ROUTER
 with type value 1 must reconnect immediately to the primary
 router of the cell that came back online. After they have created
 the connection they MUST NOT use that connection as active primary
 route but still route all packets to the backup router. After
 the connection is created they MUST send SILC_PACKET_RESUME_ROUTER
 with type value 2 back to the backup router. The session ID value
 found in the first packet MUST be set in this packet.

 5. Backup router MUST wait for all packets with type value 2 before
 it continues with the protocol. It knows from the session ID values
 set in the packet when it has received all packets. The session
 value should be different in all packets it has sent earlier.
 After the packets are received the backup router sends the
 SILC_PACKET_RESUME_ROUTER packet with type value 3 to the
 primary router that came back online. This packet will indicate
 that the backup router is now ready to resign as being primary
 router. The session ID value in this packet MUST be the same as
 in the first packet sent to the primary router. During this time
 the backup router must still route all packets it is receiving
 from server connections.

 6. The primary router receives the packet and send the packet
 SILC_PACKET_RESUME_ROUTER with type value 4 to all connected servers
 including the backup router. It also sends the packet with type
 value 4 to its primary router, and to the router that is using
 it as its primary router. The Session ID value in these packets
 SHOULD be zero (0).

 7. Any server and router that receives the SILC_PACKET_RESUME_ROUTER
 packet with type value 4 must switch their primary route to the new
 primary router and remove the route for the backup router, since
 it is no longer the primary router of the cell. They must also
 update their local database to understand that the clients are
 not originated from the backup router but from the locally connected
 servers. After that they MUST announce their channels, channel
 users, modes etc. to the primary router. They MUST NOT use the

Riikonen [Page 38]

Internet Draft 15 January 2007

 backup router connection after this and the connection is considered
 to be a passive connection. The implementation SHOULD be able
 to disable the connection without closing the actual link.

 After this protocol is executed the backup router is now again a normal
 server in the cell that has the backup link to the primary router. The
 primary router feeds the router specific data again to the backup router.
 All server connections to the backup router are considered passive
 connections.

 When the primary router of the cell comes back online and connects
 to its remote primary router, the remote primary router MUST send the
 SILC_PACKET_RESUME_ROUTER packet with type value 20 indicating that the
 connection is not allowed since the router has been replaced by an
 backup router in the cell. The session ID value in this packet SHOULD be
 zero (0). When the primary router receives this packet it MUST NOT use
 the connection as active connection but must understand that it cannot
 act as primary router in the cell, until the backup resuming protocol has
 been executed.

 The following type values has been defined for SILC_PACKET_RESUME_ROUTER
 packet:

 1 SILC_SERVER_BACKUP_START
 2 SILC_SERVER_BACKUP_START_CONNECTED
 3 SILC_SERVER_BACKUP_START_ENDING
 4 SILC_SERVER_BACKUP_START_RESUMED
 20 SILC_SERVER_BACKUP_START_REPLACED
 21 SILC_SERVER_BACKUP_START_USE

 If any other value is found in the type field the packet MUST be
 discarded. The SILC_PACKET_RESUME_ROUTER packet and its payload
 is defined in [SILC2].

4 SILC Procedures

 This section describes various SILC procedures such as how the
 connections are created and registered, how channels are created and
 so on. The references [SILC2], [SILC3] and [SILC4] permeate this
 section's definitions.

4.1 Creating Client Connection

 This section describes the procedure when a client connects to SILC
 server. When client connects to server the server MUST perform IP
 address lookup and reverse IP address lookup to assure that the origin

Riikonen [Page 39]

Internet Draft 15 January 2007

 host really is who it claims to be. Client, a host, connecting to server
 SHOULD have both valid IP address and fully qualified domain name (FQDN).

 After that the client and server performs SILC Key Exchange protocol
 which will provide the key material used later in the communication.
 The key exchange protocol MUST be completed successfully before the
 connection registration may continue. The SILC Key Exchange protocol
 is described in [SILC3].

 Typical server implementation would keep a list of connections that it
 allows to connect to the server. The implementation would check, for
 example, the connecting client's IP address from the connection list
 before the SILC Key Exchange protocol has been started. The reason for
 this is that if the host is not allowed to connect to the server there
 is no reason to perform the key exchange protocol.

 After successful key exchange protocol the client and server perform
 connection authentication protocol. The purpose of the protocol is to
 authenticate the client connecting to the server. Flexible
 implementation could also accept the client to connect to the server
 without explicit authentication. However, if authentication is
 desired for a specific client it may be based on passphrase or
 public key authentication. If authentication fails the connection
 MUST be terminated. The connection authentication protocol is described
 in [SILC3].

 After successful key exchange and authentication protocol the client
 MUST register itself by sending SILC_PACKET_NEW_CLIENT packet to the
 server. This packet includes various information about the client
 that the server uses to register the client. Server registers the
 client and sends SILC_PACKET_NEW_ID to the client which includes the
 created Client ID that the client MUST start using after that. After
 that all SILC packets from the client MUST have the Client ID as the
 Source ID in the SILC Packet Header, described in [SILC2].

 Client MUST also get the server's Server ID that is to be used as
 Destination ID in the SILC Packet Header when communicating with
 the server (for example when sending commands to the server). The
 ID may be resolved in two ways. Client can take the ID from an
 previously received packet from server that MUST include the ID,
 or to send SILC_COMMAND_INFO command and receive the Server ID as
 command reply.

 Server MAY choose not to use the information received in the
 SILC_PACKET_NEW_CLIENT packet. For example, if public key or
 certificate were used in the authentication, server MAY use that
 information rather than what it received from client. This is a suitable
 way to get the true information about client if it is available.

Riikonen [Page 40]

Internet Draft 15 January 2007

 The nickname of client is initially set to the username sent in the
 SILC_PACKET_NEW_CLIENT packet. User may set the nickname to something
 more desirable by sending SILC_COMMAND_NICK command. However, this is
 not required as part of registration process.

 Server MUST also distribute the information about newly registered
 client to its router (or if the server is router, to all routers in
 the SILC network). More information about this in [SILC2].

 Router server MUST also check whether some client in the local cell
 is watching for the nickname this new client has, and send the
 SILC_NOTIFY_TYPE_WATCH to the watcher.

4.2 Creating Server Connection

 This section describes the procedure when server connects to its
 router (or when router connects to other router, the cases are
 equivalent). The procedure is very much alike to when a client
 connects to the server thus it is not repeated here.

 One difference is that server MUST perform connection authentication
 protocol with proper authentication. A proper authentication is based
 on passphrase authentication or public key authentication based on
 digital signatures.

 After server and router have successfully performed the key exchange
 and connection authentication protocol, the server MUST register itself
 to the router by sending SILC_PACKET_NEW_SERVER packet. This packet
 includes the server's Server ID that it has created by itself and
 other relevant information about the server. The router receiving the
 ID MUST verify that the IP address in the Server ID is same as the
 server's real IP address.

 After router has received the SILC_PACKET_NEW_SERVER packet it
 distributes the information about newly registered server to all routers
 in the SILC network. More information about this is in [SILC2].

 As the client needed to resolve the destination ID this MUST be done by
 the server that connected to the router, as well. The way to resolve it
 is to get the ID from previously received packet. The server MAY also
 use SILC_COMMAND_INFO command to resolve the ID. Server MUST also start
 using its own Server ID as Source ID in SILC Packet Header and the
 router's Server ID as Destination when communicating with the router.

Riikonen [Page 41]

Internet Draft 15 January 2007

4.2.1 Announcing Clients, Channels and Servers

 After server or router has connected to the remote router, and it already
 has connected clients and channels it MUST announce them to the router.
 If the server is router server, also all the local servers in the cell
 MUST be announced.

 All clients are announced by compiling a list of ID Payloads into the
 SILC_PACKET_NEW_ID packet. All channels are announced by compiling a
 list of Channel Payloads into the SILC_PACKET_NEW_CHANNEL packet.
 Channels' mode, founder public key, channel public keys, and other
 channel mode specific data is announced by sending the
 SILC_NOTIFY_TYPE_CMODE_CHANGE notify list.

 The channel public keys that are announced are compiled in Argument
 List Payload where the argument type is 0x03, and each argument is
 Public Key Payload containing one public key or certificate.

 Also, the channel users on the channels must be announced by compiling
 a list of Notify Payloads with the SILC_NOTIFY_TYPE_JOIN notify type
 into the SILC_PACKET_NOTIFY packet. The users' modes on the channel
 must also be announced by compiling list of Notify Payloads with the
 SILC_NOTIFY_TYPE_CUMODE_CHANGE notify type into the SILC_PACKET_NOTIFY
 packet.

 The router MUST also announce the local servers by compiling list of
 ID Payloads into the SILC_PACKET_NEW_ID packet.

 Also, clients' modes (user modes in SILC) MUST be announced. This is
 done by compiling a list of Notify Payloads with SILC_NOTIFY_UMODE_CHANGE
 notify type into the SILC_PACKET_NOTIFY packet. Also, channels' topics
 MUST be announced by compiling a list of Notify Payloads with the
 SILC_NOTIFY_TOPIC_SET notify type into the SILC_PACKET_NOTIFY packet.
 Also, channel's invite and ban lists MUST be announced by compiling list
 of Notify Payloads with the SILC_NOTIFY_TYPE_INVITE and
 SILC_NOTIFY_TYPE_BAN notify types, respectively, into the
 SILC_PACKET_NOTIFY packet.

 The router which receives these lists MUST process them and broadcast
 the packets to its primary router. When processing the announced channels
 and channel users the router MUST check whether a channel exists already
 with the same name. If channel exists with the same name it MUST check
 whether the Channel ID is different. If the Channel ID is different the
 router MUST send the notify type SILC_NOTIFY_TYPE_CHANNEL_CHANGE to the
 server to force the channel ID change to the ID the router has. If the
 mode of the channel is different the router MUST send the notify type
 SILC_NOTIFY_TYPE_CMODE_CHANGE to the server to force the mode change
 to the mode that the router has.

Riikonen [Page 42]

Internet Draft 15 January 2007

 The router MUST also generate new channel key and distribute it to the
 channel. The key MUST NOT be generated if the SILC_CMODE_PRIVKEY mode
 is set.

 If the channel has a channel founder already on the router, the router
 MUST send the notify type SILC_NOTIFY_TYPE_CUMODE_CHANGE to the server
 to force the mode change for the channel founder on the server. The
 channel founder privileges MUST be removed on the server.

 If the channel public keys are already set on the on router, the router
 MUST ignore the received channel public key list and send the notify
 type SILC_NOTIFY_TYPE_CUMODE_CHANGE to the server which includes the
 channel public key list that is on router. The server MUST change the
 list to the one it receives from router.

 The router processing the channels MUST also compile a list of
 Notify Payloads with the SILC_NOTIFY_TYPE_JOIN notify type into the
 SILC_PACKET_NOTIFY and send the packet to the server. This way the
 server (or router) will receive the clients on the channel that
 the router has.

4.3 Joining to a Channel

 This section describes the procedure when client joins to a channel.
 Client joins to channel by sending command SILC_COMMAND_JOIN to the
 server. If the receiver receiving join command is normal server the
 server MUST check its local list whether this channel already exists
 locally. This would indicate that some client connected to the server
 has already joined to the channel. If this is the case, the client is
 joined to the channel, new channel key is created and information about
 newly joined channel is sent to the router. The router is informed
 by sending SILC_NOTIFY_TYPE_JOIN notify type. The notify type MUST
 also be sent to the local clients on the channel. The new channel key
 is also sent to the router and to local clients on the channel.

 If the channel does not exist in the local list the client's command
 MUST be sent to the router which will then perform the actual joining
 procedure. When server receives the reply to the command from the
 router it MUST be sent to the client which sent the command originally.
 Server will also receive the channel key from the server that it MUST
 send to the client which originally requested the join command. The
 server MUST also save the channel key.

 If the receiver of the join command is router it MUST first check its
 local list whether anyone in the cell has already joined to the channel.
 If this is the case, the client is joined to the channel and reply is
 sent to the client. If the command was sent by server the command reply

Riikonen [Page 43]

Internet Draft 15 January 2007

 is sent to the server which sent it. Then the router MUST also create
 new channel key and distribute it to all clients on the channel and
 all servers that have clients on the channel. Router MUST also send
 the SILC_NOTIFY_TYPE_JOIN notify type to local clients on the channel
 and to local servers that have clients on the channel.

 If the channel does not exist on the router's local list it MUST
 check the global list whether the channel exists at all. If it does
 the client is joined to the channel as described previously. If
 the channel does not exist the channel is created and the client
 is joined to the channel. The channel key is also created and
 distributed as previously described. The client joining to the created
 channel is made automatically channel founder and both channel founder
 and channel operator privileges are set for the client.

 If the router created the channel in the process, information about the
 new channel MUST be broadcast to all routers. This is done by
 broadcasting SILC_PACKET_NEW_CHANNEL packet to the router's primary
 route. When the router joins the client to the channel it MUST also
 send information about newly joined client to all routers in the SILC
 network. This is done by broadcasting the SILC_NOTIFY_TYPE_JOIN notify
 type to the router's primary route.

 It is important to note that new channel key is created always when
 new client joins to channel, whether the channel has existed previously
 or not. This way the new client on the channel is not able to decrypt
 any of the old traffic on the channel. Client which receives the reply to
 the join command MUST start using the received Channel ID in the channel
 message communication thereafter. Client also receives the key for the
 channel in the command reply. Note that the channel key is never
 generated or distributed if the SILC_CMODE_PRIVKEY mode is set.

4.4 Channel Key Generation

 Channel keys are created by router which creates the channel by taking
 enough randomness from cryptographically strong random number generator.
 The key is generated always when channel is created, when new client
 joins a channel and after the key has expired. Key could expire for
 example in an hour.

 The key MUST also be re-generated whenever some client leaves a channel.
 In this case the key is created from scratch by taking enough randomness
 from the random number generator. After that the key is distributed to
 all clients on the channel. However, channel keys are cell specific thus
 the key is created only on the cell where the client, which left the
 channel, exists. While the server or router is creating the new channel
 key, no other client may join to the channel. Messages that are sent

Riikonen [Page 44]

Internet Draft 15 January 2007

 while creating the new key are still processed with the old key. After
 server has sent the SILC_PACKET_CHANNEL_KEY packet client MUST start
 using the new key. If server creates the new key the server MUST also
 send the new key to its router. See [SILC2] for more information about
 how channel messages must be encrypted and decrypted when router is
 processing them.

 If the key changes very often due to joining traffic on the channel it
 is RECOMMENDED that client implementation would cache some of the old
 channel keys for short period of time so that it is able to decrypt all
 channel messages it receives. It is possible that on a heavy traffic
 channel a message encrypted with channel key that was just changed
 is received by client after the new key was set into use. This is
 possible because not all clients may receive the new key at the same
 time, and may still be sending messages encrypted with the old key.

 When client receives the SILC_PACKET_CHANNEL_KEY packet with the
 Channel Key Payload it MUST process the key data to create encryption
 and decryption key, and to create the MAC key that is used to compute
 the MACs of the channel messages. The processing is as follows:

 channel_key = raw key data
 MAC key = hash(raw key data)

 The raw key data is the key data received in the Channel Key Payload.
 It is used for both encryption and decryption. The hash() is the hash
 function used with the HMAC of the channel. Note that the server also
 MUST save the channel key.

4.5 Private Message Sending and Reception

 Private messages are sent point to point. Client explicitly destine
 a private message to specific client that is delivered to only to that
 client. No other client may receive the private message. The receiver
 of the private message is destined in the SILC Packet Header as in any
 other packet as well. The Source ID in the SILC Packet Header MUST be
 the ID of the sender of the message.

 If the sender of a private message does not know the receiver's Client
 ID, it MUST resolve it from server. There are two ways to resolve the
 client ID from server; it is RECOMMENDED that client implementations
 send SILC_COMMAND_IDENTIFY command to receive the Client ID. Client
 MAY also send SILC_COMMAND_WHOIS command to receive the Client ID.
 If the sender has received earlier a private message from the receiver
 it should have cached the Client ID from the SILC Packet Header.

 If server receives a private message packet which includes invalid

Riikonen [Page 45]

Internet Draft 15 January 2007

 destination Client ID the server MUST send SILC_NOTIFY_TYPE_ERROR
 notify to the client with error status indicating that such Client ID
 does not exist.

 See [SILC2] for description of private message encryption and decryption
 process.

4.6 Private Message Key Generation

 Private message MAY be protected with a key generated by the client.
 One way to generate private message key is to use static or pre-shared
 keys in the client implementation. Client that wants to indicate other
 client on the network that a private message key should be set, the
 client MAY send SILC_PACKET_PRIVATE_MESSAGE_KEY packet to indicate this.
 The actual key material has to be transferred outside the SILC network,
 or it has to be pre-shared key. The client receiving this packet knows
 that the sender wishes to use private message key in private message
 communication. In case of static or pre-shared keys the IV used in
 the encryption SHOULD be chosen randomly. Sending the
 SILC_PACKET_PRIVATE_MESSAGE_KEY is not mandatory, and clients may
 naturally agree to use a key without sending the packet.

 Another choice to use private message keys is to negotiate fresh key
 material by performing the Key Agreement. The SILC_PACKET_KEY_AGREEMENT
 packet MAY be used to negotiate the fresh key material. In this case
 the resulting key material is used to secure the private messages.
 Also, the IV used in encryption is used as defined in [SILC3], unless
 otherwise stated by the encryption mode used. By performing Key
 Agreement the clients can also negotiate the cipher and HMAC to be used
 in the private message encryption and to negotiate additional security
 parameters. The actual Key Agreement [SILC2] is performed by executing
 the SILC Key Exchange protocol [SILC3], peer to peer. Because of NAT
 devices in the network, it might be impossible to perform the Key
 Agreement. In this case using static or pre-shared key and sending the
 SILC_PACKET_PRIVATE_MESSAGE_KEY to indicate the use of a private message
 key is a working alternative.

 If the key is pre-shared key or other key material not generated by
 Key Agreement, then the key material SHOULD be processed as defined
 in [SILC3]. In the processing, however, the HASH, as defined in [SILC3]
 MUST be ignored. After processing the key material it is employed as
 defined in [SILC3]. If the SILC_PACKET_PRIVATE_MESSAGE_KEY was sent,
 then it defines the cipher and HMAC to be used. The hash algorithm to be
 used in the key material processing is the one that HMAC algorithm is
 defined to use. If the SILC_PACKET_PRIVATE_MESSAGE_KEY was not sent at
 all, then the hash algorithm to be used SHOULD be SHA1. In this case
 also, implementations SHOULD use the SILC protocol's mandatory cipher

Riikonen [Page 46]

Internet Draft 15 January 2007

 and HMAC in private message encryption.

4.7 Channel Message Sending and Reception

 Channel messages are delivered to a group of users. The group forms a
 channel and all clients on the channel receives messages sent to the
 channel. The Source ID in the SILC Packet Header MUST be the ID
 of the sender of the message.

 Channel messages are destined to a channel by specifying the Channel ID
 as Destination ID in the SILC Packet Header. The server MUST then
 distribute the message to all clients, except to the original sender,
 on the channel by sending the channel message destined explicitly to a
 client on the channel. However, the Destination ID MUST still remain
 as the Channel ID.

 If server receives a channel message packet which includes invalid
 destination Channel ID the server MUST send SILC_NOTIFY_TYPE_ERROR
 notify to the sender with error status indicating that such Channel ID
 does not exist.

 See the [SILC2] for description of channel message routing for router
 servers, and channel message encryption and decryption process.

4.8 Session Key Regeneration

 Session keys MUST be regenerated periodically, say, once in an hour.
 The re-key process is started by sending SILC_PACKET_REKEY packet to
 other end, to indicate that re-key must be performed. The initiator
 of the connection SHOULD initiate the re-key.

 If perfect forward secrecy (PFS) flag was selected in the SILC Key
 Exchange protocol [SILC3] the re-key MUST cause new key exchange with
 SKE protocol. In this case the protocol is secured with the old key
 and the protocol results to new key material. See [SILC3] for more
 information. After the SILC_PACKET_REKEY packet is sent the sender
 will perform the SKE protocol.

 If PFS flag was set the resulted key material is processed as described
 in the section Processing the Key Material in [SILC3]. The difference
 with re-key in the processing is that the initial data for the hash
 function is just the resulted key material and not the HASH as it
 is not computed at all with re-key. Other than that, the key processing
 it equivalent to normal SKE negotiation.

 If PFS flag was not set, which is the default case, then re-key is done

Riikonen [Page 47]

Internet Draft 15 January 2007

 without executing SKE protocol. In this case, the new key is created by
 providing the current sending encryption key to the SKE protocol's key
 processing function. The process is described in the section Processing
 the Key Material in [SILC3]. The difference in the processing is that
 the initial data for the hash function is the current sending encryption
 key and not the SKE's KEY and HASH values. Other than that, the key
 processing is equivalent to normal SKE negotiation.

 After both parties have regenerated the session key, both MUST send
 SILC_PACKET_REKEY_DONE packet to each other. These packets are still
 secured with the old key. After these packets, the subsequent packets
 MUST be protected with the new key. Note that, in case SKE was performed
 again the SILC_PACKET_SUCCESS is not sent. The SILC_PACKET_REKEY_DONE
 is sent in its stead.

4.9 Command Sending and Reception

 Client usually sends the commands in the SILC network. In this case
 the client simply sends the command packet to server and the server
 processes it and replies with command reply packet. See the [SILC4]
 for detailed description of all commands.

 However, if the server is not able to process the command, it is sent to
 the server's router. This is case for example with commands such as
 SILC_COMMAND_JOIN and SILC_COMMAND_WHOIS commands. However, there are
 other commands as well [SILC4]. For example, if client sends the WHOIS
 command requesting specific information about some client the server must
 send the WHOIS command to router so that all clients in SILC network are
 searched. The router, on the other hand, sends the WHOIS command further
 to receive the exact information about the requested client. The WHOIS
 command travels all the way to the server which owns the client and it
 replies with command reply packet. Finally, the server which sent the
 command receives the command reply and it must be able to determine which
 client sent the original command. The server then sends command reply to
 the client. Implementations should have some kind of cache to handle, for
 example, WHOIS information. Servers and routers along the route could all
 cache the information for faster referencing in the future.

 The commands sent by server may be sent hop by hop until someone is able
 to process the command. However, it is preferred to destine the command
 as precisely as it is possible. In this case, other routers en route
 MUST route the command packet by checking the true sender and true
 destination of the packet. However, servers and routers MUST NOT route
 command reply packets to clients coming from other servers. Client
 MUST NOT accept command reply packet originated from anyone else but
 from its own server.

Riikonen [Page 48]

Internet Draft 15 January 2007

4.10 Closing Connection

 When remote client connection is closed the server MUST send the notify
 type SILC_NOTIFY_TYPE_SIGNOFF to its primary router and to all channels
 the client was joined. The server MUST also save the client's information
 for a period of time for history purposes.

 When remote server or router connection is closed the server or router
 MUST also remove all the clients that was behind the server or router
 from the SILC Network. The server or router MUST also send the notify
 type SILC_NOTIFY_TYPE_SERVER_SIGNOFF to its primary router and to all
 local clients that are joined on the same channels with the remote
 server's or router's clients.

 Router server MUST also check whether some client in the local cell
 is watching for the nickname this client has, and send the
 SILC_NOTIFY_TYPE_WATCH to the watcher, unless the client which left
 the network has the SILC_UMODE_REJECT_WATCHING user mode set.

4.11 Detaching and Resuming a Session

 SILC protocol provides a possibility for a client to detach itself from
 the network without actually signing off from the network. The client
 connection to the server is closed but the client remains as valid client
 in the network. The client may then later resume its session back from
 any server in the network.

 When client wishes to detach from the network it MUST send the
 SILC_COMMAND_DETACH command to its server. The server then MUST set
 SILC_UMODE_DETACHED mode to the client and send SILC_NOTIFY_UMODE_CHANGE
 notify to its primary router, which then MUST broadcast it further
 to other routers in the network. This user mode indicates that the
 client is detached from the network. Implementations MUST NOT use
 the SILC_UMODE_DETACHED flag to determine whether a packet can be sent
 to the client. All packets MUST still be sent to the client even if
 client is detached from the network. Only the server that originally
 had the active client connection is able to make the decision after it
 notices that the network connection is not active. In this case the
 default case is to discard the packet.

 The SILC_UMODE_DETACHED flag cannot be set by client itself directly
 with SILC_COMMAND_UMODE command, but only implicitly by sending the
 SILC_COMMAND_DETACH command. The flag also cannot be unset by the
 client, server or router with SILC_COMMAND_UMODE command, but only
 implicitly by sending and receiving the SILC_PACKET_RESUME_CLIENT
 packet.

Riikonen [Page 49]

Internet Draft 15 January 2007

 When the client wishes to resume its session in the SILC Network it
 connects to a server in the network, which MAY also be a different
 from the original server, and performs normal procedures regarding
 creating a connection as described in section 4.1. After the SKE
 and the Connection Authentication protocols has been successfully
 completed the client MUST NOT send SILC_PACKET_NEW_CLIENT packet, but
 MUST send SILC_PACKET_RESUME_CLIENT packet. This packet is used to
 perform the resuming procedure. The packet MUST include the detached
 client's Client ID, which the client must know. It also includes
 Authentication Payload which includes signature computed with the
 client's private key. The signature is computed as defined in the

section 3.9.1. Thus, the authentication method MUST be based in
 public key authentication.

 When server receive the SILC_PACKET_RESUME_CLIENT packet it MUST
 do the following: Server checks that the Client ID is valid client
 and that it has the SILC_UMODE_DETACHED mode set. Then it verifies
 the Authentication Payload with the detached client's public key.
 If it does not have the public key it retrieves it by sending
 SILC_COMMAND_GETKEY command to the server that has the public key from
 the original client connection. The server MUST NOT use the public
 key received in the SKE protocol for this connection. If the
 signature is valid the server unsets the SILC_UMODE_DETACHED flag,
 and sends the SILC_PACKET_RESUME_CLIENT packet to its primary router.
 The routers MUST broadcast the packet and unset the SILC_UMODE_DETACHED
 flag when the packet is received. If the server is router server it
 also MUST send the SILC_PACKET_RESUME_CLIENT packet to the original
 server whom owned the detached client.

 The servers and routers that receives the SILC_PACKET_RESUME_CLIENT
 packet MUST know whether the packet already has been received for
 the client. It is a protocol error to attempt to resume the client
 session from more than one server. The implementations could set
 internal flag that indicates that the client is resumed. If router
 receive SILC_PACKET_RESUME_CLIENT packet for client that is already
 resumed the client MUST be killed from the network. This would
 indicate that the client is attempting to resume the session more
 than once which is a protocol error. In this case the router sends
 SILC_NOTIFY_TYPE_KILLED to the client. All routers that detect
 the same situation MUST also send the notify for the client.

 The servers and routers that receive the SILC_PACKET_RESUME_CLIENT
 must also understand that the client may not be found behind the
 same server that it originally came from. They must update their
 caches according to this. The server that now owns the client session
 MUST check whether the Client ID of the resumed client is based
 on the server's Server ID. If it is not it creates a new Client
 ID and send SILC_NOTIFY_TYPE_NICK_CHANGE to the network. It MUST

Riikonen [Page 50]

Internet Draft 15 January 2007

 also send the channel keys of all channels that the client has
 joined to the client since it does not have them. Whether the
 Client ID was changed or not the server MUST send SILC_PACKET_NEW_ID
 packet to the client. Only after this is the client resumed back
 to the network and may start sending packets and messages.

 It is also possible that the server did not know about the global
 channels before the client resumed. In this case it joins the client
 to the channels, generates new channel keys and distributes the keys
 to the channels as described in section 4.4.

 It is an implementation issue for how long servers keep detached client
 sessions. It is RECOMMENDED that the detached sessions would be
 persistent as long as the server is running.

4.12 UDP/IP Connections

 SILC protocol allows the use of UDP/IP instead of TCP/IP. There may be
 many reasons to use UDP, such as video and audio conferencing might
 be more efficient with UDP.

 When UDP/IP is used, in the SILC Key Exchange protocol the IV Included
 flag MUST be set and the first 16-bits of the Cookie field in the Key
 Exchange Start Payload MUST include the port that the other end will use
 as the SILC session port. The port is in MSB first order. Both initiator
 and responder will set the port they are going to use and all packets
 after the SKE has been completed with the SILC_PACKET_SUCCESS packet MUST
 be sent to the specified port. Initiator will send them to the port
 responder specified and vice versa. When verifying the cookie for
 modifications the first two bytes are to be ignored in case IV Included
 flag has been set.

 The default SILC port or port where the SILC server is listenning for
 incoming packets is used only during initial key exchange protocol. After
 SKE has been completed all packets are sent to the specified ports,
 including connection authentication packets and rekey packets even when
 PFS is used in rekey.

 Changing the ports during SILC session is possible only by first detaching
 from the server (with client-server connections) and then performing the
 SILC Key Exchange protocol from the beginning and resuming the detached
 session.

 Since the UDP is unreliable transport the SKE packets may not arrive to
 the recipient. Implementation should support retransmission of SKE
 packets by using exponential backoff algorithm. Also other SILC packets

Riikonen [Page 51]

Internet Draft 15 January 2007

 such as messages may drop en route. With message packets only way to
 assure reliable delivery is to use message acking and retransmit the
 message by using for example exponential backoff algorithm. With SKE
 packets the initial timeout value should be no more than 1000
 milliseconds. With message packets the initial timeout value should be
 around 5000 milliseconds.

5 Security Considerations

 Security is central to the design of this protocol, and these security
 considerations permeate the specification. Common security considerations
 such as keeping private keys truly private and using adequate lengths for
 symmetric and asymmetric keys must be followed in order to maintain the
 security of this protocol.

 Special attention must also be paid to the servers and routers that are
 running the SILC service. The SILC protocol's security depends greatly
 on the security and the integrity of the servers and administrators that
 are running the service. It is recommended that some form of registration
 is required by the server and router administrator prior to acceptance to
 the SILC Network. Even though the SILC protocol is secure in a network
 of mutual distrust between clients, servers, routers and administrators
 of the servers, the client should be able to trust the servers they are
 using if they wish to do so.

 It however must be noted that if the client requires absolute security
 by not trusting any of the servers or routers in the SILC Network, it can
 be accomplished by negotiating private secret keys outside the SILC
 Network, either using SKE or some other key exchange protocol, or to use
 some other external means for distributing the keys. This applies for
 all messages, private messages and channel messages.

 It is important to note that SILC, like any other security protocol, is
 not a foolproof system; the SILC servers and routers could very well be
 compromised. However, to provide an acceptable level of security and
 usability for end users, the protocol uses many times session keys or
 other keys generated by the servers to secure the messages. This is an
 intentional design feature to allow ease of use for end users. This way
 the network is still usable, and remains encrypted even if the external
 means of distributing the keys is not working. The implementation,
 however, may like to not follow this design feature, and may always
 negotiate the keys outside SILC network. This is an acceptable solution
 and many times recommended. The implementation still must be able to
 work with the server generated keys.

 If this is unacceptable for the client or end user, the private keys
 negotiated outside the SILC Network should always be used. In the end

Riikonen [Page 52]

Internet Draft 15 January 2007

 it is the implementor's choice whether to negotiate private keys by
 default or whether to use the keys generated by the servers.

 It is also recommended that router operators in the SILC Network would
 form a joint forum to discuss the router and SILC Network management
 issues. Also, router operators along with the cell's server operators
 should have a forum to discuss the cell management issues.

6 References

 [SILC2] Riikonen, P., "SILC Packet Protocol", Internet Draft,
 January 2007.

 [SILC3] Riikonen, P., "SILC Key Exchange and Authentication
 Protocols", Internet Draft, January 2007.

 [SILC4] Riikonen, P., "SILC Commands", Internet Draft, January 2007.

 [IRC] Oikarinen, J., and Reed D., "Internet Relay Chat Protocol",
RFC 1459, May 1993.

 [IRC-ARCH] Kalt, C., "Internet Relay Chat: Architecture", RFC 2810,
 April 2000.

 [IRC-CHAN] Kalt, C., "Internet Relay Chat: Channel Management", RFC
2811, April 2000.

 [IRC-CLIENT] Kalt, C., "Internet Relay Chat: Client Protocol", RFC
2812, April 2000.

 [IRC-SERVER] Kalt, C., "Internet Relay Chat: Server Protocol", RFC
2813, April 2000.

 [SSH-TRANS] Ylonen, T., et al, "SSH Transport Layer Protocol",
 Internet Draft.

 [PGP] Callas, J., et al, "OpenPGP Message Format", RFC 2440,
 November 1998.

 [SPKI] Ellison C., et al, "SPKI Certificate Theory", RFC 2693,
 September 1999.

 [PKIX-Part1] Housley, R., et al, "Internet X.509 Public Key
 Infrastructure, Certificate and CRL Profile", RFC 2459,
 January 1999.

 [Schneier] Schneier, B., "Applied Cryptography Second Edition",

https://datatracker.ietf.org/doc/html/rfc1459
https://datatracker.ietf.org/doc/html/rfc2810
https://datatracker.ietf.org/doc/html/rfc2811
https://datatracker.ietf.org/doc/html/rfc2811
https://datatracker.ietf.org/doc/html/rfc2812
https://datatracker.ietf.org/doc/html/rfc2812
https://datatracker.ietf.org/doc/html/rfc2813
https://datatracker.ietf.org/doc/html/rfc2813
https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc2693
https://datatracker.ietf.org/doc/html/rfc2459

Riikonen [Page 53]

Internet Draft 15 January 2007

 John Wiley & Sons, New York, NY, 1996.

 [Menezes] Menezes, A., et al, "Handbook of Applied Cryptography",
 CRC Press 1997.

 [OAKLEY] Orman, H., "The OAKLEY Key Determination Protocol",
RFC 2412, November 1998.

 [ISAKMP] Maughan D., et al, "Internet Security Association and
 Key Management Protocol (ISAKMP)", RFC 2408, November
 1998.

 [IKE] Harkins D., and Carrel D., "The Internet Key Exchange
 (IKE)", RFC 2409, November 1998.

 [HMAC] Krawczyk, H., "HMAC: Keyed-Hashing for Message
 Authentication", RFC 2104, February 1997.

 [PKCS1] Kalinski, B., and Staddon, J., "PKCS #1 RSA Cryptography
 Specifications, Version 2.0", RFC 2437, October 1998.

 [RFC2119] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 3629, November 2003.

 [RFC1321] Rivest R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC3174] Eastlake, F., et al., "US Secure Hash Algorithm 1 (SHA1)",
RFC 3174, September 2001.

 [PKCS7] Kalinski, B., "PKCS #7: Cryptographic Message Syntax,
 Version 1.5", RFC 2315, March 1998.

 [RFC2253] Wahl, M., et al., "Lightweight Directory Access Protocol
 (v3): UTF-8 String Representation of Distinguished Names",

RFC 2253, December 1997.

 [RFC3454] Hoffman, P., et al., "Preparation of Internationalized
 Strings ("stringprep")", RFC 3454, December 2002.

 [SHA256] Eastlake 3rd, D., et al., "US Secure Hash Algorithms (SHA
 and HMAC-SHA)", RFC 4634, July 2006.

https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2437
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc2315
https://datatracker.ietf.org/doc/html/rfc2253
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc4634

Riikonen [Page 54]

Internet Draft 15 January 2007

7 Author's Address

 Pekka Riikonen
 Helsinki
 Finland

 EMail: priikone@iki.fi

Appendix A

 This appendix defines the stringprep [RFC3454] profile for string
 identifiers in SILC protocol. Compliant implementation MUST use this
 profile to prepare the identifier strings in the SILC protocol. The
 profile defines the following as required by [RFC3454].

 - Intended applicability of the profile: the following identifiers in
 the SILC Protocol; nicknames, usernames, server names, hostnames,
 service names, algorithm names and other security property names [SILC3],
 and SILC Public Key name.

 - The character repertoire that is the input and output to
 stringprep: Unicode 3.2 with the list of unassigned code points
 being the Table A.1, as defined in [RFC3454].

 - The mapping tables used: the following tables are used, in order,
 as defined in [RFC3454].

 Table B.1
 Table B.2

 The mandatory case folding is done using the Table B.2 which includes
 the characters for the normalization form KC.

 - The Unicode normalization used: the Unicode normalization form
 KC is used, as defined in [RFC3454].

 - The prohibited characters as output: the following tables are used
 to prohibit characters, as defined in [RFC3454];

 Table C.1.1
 Table C.1.2
 Table C.2.1
 Table C.2.2
 Table C.3
 Table C.4
 Table C.5
 Table C.6

https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454

Riikonen [Page 55]

Internet Draft 15 January 2007

 Table C.7
 Table C.8
 Table C.9

 - Additional prohibited characters as output: in addition, the following
 tables are used to prohibit characters, as defined in this document;

Appendix C
Appendix D

 - The bidirectional string testing used: bidirectional string testing
 is ignored in this profile.

 This profile is to be maintained in the IANA registry for stringprep
 profiles. The name of this profile is "silc-identifier-prep" and this
 document defines the profile. This document defines the first version of
 this profile.

Appendix B

 This appendix defines the stringprep [RFC3454] profile for channel name
 strings in SILC protocol. Compliant implementation MUST use this profile
 to prepare the channel name strings in the SILC protocol. The profile
 defines the following as required by [RFC3454].

 - Intended applicability of the profile: channel names.

 - The character repertoire that is the input and output to
 stringprep: Unicode 3.2 with the list of unassigned code points
 being the Table A.1, as defined in [RFC3454].

 - The mapping tables used: the following tables are used, in order,
 as defined in [RFC3454].

 Table B.1
 Table B.2

 The mandatory case folding is done using the Table B.2 which includes
 the characters for the normalization form KC.

 - The Unicode normalization used: the Unicode normalization form
 KC is used, as defined in [RFC3454].

 - The prohibited characters as output: the following tables are used
 to prohibit characters, as defined in [RFC3454];

 Table C.1.1

https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454

Riikonen [Page 56]

Internet Draft 15 January 2007

 Table C.1.2
 Table C.2.1
 Table C.2.2
 Table C.3
 Table C.4
 Table C.5
 Table C.6
 Table C.7
 Table C.8
 Table C.9

 - Additional prohibited characters as output: in addition, the following
 tables are used to prohibit characters, as defined in this document;

Appendix D

 - The bidirectional string testing used: bidirectional string testing
 is ignored in this profile.

 This profile is to be maintained in the IANA registry for stringprep
 profiles. The name of this profile is "silc-identifier-ch-prep" and this
 document defines the profile. This document defines the first version of
 this profile.

Appendix C

 This appendix defines additional prohibited characters in the identifier
 strings as defined in the stringprep profile in Appendix A.

 Reserved US-ASCII characters
 0021 002A 002C 003F 0040

Appendix D

 This appendix defines additional prohibited characters in the identifier
 strings as defined in the stringprep profile in Appendix A and Appendix B.
 Note that the prohibited character tables listed in the Appendix A and

Appendix B may include some of the same characters listed in this
 appendix as well.

 Symbol characters and other symbol like characters
 00A2-00A9 00AC 00AE 00AF 00B0 00B1 00B4 00B6 00B8 00D7 00F7
 02C2-02C5 02D2-02FF 0374 0375 0384 0385 03F6 0482 060E 060F
 06E9 06FD 06FE 09F2 09F3 09FA 0AF1 0B70 0BF3-0BFA 0E3F
 0F01-0F03 0F13-0F17 0F1A-0F1F 0F34 0F36 0F38 0FBE 0FBF
 0FC0-0FC5 0FC7-0FCF 17DB 1940 19E0-19FF 1FBD 1FBF-1FC1

Riikonen [Page 57]

Internet Draft 15 January 2007

 1FCD-1FCF 1FDD-1FDF 1FED-1FEF 1FFD 1FFE 2044 2052 207A-207C
 208A-208C 20A0-20B1 2100-214F 2150-218F 2190-21FF 2200-22FF
 2300-23FF 2400-243F 2440-245F 2460-24FF 2500-257F 2580-259F
 25A0-25FF 2600-26FF 2700-27BF 27C0-27EF 27F0-27FF 2800-28FF
 2900-297F 2980-29FF 2A00-2AFF 2B00-2BFF 2E9A 2EF4-2EFF
 2FF0-2FFF 303B-303D 3040 3095-3098 309F-30A0 30FF-3104
 312D-3130 318F 31B8-31FF 321D-321F 3244-325F 327C-327E
 32B1-32BF 32CC-32CF 32FF 3377-337A 33DE-33DF 33FF 4DB6-4DFF
 9FA6-9FFF A48D-A48F A4A2-A4A3 A4B4 A4C1 A4C5 A4C7-ABFF
 D7A4-D7FF FA2E-FAFF FFE0-FFEE FFFC 10000-1007F 10080-100FF
 10100-1013F 1D000-1D0FF 1D100-1D1FF 1D300-1D35F 1D400-1D7FF

 Other characters
 E0100-E01EF

Full Copyright Statement

 Copyright (C) The Internet Society (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/bcp78

Riikonen [Page 58]

