
DIME A. B. Roach
Internet-Draft Tekelec
Intended status: Standards Track October 22, 2012
Expires: April 25, 2013

A Mechanism for Diameter Overload Control
draft-roach-dime-overload-ctrl-01

Abstract

 When a Diameter server or agent becomes overloaded, it needs to be
 able to gracefully reduce its load, typically by informing clients to
 reduce or stop sending traffic for some period of time. Otherwise,
 it must continue to expend resources parsing and responding to
 Diameter messages.

 This document proposes a concrete, application-independent mechanism
 to address the challenge of communicating load and overload state
 among Diameter peers, and specifies an algorithm for load abatement
 to address such overload conditions as they occur. The load
 abatement algorithm is extensible, allowing for future documents to
 define additional load abatement approaches.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Roach Expires April 25, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Diameter Overload Control October 2012

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Mechanism Properties 4
1.2. Overview of Operation 6
1.3. Documentation Conventions 6

2. Overload Scopes . 6
2.1. Scope Descriptions . 7
2.2. Combining Scopes . 8

3. Diameter Node Behavior . 9
3.1. Connection Establishment Procedures 9
3.2. Diameter Client and Diameter Server Behavior 11
3.2.1. Sending a Request 12
3.2.2. Receiving a Request 13
3.2.3. Sending an Answer 14
3.2.4. Receiving an Answer 15

3.3. Diameter Agent Behavior 15
3.3.1. Proxying a Request 16
3.3.2. Proxying an Answer 16

3.4. Proactive Load and Overload Communication 16
3.5. Load Processing . 16
3.5.1. Sending Load Information 17
3.5.2. Receiving Load Information 18

3.6. Session Establishment for Session Groups 19
3.6.1. Session Group Concepts 19
3.6.2. Session Group Procedures 21

4. Loss-Based Overload Control Algorithm 22
4.1. Overload-Metric values for the 'Loss' Algorithm 22
4.2. Example Implementation 23

5. Diameter AVPs for Overload 27
5.1. Load-Info AVP . 27
5.2. Supported-Scopes AVP 28
5.3. Overload-Algorithm AVP 28
5.4. Overload-Info-Scope AVP 29
5.4.1. Realm Scope . 30
5.4.2. Application-ID Scope 30
5.4.3. Host Scope . 30
5.4.4. Session Scope . 30
5.4.5. Connection Scope 30

http://trustee.ietf.org/license-info

Roach Expires April 25, 2013 [Page 2]

Internet-Draft Diameter Overload Control October 2012

5.4.6. Session Group Scope 31
5.5. Overload-Metric AVP 31
5.6. Period-Of-Validity AVP 31
5.7. Session-Group AVP . 31
5.8. Load AVP . 31

6. Security Considerations 31
7. IANA Considerations . 32
7.1. New Diameter AVPs . 32
7.2. New Diameter Disconnect-Cause 32
7.3. New Diameter Response Code 33
7.4. New Command Flag . 33
7.5. Overload Algorithm Registry 33
7.6. Overload Scope Registry 33

8. References . 34
8.1. Normative References 34
8.2. Informative References 34

Appendix A. Acknowledgements 34
Appendix B. Requirements Analysis 35
Appendix C. Extending the Overload Mechanism 35
C.1. New Algorithms . 35
C.2. New Scopes . 35

Appendix D. Design Rationale 36
D.1. Piggybacking . 36
D.2. Load AVP in All Packets 37
D.3. Graceful Failure . 38

 Author's Address . 38

Roach Expires April 25, 2013 [Page 3]

Internet-Draft Diameter Overload Control October 2012

1. Introduction

 When a Diameter [I-D.ietf-dime-rfc3588bis] server or agent becomes
 overloaded, it needs to be able to gracefully reduce its load,
 typically by informing clients to reduce or stop sending traffic for
 some period of time. Otherwise, it must continue to expend resources
 parsing and responding to Diameter messages.

 This document defines a mechanism for communicating the load and
 overload information among Diameter nodes. It also defines a base
 algorithm for shedding traffic under overload circumstances. The
 design of the mechanism described in this document allows for the
 definition of alternate load abatement algorithms as well.

 The mechanism proposed in this document is heavily influenced by the
 work performed in the IETF Session Initiation Protocol (SIP) Overload
 Control Working Group, and draws on the conclusions reached by that
 working group after extensive network modeling.

 The solution described in this document is intended to satisfy the
 requirements described in [I-D.ietf-dime-overload-reqs], with the
 exception of REQ 35. As discussed in that document, the intention of
 a Diameter overload mechanism is to handle overload of the actual
 message processing portions of Diameter servers. This is in contrast
 to congestion, which is the inability of the underlying switching and
 routing fabric of the network to carry the volume of traffic at the
 volume that IP hosts wish to send it. Handling of congestion is
 relegated to the underlying transport protocol (TCP or SCTP), and
 will not be discussed.

 Philosophically, the approach in designing this mechanism is based on
 the prospect that building a base-level, fully compliant
 implementation should be a very simple and straightforward exercise.
 However, the protocol includes many additional features that may be
 implemented to allow Diameter nodes to apply increasingly
 sophisticated behaviors. This approach gives implementors the
 freedom to implement as sophisticated a scheme as they desire, while
 freeing them from the burden of unnecessary complexity. By doing so,
 the mechanism allows for the rapid development and deployment of the
 mechanism followed by a period of steady and gradual improvements as
 implementations become more capable.

1.1. Mechanism Properties

 The core Diameter overload mechanism described in this document is
 fundamentally hop-by-hop. The rationale for using a hop-by-hop
 approach is the same as is described in section 5.1 of [RFC6357].
 However, due to the fact that Diameter networks frequently have

https://datatracker.ietf.org/doc/html/rfc6357#section-5.1

Roach Expires April 25, 2013 [Page 4]

Internet-Draft Diameter Overload Control October 2012

 traffic that is easily grouped into a few well-defined categories, we
 have added some concepts that allow Diameter agents to push back on
 subsets of traffic that correspond to certain well-defined and
 client-visible constructs (such as Destination-Host, Destination-
 Realm, and Application-ID). These constructs are termed "Scopes" in
 this document. A more complete discussion of Scopes is found in

Section 2.

 The key information transmitted between Diameter peers is the current
 server load (to allow for better balancing of traffic, so as to
 preempt overload in the first place) as well as an indication of
 overload state and severity (overload information). The actual load
 and overload information is conveyed as a new compound AVP, added to
 any Diameter messages that allow for extensibility. As discussed in
 section 3.2 of [I-D.ietf-dime-rfc3588bis], all CCFs are encouraged to
 include AVP-level extensibility by inclusion of a "* [AVP]"
 construct in their syntax definition. The document author has
 conducted an extensive (although admittedly not exhaustive) audit of
 existing applications, and found none lacking this property. The
 inclusion of load and overload information in existing messages has
 the property that the frequency with which information can be
 exchanged increases as load on the system goes up.

 For the purpose of grouping the several different parts of load
 information together, this mechanism makes use of a Grouped AVP,
 called "Load-Info". The Load-Info AVP may appear one or more times
 in any extensible command, with the restriction that each instance of
 the Load-Info AVP must contain different Scopes.

 Load and overload information can be conveyed during times of inter-
 node quiescence through the use of DWR/DWA exchanges. These
 exchanges can also be used to proactively change the overload or load
 level of a server when no other transaction is ready to be sent.
 Finally, in the unlikely event that an application is defined that
 precludes the inclusion of new AVPs in its commands, DWR/DWA
 exchanges can be sent at any rate acceptable to the server in order
 to convey load and overload information.

 In [RFC3588], the DWR and DWA message syntax did not allow for the
 addition of new AVPs in the DWR and DWA messages. This oversight
 was fixed in [I-D.ietf-dime-rfc3588bis]. To allow for
 transmission of load information on quiescent links,
 implementations of the mechanism described in this document are
 expected to correctly handle extension AVPs in DWR and DWA
 messages, even if such implementations have not otherwise been
 upgraded to support [I-D.ietf-dime-rfc3588bis].

https://datatracker.ietf.org/doc/html/rfc3588

Roach Expires April 25, 2013 [Page 5]

Internet-Draft Diameter Overload Control October 2012

1.2. Overview of Operation

 During the capabilities exchange phase of connection establishment,
 peers determine whether the connection will make use of the overload
 control mechanism; and, if so, which optional behaviors are to be
 employed.

 The information sent between adjacent nodes includes two key metrics:
 Load (which, roughly speaking, provides a linear metric of how busy
 the node is), and Overload-Metric (which is input to the negotiated
 load abatement algorithm).

 Message originators (whether originating a request or an answer)
 include one or more Load-Info AVPs in messages when they form them.
 These Load-Info AVPs reflect the originators' own load and overload
 state.

 Because information is being used on a hop-by-hop basis, it is
 exchanged only between adjacent nodes. This means that any Diameter
 agent that forwards a message (request or answer) is required to
 remove any information received from the previous hop, and act upon
 it as necessary. Agents also add their own load and overload
 information (which may, at implementors' preference, take previous-
 hop information into account) into a new Load-Info AVP before sending
 the request or answer along.

 Because the mechanism requires affirmative indication of support
 in the capabilities exchange phase of connection establishment,
 load and overload information will never be sent to intermediaries
 that do not support the overload mechanism. Therefore, no special
 provisions need to be made for removal of information at such
 intermediaries -- it will simply not be sent to them.

 Message recipients are responsible for reading and acting upon load
 and overload information that they receive in such messages.

1.3. Documentation Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Overload Scopes

 In normal operation, a Diameter node may be overloaded for some but
 not all possible requests. For example, an agent that supports two
 realms (realm A and realm B in this example) may route traffic to one

https://datatracker.ietf.org/doc/html/rfc2119

Roach Expires April 25, 2013 [Page 6]

Internet-Draft Diameter Overload Control October 2012

 set of servers for realm A, and another set of servers for realm B.
 If the realm A servers are overloaded but realm B servers are not,
 then the agent is effectively overloaded for realm A but not for
 realm B.

 Despite the fact that Diameter agents can report on scopes that
 semantically map to constructs elsewhere in the network, it is
 important to keep in mind that overload state is still reported on a
 hop-by-hop basis. In other words, the overload state reported for
 realm A in the example above represents the aggregate of the agent's
 overload state along with the overload state being reported by
 applicable upstream servers (those serving realm A).

 Even without the use of Diameter agents, similar situations may arise
 in servers that need to make use of external resources for certain
 applications but not for others. For example, if a single server is
 handling two applications, one of which uses an external database
 while the other does not, it may become overloaded for the
 application that uses the external database when the database
 response latency increases.

 The indication of scopes for overload information (using the
 Overload-Info-Scope AVP; see Section 5.4) allows a node to indicate a
 subset of requests to which overload information is to be applied.
 This document defines seven scopes; only "Connection" scope is
 mandatory to implement. The use of the optional scopes, along with
 the use of any additional scopes defined in other documents, is
 negotiated at connection establishment time; see Section 3.1.

2.1. Scope Descriptions

 Destination-Realm: This scope, which nodes SHOULD implement,
 pertains to all transactions that have a Destination-Realm AVP
 matching the indicated value.

 Application-ID: This scope, which nodes SHOULD implement, pertains
 to all transactions that contain an Application-ID field
 matching the indicated value.

 Destination-Host: This scope, which nodes SHOULD implement, pertains
 to all transactions that have a Destination-Host AVP matching
 the indicated value.

 Host: This scope, which nodes SHOULD implement, pertains to all
 transactions sent directly to the host matching the indicated
 value.

Roach Expires April 25, 2013 [Page 7]

Internet-Draft Diameter Overload Control October 2012

 Connection: This scope, which nodes MUST implement, pertains to all
 transactions sent on the same TCP connection or SCTP
 association. This scope has no details indicating which
 connection or association it applies to; instead, the recipient
 of an indication of "Connection" scope is to use the connection
 or association on which the message was received as the
 indicated connection or association. In other words, any use
 of Connection scope applies to "this connection."

 Session-Group: This scope, which nodes MAY implement, pertains to
 all transactions in a session that has been assigned to the
 indicated group. For more information on assigning sessions to
 groups, see Section 3.6.

 Session: This scope, which nodes MAY implement, pertains to all
 transactions in the indicated session.

 Some applications do not have long-running sessions containing
 multiple transactions. For such applications, the use of "Session-
 Group" and "Session" scopes do not make sense. Such applications
 will instead make use of the most applicable of the remaining five
 scopes (plus any negotiated extension scopes) to achieve overload
 control.

 OPEN ISSUE: Is there value to including a stream-level scope for
 SCTP? We haven't been able to come up with a use case for doing so
 yet, but it wouldn't necessarily be unreasonable.

2.2. Combining Scopes

 To allow for the expression of more complicated scopes than the
 primitives defined above, multiple Overload-Info-Scope AVPs may be
 included in a single Load-Info AVP. Semantically, these scopes are
 included in the following way:

 o Attributes of the different kinds are logically and-ed together
 (e.g., if both "Destination-Realm" and "Application-ID" are
 present, the information applies to requests sent that match both
 the realm and the application).

 o Attributes of the same kind are logically or-ed together (e.g., if
 two "Destination-Realm"s are present, the information applies to
 requests sent to either realm).

 o If a transaction falls within more than one scope, the "most
 overloaded" scope is used for traffic shaping.

Roach Expires April 25, 2013 [Page 8]

Internet-Draft Diameter Overload Control October 2012

 To prevent the complexity of implementing arbitrary scope combination
 rules, only the following combinations of scopes are allowed (OPEN
 ISSUE -- we need to figure out what makes most sense for expressing
 these combinations. Formal grammar? Prose? A table of some kind?
 For now, they're expressed as a pseudo-ABNF):

 o 1*(Destination-Realm) 0*1(Application-ID)
 o 1*(Application-ID) 0*1(Destination-Realm)
 o 1*(Application-ID) 0*1(Destination-Host)
 o 1*(Application-ID) 0*1(Host)
 o 1*(Application-ID) 0*1(Connection)
 o 1*(Destination-Host)
 o 1*1(Host)
 o 1*1(Connection)
 o 1*(Session-Group) 0*1(Host | Connection)
 o 1*(Session) 0*1(Host | Connection)

 OPEN ISSUE: Is this the right set of scope combinations? Is there
 a need for more? Are any of these unnecessary? Ideally, this
 should be the smallest set of combinations that lets nodes report
 what they realistically need to report.

 Any document that creates additional scopes MUST define how they may
 be combined with all scopes registered with IANA at the time of their
 publication.

3. Diameter Node Behavior

 The following sections outline the behavior expected of Diameter
 clients, servers, and agents that implement the overload control
 mechanism.

 OPEN ISSUE: SIP Overload Control includes a sequence parameter to
 ensure that out-of-order messages do not cause the receiver to act on
 state that is no longer accurate. Is message reordering a concern in
 Diameter? That is, do we need to include sequence numbers in the
 messages to ensure that the receiver does not act on stale state
 information? Because Diameter uses only reliable, in-order
 transports, it seems that this isn't likely to be an issue. Is there
 room for a race when multiple connections are in use?

3.1. Connection Establishment Procedures

 Negotiation for support of this mechanism is performed during
 Diameter capabilities exchange. Optional protocol features and
 extensions to this mechanism are also negotiated at this time. No

Roach Expires April 25, 2013 [Page 9]

Internet-Draft Diameter Overload Control October 2012

 provision is provided for renegotiation of mechanism use or
 extensions during the course of a connection. If peers wish to make
 changes to the mechanism, they must create a new connection to do so.

 The connection initiator includes a Load-Info AVP in the CER
 (Capabilities-Exchange-Request) message that it sends after
 establishing the connection. This Load-Info AVP MUST contain a
 Supported-Scopes AVP and an Overload-Algorithm AVP. The Supported-
 Scopes AVP includes a comprehensive list of scopes supported that the
 connection initiator can receive and understand. See Section 5.2 for
 information on the format of the Supported-Scopes AVP.

 The Load-Info AVP in a CER message also MAY contain one or more
 Overload-Algorithm AVPs. If present, these AVPs indicate every
 Overload-Algorithm the connection initiator is willing to support for
 the connection that is being established. If the connection
 initiator supports only the "Loss" algorithm, it MAY indicate this
 fact by omitting the Overload-Algorithm altogether.

 The Load-Info AVP in a CER message MAY also contain additional AVPs,
 as defined in other documents, for the purpose of negotiation
 extensions to the Overload mechanism.

 The Diameter node that receives a CER message first examines it for
 the presence of a Load-Info AVP. If no such AVP is present, the node
 concludes that the overload control mechanism is not supported for
 this connection, and no further overload-related negotiation is
 performed. If the received CER contains a Load-Info AVP, the
 recipient of that message stores that information locally in the
 context of the connection being established. It then examines the
 Overload-Algorithm AVPs, if present, and selects a single algorithm
 from that list. If no Overload-Algorithm is indicated, then the base
 "Loss" algorithm is used for the connection. In either case, the
 recipient of the CER stores this algorithm in the context of the
 connection.

 When a node conformant to this specification sends a Capabilities-
 Exchange-Answer (CEA) message in answer to a CER that contained a
 Load-Info AVP, the CEA MUST contain a Load-Info AVP. This Load-Info
 AVP MUST contain a Supported-Scopes AVP that includes a comprehensive
 list of scopes supported that the connection initiator can receive
 and understand. The CEA also contains zero or one Overload-Algorithm
 AVPs. If present, this Overload-Algorithm MUST match one of the
 Overload-Algorithm AVPs sent in the CER, and it indicates the
 overload control algorithm that will be used for the connection. If
 the CEA contains no Overload-Algorithm, the connection will use the
 "Loss" algorithm.

Roach Expires April 25, 2013 [Page 10]

Internet-Draft Diameter Overload Control October 2012

 When a node receives a CEA message, it examines it for the presence
 of a Load-Info AVP. If no such AVP is present, the node concludes
 that the overload mechanism is not supported for this connection. If
 the received CEA contains a Load-Info AVP, then the recipient
 extracts the Supported-Scopes information, and stores them locally in
 the context of the connection being established. It then checks for
 the presence of an Overload-Algorithm AVP. If present, this AVP
 indicates the overload control algorithm that will be used for the
 connection. If absent, then the connection will use the "Loss"
 algorithm.

 If a node receives a CEA message that indicates support for a scope
 that it did not indicate in its CER or which selects an overload
 control algorithm that it did not advertise in its CER, then it MUST
 terminate the connection by sending a DPR with a Disconnect-Cause of
 NEGOTIATION_FAILURE, (128 [actual value TBD]) indicating that the CEA
 sender has failed to properly follow the negotiation process
 described above.

 Note that the Supported-Scopes announcement during capabilities
 exchange is a set of mutual advertisements of which scopes the two
 nodes are willing to receive information about. It is not a
 negotiation. It is perfectly acceptable for a node to send
 information for scopes it did not include in the Supported-Scopes AVP
 it sent, as long as the recipient indicated support for receiving
 such a scope. For example, a Diameter agent, during connection
 establishment with a client, may indicate support for receiving only
 "Connection" and "Host" scope; however, if the client indicated
 support for "Application" scope, then the agent is free to send Load-
 Info AVPs that make use of "Application" scope to the client.

3.2. Diameter Client and Diameter Server Behavior

 The following sections describe the behavior that Diameter clients
 and Diameter servers implement for the overload control mechanism.
 Behavior at Diameter Agents is described in Section 3.3.

 To implement overload control, Diameter nodes need to keep track of
 three important metrics for each of the scopes for which information
 has been received: the overload metric for the scope, the period of
 validity for that overload metric, and the load within that scope.
 Conceptually, these are data records indexed by the scope to which
 they apply. In the following sections, we refer to these data
 records with the term "scope entry." Further, when it is necessary
 to distinguish between those scope entries referring to the load
 information received from other nodes and those referring to the load
 information sent to other nodes, we use the term "remote scope entry"
 to refer to the information received from other nodes, and "local

Roach Expires April 25, 2013 [Page 11]

Internet-Draft Diameter Overload Control October 2012

 scope entry" to refer to that information that is being maintained to
 send to other nodes.

 In order to allow recipients of overload information to perform
 certain performance optimizations, we also define a new command flag,
 called 'O'verload. This bit, when set, indicates that the message
 contains at least one Load-Info AVP with a non-zero Overload-Metric
 -- in other words, the sending node is overloaded for at least one
 context. See Section 7.4 for the definition of the 'O'verload bit.

 OPEN ISSUE: Is there anything we can do to make this 'O'verload
 bit even more useful? Perhaps setting it only when the overload
 value has changed, or changed by a certain amount?

3.2.1. Sending a Request

 This section applies only to those requests sent to peers who
 negotiated use of the overload control mechanism during capabilities
 exchange. Requests sent over other connections are handled the same
 as they would in the absence of the overload control mechanism.

 Before sending a request, a Diameter node must first determine which
 scope applies. It does this as follows: first, a next hop host and
 connection are determined, according to normal Diameter procedures
 (potentially modified as described in Section 3.5.2). The sending
 node then searches through its list of remote scope entries (ignoring
 any whose Period-of-Validity has expired) to determine which ones
 match the combination of the fields in the current request, the next-
 hop host, and the selected connection. If none of the matching scope
 entries are in overload, then the message is handled normally, and no
 additional processing is required.

 As an optimization, a sending node MAY choose to track whether any of
 its peers are in overload, and to skip the preceding step if it knows
 that no scopes are in overload.

 If one or more matching scope entries are in overload, then the
 sending node determines which scope is most overloaded. The sending
 node then sends, drops, queues, or otherwise modifies handling of the
 request according to the negotiated overload control algorithm, using
 the Overload-Metric from the selected scope entry as input to the
 algorithm.

 When determining which requests are impacted by the overload control
 algorithm, request senders MAY take into account the type of message
 being sent and its contents. For example, messages within an
 existing session may be prioritized over those that create a new
 session. The exact rules for such prioritization will likely vary

Roach Expires April 25, 2013 [Page 12]

Internet-Draft Diameter Overload Control October 2012

 from application to application. The authors expect that
 specifications that define or specify the use of specific Diameter
 Applications may choose to formally define a set of rules for such
 prioritization on a per-Application basis.

 The foregoing notwithstanding, senders MUST NOT use the content or
 type of request to exempt that request from overload handling. For
 example, if a peer requests a 50% decrease in sent traffic using the
 "Loss" algorithm (see Section 4), but the traffic that the sending
 node wishes to send consists 65% of traffic that the sender considers
 critical, then the sender is nonetheless obliged to drop some portion
 of that critical traffic (e.g., it may elect to drop all non-critical
 traffic and 23% of the critical traffic, resulting in an overall 50%
 reduction).

 The sending node then inserts one or more Load-Info AVPs (see
Section 5.1) into the request. If the sender inserts more than one

 Load-Info AVP, then each Load-Info AVP MUST contain a unique scope,
 as specified by the Overload-Scope AVP(s) inside the Load-Info AVP.

 Each Load-Info AVP in the request MUST contain an Overload-Metric
 (see Section 5.5), indicating whether (and to what degree) the sender
 is overloaded for the indicated scope. If this metric is not zero,
 then the Load-Info AVP MUST also contain a Period-Of-Validity AVP
 (see Section 5.6), indicating the maximum period the recipient should
 consider the Overload-Metric to be valid. Any message containing a
 non-zero Overload-Metric also MUST set the 'O'verload bit in the
 Command Flags field to indicate to the recipient that the message
 contains an overload indication. See Section 7.4 for the definition
 of the 'O'verload bit.

 Each Load-Info AVP MUST also contain a Load AVP, indicating the
 server's load level within the context of the indicated scope. See

Section 3.5.1 for details on generating this load metric. Note that
 a server's load may frequently be identical for all the scopes for
 which it sends information.

3.2.2. Receiving a Request

3.2.2.1. Receiving a Request from a Compliant Peer

 A node that receives a request from a peer that has negotiated
 support for the overload control mechanism will extract the Load-Info
 AVPs from the request and use each of them to update its remote scope
 entries. First, the node attempts to locate an existing scope entry
 that corresponds to the Overload-Scope indicated in the Load-Info
 AVP. If one does not exist, it is created. The scope entry is then
 populated with the overload metric, period of validity, and load

Roach Expires April 25, 2013 [Page 13]

Internet-Draft Diameter Overload Control October 2012

 information. The message is then processed as normal.

3.2.2.2. Receiving a Request from a Noncompliant Peer

 An important aspect of the overload control mechanism is that
 Diameter nodes that do not implement the mechanism cannot have an
 advantage over those that do. In other words, it is necessary to
 prevent the situation that a network in overload will cease servicing
 those transactions from overload-compliant nodes in favor of those
 sent by those nodes that do not implement the overload control
 mechanism. To achieve this goal, message recipients need to track
 the overload control metric on behalf of those sending nodes that do
 not implement overload, and to reject messages from those nodes that
 would have been dropped if the sender had implemented the overload
 mechanism.

 A node that receives a request from a peer that has not negotiated
 support for the overload control mechanism searches through its list
 of local scope entries to determine which ones match the combination
 of the fields in the received request. (These are the entries that
 indicate the Overload-Metric that the node would have sent to the
 peer if the peer had supported the overload mechanism). If none of
 the matching scope entries are in overload, then the message is sent
 normally, and no additional processing is required.

 If one or more matching local scope entries are in overload, then the
 node determines which scope is most overloaded. The node then
 executes the "Loss" overload control algorithm (see Section 4) using
 the overload metric in that most overloaded scope. If the result of
 running that algorithm determines that a sender who had implemented
 the overload control mechanism would have dropped the message, then
 the recipient MUST reply to the request with a
 DIAMETER_PEER_IN_OVERLOAD response (see Section 7.3).

3.2.3. Sending an Answer

 This section applies only to those answers sent to peers who
 negotiated use of the overload control mechanism during capabilities
 exchange.

 When sending an answer, a Diameter node inserts one or more Load-Info
 AVPs (see Section 5.1) into the answer. If the sender inserts more
 than one Load-Info AVP, then each Load-Info AVP MUST contain a unique
 scope, as specified by the Overload-Scope AVP(s) inside the Load-Info
 AVP.

 Each Load-Info AVP in the answer MUST contain an Overload-Metric (see
Section 5.5), indicating whether (and to what degree) the server is

Roach Expires April 25, 2013 [Page 14]

Internet-Draft Diameter Overload Control October 2012

 overloaded for the indicated scope. If this metric is not zero, then
 the Load-Info AVP MUST also contain a Period-Of-Validity AVP (see

Section 5.6), indicating the maximum period the recipient should
 consider the Overload-Metric to be valid. Any message containing a
 non-zero Overload-Metric also MUST set the 'O'verload bit in the
 Command Flags field to indicate to the recipient that the message
 contains an overload indication. See Section 7.4 for the definition
 of the 'O'verload bit.

 Each Load-Info AVP MUST also contain a Load AVP, indicating the
 server's load level within the context of the indicated scope. See

Section 3.5.1 for details on generating this load metric. Note that
 a server's load may frequently be identical for all the scopes for
 which it sends information.

3.2.4. Receiving an Answer

 A node that receives a answer from a peer that has negotiated support
 for the overload control mechanism will extract the Load-Info AVPs
 from the answer and use each of them to update its remote scope
 entries. First, the node attempts to locate an existing scope entry
 that corresponds to the Overload-Scope indicated in the Load-Info
 AVP. If one does not exist, it is created. The scope entry is then
 populated with the overload metric, period of validity, and load
 information. The message is then processed as normal.

3.3. Diameter Agent Behavior

 This section discusses the behavior of a Diameter Agent acting as a
 Proxy or Relay. Diameter Agents that provide redirect or translation
 services behave the same as Diameter Servers for the purpose of
 overload control, and follow the procedures defined in Section 3.2.

 Whenever sending a request or an answer, Agents MUST include a Load-
 Info AVP reflecting the a Agent's overload and load information. In
 formulating this information, the Agent may choose to use only that
 information relating to its own local resources. However, better
 network behavior can be achieved if agents incorporate information
 received from their peers when generating overload information. The
 exact means for incorporating such information is left to local
 policy at the agent.

 For example: consider an agent that distributes sessions and
 transactions among three Diameter servers, each hosting a different
 Diameter application. While it would be compliant for the Agent to
 only report its own overload state (i.e., at "Host" scope), overall
 network behavior would be improved if it chose to also report
 overload state for up to three additional scopes (i.e. at

Roach Expires April 25, 2013 [Page 15]

Internet-Draft Diameter Overload Control October 2012

 "Application-ID" scope), incorporating the Overload information
 received from each server in these scopes.

3.3.1. Proxying a Request

 Upon receiving a request, a Diameter Proxy or Relay performs the
 steps detailed in Section 3.2.2.

 The agent then MUST remove all Load-Info AVPs from the request: Load-
 Info is never passed through a Proxy or Relay transparently.

 When the Diameter Agent proxies or relays a request, it follows the
 process outlined in Section 3.2.1.

3.3.2. Proxying an Answer

 Upon receiving an answer, a Diameter Agent follows the process
 described in Section 3.2.4 to update its remote scope entries.

 The Agent then MUST remove all Load-Info AVPs from the answer: Load-
 Info is never passed through a Proxy or Relay transparently.

 When the Diameter Agent proxies or relays a response, it follows the
 process outlined in Section 3.2.3.

3.4. Proactive Load and Overload Communication

 Because not all Diameter links will have constant traffic, it may be
 occasionally necessary to send overload and/or load information over
 links that would otherwise be quiescent. To proactively send such
 information to peers, the Diameter node with information to convey
 may choose to send a Diameter Watchdog Request (DWR) message to its
 peers. The procedure described in Section 3.2.1 applies to these
 requests, which provides the means to send load and overload
 information.

 In order to prevent unnecessarily diminished throughput between
 peers, a Diameter node SHOULD proactively send a DWR to all its peers
 whenever it leaves an overload state. Similarly, in order to provide
 peers the proper data for load distribution, nodes SHOULD send DWR
 messages to a peer if the load information most recently sent to that
 peer has changed by more than 20% and is more than 5 seconds old.

3.5. Load Processing

 While the remainder of the mechanism described in this document is
 aimed at handling overload situations once they occur, it is far
 better for a system if overload can be avoided altogether. In order

Roach Expires April 25, 2013 [Page 16]

Internet-Draft Diameter Overload Control October 2012

 to facilitate overload avoidance, the overload mechanism includes the
 ability to convey node load information.

 Semantically, the Load information sent by a Diameter node indicates
 the current utilization of its most constrained resource. It is a
 linear scale from 0 (least loaded) to 65535 (most loaded).

 It is critical to distinguish between the value conveyed in the Load
 AVP and the value conveyed in the Overload-Metric AVP. The Load AVP
 is computed and used independent of the Overload-Algorithm selected
 for a connection, while the Overload-Metric is meaningful only in the
 context of the selected algorithm. Most importantly, the Load
 information never has any impact on the behavior specified in the
 overload algorithm. If a node reports a Load of 65535, but the
 Overload-Metric does not indicate any need to apply the selected
 overload control algorithm, then the sender MUST NOT apply the
 selected overload control algorithm. Conversely, if a node is
 reporting an Overload-Metric that requires the recipient to take
 action to reduce traffic, those actions MUST be taken, even if the
 node is simultaneously reporting a Load value of 0.

3.5.1. Sending Load Information

 Diameter nodes implementing the overload mechanism described in this
 document MUST include a Load AVP (inside a Load-Info AVP) in every
 Diameter message (request and answer) they send over a connection
 that has been negotiated to use the overload control mechanism. Note
 that this requirement does not necessitate calculation of the Load
 metric each time a message is sent; the Load value may be calculated
 periodically (e.g., every 100 ms), and used for every message sent
 until it is recalculated.

 The algorithm for generation of the load metric is a matter of local
 policy at the Diameter node, and may vary widely based on the
 internal software architecture of that node.

 For advanced calculations of Load, anticipated inputs to the
 computation include CPU utilization, network utilization, processor
 interrupts, I/O throughput, and internal message queue depths.

 To free implementors from the potential complexity of determining an
 optimal calculation for load, we define a very simple, baseline load
 calculation that MAY be used for the purpose of populating the Load
 AVP. Implementations using this simplified calculation will use a
 configured, hard-coded, or Service Level Agreement (SLA)-defined
 maximum number of transactions per second (TPS) which a node is known
 to be able to support without issue. These implementations simply
 report their load as a linear representation of how much of this

Roach Expires April 25, 2013 [Page 17]

Internet-Draft Diameter Overload Control October 2012

 known capacity is currently in use:

 Load = MIN(Current_TPS * 65535 / Maximum_TPS, 65535)

 To prevent rapid fluctuations in the load metric, nodes SHOULD report
 a rolling average of the calculated load rather than the actual
 instantaneous load at any given moment.

 Load information is scoped to the level indicated by the Overload-
 Info-Scope AVP present in the Load-Info AVP in which the Load AVP
 appears.

3.5.2. Receiving Load Information

 While sending load information is mandatory, the actual processing of
 load information at a recipient is completely optional. Ideally,
 recipients will use the load information as input to a decision
 regarding which of multiple equivalent servers to use when initiating
 a new connection. Recipients may choose to update load information
 on receipt of every message; alternately, they may periodically
 "sample" messages from a host to determine the load it is currently
 reporting.

3.5.2.1. Example Load Handling

 This section describes a non-normative example of how recipients can
 use Load information received from other Diameter nodes. At a high
 level, the concept is that received load metrics are used to scale
 the distribution algorithm that the node uses for selection of a
 server from a group of equivalent servers.

 Consider a client that uses DNS to resolve a host name into IP
 addresses. In this example, the client is attempting to reach the
 server for the realm example.com. It performs a NAPTR query for the
 "AAA+D2T" record for that domain, and receives a result pointing to
 the SRV record "_diameter._tcp.example.com". Querying for this SRV
 record, in turn, results in three entries, with the same priorities:

 +------------+----------------------+
 | SRV Weight | Server Name |
 +------------+----------------------+
 | 20 | server-a.example.com |
 | 20 | server-b.example.com |
 | 60 | server-c.example.com |
 +------------+----------------------+

 The client then examines the currently reported loads for each of the
 three servers. In this example, we are asserting that the reported

Roach Expires April 25, 2013 [Page 18]

Internet-Draft Diameter Overload Control October 2012

 load metrics are as follows:

 +-------------+----------------------+
 | Load | Server Name |
 +-------------+----------------------+
 | 13107 (20%) | server-a.example.com |
 | 26214 (60%) | server-b.example.com |
 | 52428 (80%) | server-c.example.com |
 +-------------+----------------------+

 Based on this load information, the client scales the SRV weights
 proportional to each server's reported load; the general formula is:

 new_weight = original_weight * (65535 - load) / 65535

 The node then calculates a new set of weights for the destination
 hosts:

 o server-a: new_weight = 20 * (65535 - 13107) / 65535 = 16
 o server-b: new_weight = 20 * (65535 - 26214) / 65535 = 12
 o server-c: new_weight = 60 * (65535 - 52428) / 65535 = 12

 These three new weights (16, 12, and 12) are then used as input to
 the random selection process traditionally used when selecting among
 several SRV records.

 Note that this example is provided in the context of DNS SRV
 processing; however, it works equally well in the case that server
 processing weights are provisioned or made available through an
 alternate resolution process.

3.6. Session Establishment for Session Groups

 The procedure in this section applies to any Diameter operation that
 may result in the creation of a new Diameter session. Note that
 these operations are performed in addition to any normal message
 processing, and in addition to the operations described in the
 following sections.

3.6.1. Session Group Concepts

 At the time a session is established, the server and/or the client
 may choose to assign the newly created session to a Session Group
 that they can use to refer to the session (and other sessions in the
 same group) in later overload-related messages. This grouping is
 intended to be used by servers that have visibility into resources
 that may be independently overloaded, but which do not correspond to
 an existing Diameter construct (such as Application, Realm, or

Roach Expires April 25, 2013 [Page 19]

Internet-Draft Diameter Overload Control October 2012

 Destination Server).

 One example of a server having visibility into resources that don't
 have a corresponding Diameter construct is a Diameter Agent servicing
 a mixed community of users -- say, one authenticated by a "Business"
 server, and another authenticated by a "Residential" server. The
 client in this network does not know which group any given session
 belongs in; the routing of sessions is based on information available
 only to the agent.

 +-------------+ +-------------+
 | | | |
 | Server A | | Server B |
 | (Business) | |(Residential)|
 | | | |
 +-------------+ +-------------+
 `. ,'
 `. ,'
 `. ,'
 +-----+---+-----+
 | |
 | Agent |
 | |
 +---------------+
 ^
 |
 +-------+-------+
 | |
 | Client |
 | |
 +---------------+

 In this case, the Agent may wish to assign sessions to two client-
 visible Session Groups when the session is established. By doing so,
 the Agent gains the ability to report Load and Overload metrics to
 the Client independently for the two classes of users. This can be
 extremely helpful, for example, in allowing the Agent to ask the
 Client to throttle traffic for the Residential server when it becomes
 overload, without impacting sessions pertaining to the Business
 server.

 Similar situations can arise even without the presence of Diameter
 Agents in the network: a server may have a class of sessions that
 require access to an off-board database (which can, itself, become
 overloaded), while also servicing a class of sessions that is handled
 entirely by a local authentication table. The server can use Session
 Groups to assign these two classes of sessions to different groups,
 and report overload on the class using the (overloaded) off-board

Roach Expires April 25, 2013 [Page 20]

Internet-Draft Diameter Overload Control October 2012

 database without impacting the other sessions.

 In some applications, it is possible to have the session established
 by one peer (e.g., in the upstream direction), while some subsequent
 in-session transactions are initiated by the other peer (e.g., in the
 downstream direction). Because of this possibility, the overload
 mechanism allows both peers to establish a Session Group at the time
 the session is set up. The session identifiers are scoped to the
 node that sends them. In other words, if a server assigns a session
 to a group called "Residential", this group is not related to a
 client group (if any) by the same name. For clarity, this document
 will refer to the session group assigned by the server performing the
 processing as a "local session group," and the session group assigned
 by the remote node as a "remote session group."

 Nodes that send a session-creating request follow normal Diameter
 procedures, along with the additional behavior described in

Section 3.2.1 and Section 3.3.1, as appropriate. Such nodes may also
 assign the session to a Session Group, as long as the peer to which
 they are communicating indicated support for the "Session-Group"
 scope during capabilities exchange. Whether to do so and what group
 to assign a session to is done according to local policy. To perform
 such assignment, the node will include a Session-Group AVP (see

Section 5.7 in the Load-Info AVP for the session creating request.
 These nodes also store the assigned name as the session's local
 session group.

3.6.2. Session Group Procedures

 The procedures in this section only apply on connections for which
 support for the "Session-Group" scope has been negotiated during
 capabilities exchange. See Section 3.1.

 When a node receives a session creating request, it MUST check that
 request for the presence for a Session-Group AVP in its Load-Info
 AVP. If one is present, it stores that session group name as the
 remote session group name for that server. This allows clients to
 assign the session to a group, allowing it to indicate overload for
 server-initiated transactions in the resulting session.

 When a node replies to a session creating request, it can choose to
 assign the newly-established session to a session group. Whether it
 chooses to do so is independent of whether the remote node assigned
 the session to a session group. To perform such an assignment, the
 node includes a Session-Group AVP in the Load-Info AVP sent in answer
 to the session-creating request. These nodes also store the assigned
 name as the session's local session group.

Roach Expires April 25, 2013 [Page 21]

Internet-Draft Diameter Overload Control October 2012

 Finally, when a node that has sent a session-creating request
 receives a corresponding answer message, it MUST check that answer
 for the presence of a Session-Group AVP in its Load-Info AVP. If one
 is present, it stores that session group name as the remote session
 group name for that server.

4. Loss-Based Overload Control Algorithm

 This section describes a baseline, mandatory-to-implement overload
 control algorithm, identified by the indicator "Loss". This
 algorithm allows a Diameter peer to ask its peers to reduce the
 number of requests they would ordinarily send by a specified
 percentage. For example, if a peer requests of another peer that it
 reduce the traffic it is sending by 10%, then that peer will
 redirect, reject, or treat as failed, 10% of the traffic that would
 have otherwise been sent to this Diameter node.

4.1. Overload-Metric values for the 'Loss' Algorithm

 A Diameter node entering the overload state for any of the scopes
 that it uses with its peers will calculate a value for its Overload
 Metric, in the range of 0 to 100 (inclusive). This value indicates
 the percentage traffic reduction the Diameter node wishes its peers
 to implement. The computation of the exact value for this parameter
 is left as an implementation choice at the sending node. It is
 acceptable for implementations to request different levels of traffic
 reduction to different peers according to local policy at the
 Diameter node. These Overload Metrics are then communicated to peers
 using the Overload-Metric AVP in requests and answers sent by this
 node.

 Recipients of Overload-Metric AVPs on connections for which the
 "Loss" algorithm has been specified MUST reduce the number of
 requests sent in the corresponding scope by that percentage, either
 by redirecting them to an alternate destination, or by failing the
 request. For a Diameter Agent, these failures are indicated to the
 peer who originated the request by sending a
 DIAMETER_PEER_IN_OVERLOAD response (see Section 7.3). For diameter
 clients, these failures cause the client to behave as if they
 received a transient error in response to the request.

 It is acceptable, when implementing the "Loss" algorithm, for the
 reduction in transactions to make use of a statistical loss function
 (e.g., random assignment of transactions into "success" and "failure"
 categories based on the indicated percentage). In such a case, the
 actual traffic reduction might vary slightly from the percentage
 indicated, albeit in an insignificant amount.

Roach Expires April 25, 2013 [Page 22]

Internet-Draft Diameter Overload Control October 2012

 The selection of which messages to withhold from sending does not
 need to be arbitrary. For example, implementations are allowed to
 distinguish between higher-priority and lower-priority messages, and
 drop the lower-priority messages in favor of dropping the higher
 priority messages, as long as the total reduction in traffic conforms
 to the Overload-Metric in effect at the time. The selection of which
 messages to prioritize over others will likely vary from application
 to application (and may even be subject to standardization as part of
 the application definition). One example of such a prioritization
 scheme would be to treat those messages that result in the creation
 of a new session as lower priority then those messages sent in the
 context of an established session.

4.2. Example Implementation

 The exact means a client uses to implement the requirement that it
 reduce traffic by a requested percentage is left to the discretion of
 the implementor. However, to aid in understanding the nature of such
 an implementation, we present an example of a valid implementation in
 pseudo-code.

 In this example, we consider that the sending node maintains two
 classes of request. The first category are considered of lower
 priority than the second category. If a reduction in traffic is
 required, then these lower priority requests will be dropped before
 any of the higher priority requests are dropped.

 The sending Diameter node determines the mix of requests falling into
 the first category, and those falling into the second category. For
 example, 40% of the requests may be in the lower-priority category,
 while 60% are in the higher-priority category.

 When a node receives an overload indication from one of its peers, it
 converts the Overload-Metric value to a value that applies to the
 first category of requests. For example, if the Overload-Metric for
 the applicable context is "10", and 40% of the requests are in the
 lower-priority category, then:

 10 / 40 * 100 = 25

 Or 25% of the requests in the first category can be dropped, with an
 overall reduction in sent traffic of 10%. The sender then drops 25%
 of all category 1 requests. This can be done stochastically, by
 selecting a random number for each sent packet between 1 to 100
 (inclusive), and dropping any packet for which the resulting
 percentage is equal to or less than 25. In this set of
 circumstances, messages in the second category do not require any
 reduction to meet the requirement of 25% traffic reduction.

Roach Expires April 25, 2013 [Page 23]

Internet-Draft Diameter Overload Control October 2012

 A reference algorithm is shown below, using pseudo-code.

 cat1 := 80.0 // Category 1 --- subject to reduction
 cat2 := 100.0 - cat1 // Category 2 --- Under normal operations
 // only subject to reduction after category 1 is exhausted.
 // Note that the above ratio is simply a reasonable default.
 // The actual values will change through periodic sampling
 // as the traffic mix changes over time.

 while (true) {
 // We're modeling message processing as a single work queue
 // that contains both incoming and outgoing messages.
 msg := get_next_message_from_work_queue()

 update_mix(cat1, cat2) // See Note below

 switch (msg.type) {

 case outbound request:
 destination := get_next_hop(msg)
 oc_context := get_oc_scope(destination,msg)

 if (we are in overload) {
 add_overload_avps(msg)
 }

 if (oc_context == null) {
 send_to_network(msg) // Process it normally by sending the
 // request to the next hop since this particular
 // destination is not subject to overload
 }
 else {
 // Determine if server wants to enter in overload or is in
 // overload
 in_oc := extract_in_oc(oc_context)

 oc_value := extract_oc(oc_context)
 oc_validity := extract_oc_validity(oc_context)

 if (in_oc == false or oc_validity is not in effect) {
 send_to_network(msg) // Process it normally by sending
 // the request to the next hop since this particular
 // destination is not subject to overload. Optionally,
 // clear the oc context for this server (not shown).
 }
 else { // Begin perform overload control
 r := random()
 drop_msg := false

Roach Expires April 25, 2013 [Page 24]

Internet-Draft Diameter Overload Control October 2012

 if (cat1 >= cat2) {
 category := assign_msg_to_category(msg)
 pct_to_reduce_cat2 := 0
 pct_to_reduce_cat1 := oc_value / cat1 * 100
 if (pct_to_reduce_cat1 > 100) {
 // Get remaining messages from category 2
 pct_to_reduce_cat2 := 100 - pct_to_reduce_cat1
 pct_to_reduce_cat1 := 100
 }

 if (category == cat1) {
 if (r <= pct_to_reduce_cat1) {
 drop_msg := true
 }
 }
 else { // Message from category 2
 if (r <= pct_to_reduce_cat2) {
 drop_msg := true
 }
 }
 }
 else { // More category 2 messages than category 1;
 // indicative of an emergency situation. Since
 // there are more category 2 messages, don't
 // bother distinguishing between category 1 or
 // 2 --- treat them equal (for simplicity).
 if (r <= oc_value)
 drop_msg := true
 }

 if (drop_msg == false) {
 send_to_network(msg) // Process it normally by
 // sending the request to the next hop
 }
 else {
 // Do not send request downstream, handle locally by
 // generating response (if a proxy) or treating as
 // an error (if a user agent).
 }
 } // End perform overload control
 }

 end case // outbound request

 case outbound answer:
 if (we are in overload) {
 add_overload_avps(msg)
 }

Roach Expires April 25, 2013 [Page 25]

Internet-Draft Diameter Overload Control October 2012

 send_to_network(msg)

 end case // outbound answer

 case inbound answer:
 create_or_update_oc_scope() // For the specific server
 // that sent the answer, create or update the oc scope;
 // i.e., extract the values of the overload AVPs
 // and store them in the proper scopes for later use.
 process_msg(msg)

 end case // inbound answer
 case inbound request:
 create_or_update_oc_scope()

 if (we are not in overload) {
 process_msg(msg)
 }
 else { // We are in overload
 if (connection supports overload)
 process_msg(msg)
 }
 else { // Sender does not support oc
 if (local_policy(msg) says process message) {
 process_msg(msg)
 }
 else {
 send_answer(msg, DIAMETER_PEER_IN_OVERLOAD)
 }
 }
 }
 end case // inbound request
 }
 }

 A simple way to sample the traffic mix for category 1 and category 2
 is to associate a counter with each category of message.
 Periodically (every 5-10s), get the value of the counters and
 calculate the ratio of category 1 messages to category 2 messages
 since the last calculation.

 Example: In the last 5 seconds, a total of 500 requests were
 scheduled to be sent. Assume that 450 out of 500 were messages
 subject to reduction and 50 out of 500 were classified as requests
 not subject to reduction. Based on this ratio, cat1 := 90 and cat2
 := 10, or a 90/10 mix will be used in overload calculations.

Roach Expires April 25, 2013 [Page 26]

Internet-Draft Diameter Overload Control October 2012

 Of course, this scheme can be generalized to include an arbitrary
 number of priorities, depending on how many different classes of
 messages make sense for the given application.

5. Diameter AVPs for Overload

 NOTE: THE AVP NUMBERS IN THIS SECTION ARE USED FOR EXAMPLE PURPOSES
 ONLY. THE FINAL AVP CODES TO BE USED WILL BE ASSIGNED BY IANA DURING
 THE PUBLICATION PROCESS, WHEN AND IF THIS DOCUMENT IS PUBLISHED AS AN
 RFC.

 +---------------------+-------+-------+-------------+------+--------+
 | Attribute Name | AVP | Sec. | Data Type | MUST | MUST |
 | | Code | Def. | | | NOT |
 +---------------------+-------+-------+-------------+------+--------+
Load-Info	1600	5.1	Grouped		M,V
Supported-Scopes	1601	5.2	Unsigned64		M,V
Overload-Algorithm	1602	5.3	Enumerated		M,V
Overload-Info-Scope	1603	5.4	OctetString		M,V
Overload-Metric	1604	5.5	Unsigned32		M,V
Period-Of-Validity	1605	5.6	Unsigned32		M,V
Session-Group	1606	5.7	UTF8String		M,V
Load	1607	5.8	Unsigned32		M,V
 +---------------------+-------+-------+-------------+------+--------+

5.1. Load-Info AVP

 The Load-Info AVP (AVP code 1600) is of type Grouped, and is used as
 a top-level container to group together all information pertaining to
 load and overload information. Every Load-Info AVP MUST contain one
 Overload-Information-Scope AVP, and one Overload-Metric AVP.

 The Grouped Data field of the Load-Info AVP has the following CCF
 grammar:

 < Load-Info > ::= < AVP Header: 1600 >
 < Overload-Metric >
 * { Overload-Info-Scope }
 [Supported-Scopes]
 * [Overload-Algorithm]
 [Period-Of-Validity]
 [Session-Group]
 [Load]
 * [AVP]

Roach Expires April 25, 2013 [Page 27]

Internet-Draft Diameter Overload Control October 2012

5.2. Supported-Scopes AVP

 The Supported-Scopes AVP (AVP code 1601) is of type Uint64, and is
 used during capabilities exchange to indicate the scopes that a given
 node can receive on the connection. Nodes that support the mechanism
 defined in this document MUST include a Supported-Scopes AVP in all
 CER messages. It also MUST appear in any CEA messages sent in answer
 to a CER message containing a Load-Info AVP. The Supported-Scopes
 AVP MUST NOT appear in any other message types. See Section 5.4 for
 an initial list of scopes.

 The Supported-Scopes AVP contains a bitmap that indicates the scopes
 supported by the sender. Within the bitmap, the least significant
 bit indicates support for scope 1 (Destination-Realm), while the next
 least significant bit indicates support for scope 2 (Application-ID),
 and so on. In general, if we consider the bits to be numbered from 0
 (LSB) to 63 (MSB), then any bit n corresponds to the scope type
 numbered n+1. This scheme allows for up to 64 total scopes to be
 supported. More formally, the bitmask used to indicate support for
 any specific context is calculated as follows (where the symbol "<<"
 indicates a bit shift left):

 bitmask = 1 << (n - 1)

 For additional clarity, the bitmasks for the scopes defined in this
 document are as follows:

 +-------+--------------------+-------------------+
 | Scope | Bitmask | Scope |
 +-------+--------------------+-------------------+
 | 1 | 0x0000000000000001 | Destination-Realm |
 | 2 | 0x0000000000000002 | Application-ID |
 | 3 | 0x0000000000000004 | Destination-Host |
 | 4 | 0x0000000000000008 | Host |
 | 5 | 0x0000000000000010 | Connection |
 | 6 | 0x0000000000000020 | Session-Group |
 | 7 | 0x0000000000000040 | Session |
 +-------+--------------------+-------------------+

 The advertisement process that makes use of the Supported-Scopes AVP
 is described in Section 3.1.

5.3. Overload-Algorithm AVP

 The Overload-Algorithm AVP (AVP code 1602) is of type Enumerated, and
 is used to negotiate the algorithm that will be used for load
 abatement. The Overload-Algorithm AVP MAY appear in CER and CEA
 messages, and MUST NOT appear in any other message types. If absent,

Roach Expires April 25, 2013 [Page 28]

Internet-Draft Diameter Overload Control October 2012

 an Overload Algorithm of type 1 (Loss) is indicated. Additional
 values can be registered by other documents; see Appendix C.1.
 Initial values for the enumeration are as follows:

 +------------+----------------+------------+
 | AVP Values | Attribute Name | Reference |
 +------------+----------------+------------+
 | 0 | Reserved | - |
 | 1 | Loss | [RFC xxxx] |
 +------------+----------------+------------+

5.4. Overload-Info-Scope AVP

 The Overload-Info-Scope AVP (AVP code 1603) is of type OctetString,
 and is used to indicate to which scope the Overload-Metric applies.

 See Section 2 for a definition of the different scope types and a
 formal description of how they are applied. Other documents may
 define additional scopes; see Appendix C.2 for details.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Scope | |
 +-+-+-+-+-+-+-+-+ Details |
 | |
 +-+

 +-------+-------------------+------------+
 | Scope | Attribute Name | Reference |
 +-------+-------------------+------------+
 | 0 | Reserved | [RFC xxxx] |
 | 1 | Destination-Realm | [RFC xxxx] |
 | 2 | Application-ID | [RFC xxxx] |
 | 3 | Destination-Host | [RFC xxxx] |
 | 4 | Host | [RFC xxxx] |
 | 5 | Connection | [RFC xxxx] |
 | 6 | Session-Group | [RFC xxxx] |
 | 7 | Session | [RFC xxxx] |
 +-------+-------------------+------------+

 Each Overload-Info-Scope has a different encoding, according to the
 identifier used to designate the corresponding scope. The formats
 for the seven scopes defined in this document are given in the
 following section.

Roach Expires April 25, 2013 [Page 29]

Internet-Draft Diameter Overload Control October 2012

5.4.1. Realm Scope

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | |
 +-+-+-+-+-+-+-+-+ Realm (DiameterIdentity) |
 | |
 +-+

5.4.2. Application-ID Scope

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 2 | Reserved (set to zeros) |
 +-+
 | Application-ID (Unsigned32) |
 +-+

5.4.3. Host Scope

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 3 | |
 +-+-+-+-+-+-+-+-+ Host (DiameterIdentity) |
 | |
 +-+

5.4.4. Session Scope

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 4 | |
 +-+-+-+-+-+-+-+-+ Session-ID (UTF8String) |
 | |
 +-+

5.4.5. Connection Scope

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 5 | Reserved (set to zeros) |
 +-+

Roach Expires April 25, 2013 [Page 30]

Internet-Draft Diameter Overload Control October 2012

5.4.6. Session Group Scope

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 6 | |
 +-+-+-+-+-+-+-+-+ Group Name (UTF8String) |
 | |
 +-+

5.5. Overload-Metric AVP

 The Overload-Metric AVP (AVP code 1604) is of type Unsigned32, and is
 used as input to the load mitigation algorithm. Its definition and
 interpretation is left up to each individual algorithm, with the
 exception that an Overload-Metric of "0" always indicates that the
 node is not in overload (that is, no load abatement procedures are in
 effect) for the indicated scope.

5.6. Period-Of-Validity AVP

 The Period-Of-Validity AVP (AVP code 1605) is of type Unsigned32, and
 is used to indicate the length of time, in seconds, the Overload-
 Metric is to be considered valid (unless overridden by a subsequent
 Overload-Metric in the same scope). It MUST NOT be present if the
 Overload-Metric is '0', and MUST be present otherwise.

5.7. Session-Group AVP

 The Session-Group AVP (AVP code 1606) is of type UTF8String, and is
 used to assign a new session to the session group that it names. The
 Session-Group AVP MAY appear once in the answer to a session-creating
 request, and MUST NOT appear in any other message types.

5.8. Load AVP

 The Load AVP (AVP code 1607) is of type Unsigned32, and is used to
 indicate the load level of the scope in which it appears. See

Section 3.5 for additional information.

6. Security Considerations

 A key concern for recipients of overload metrics and load information
 is whether the peer from which the information has been received is
 authorized to speak for the indicated scope. For scopes such as
 "Host" and "Connection", such authorization is obvious. For other
 scopes, such as "Application-ID" and "Realm", the potential for a

Roach Expires April 25, 2013 [Page 31]

Internet-Draft Diameter Overload Control October 2012

 peer to maliciously or accidentally reduce traffic to a third party
 is evident. Implementations may choose to ignore indications from
 hosts which do not clearly have authority over the indicated scope;
 alternately, they may wish to further restrict the scope to apply
 only to the host from which the information has been received.

 On the other hand, multiple nodes that are under the same
 administrative control (or a tightly controlled confederation of
 control) may be implicitly trusted to speak for all scopes within
 that domain of control. Implementations are encouraged to allow
 configuration of inherently trusted servers to which the foregoing
 restrictions are not applied.

 Open Issue: There are almost certainly other security issues to take
 into consideration here. For example, we might need to include
 guidance around who gets to see our own load information, and
 potentially changing the granularity of information presented based
 on trust relationships.

7. IANA Considerations

 This document defines new entries in several existing IANA tables.
 It also creates two new tables.

7.1. New Diameter AVPs

 The following entries are added to the "AVP Codes" table under the
 "aaa-parameters" registry.

 +----------+---------------------+-----------+
 | AVP Code | Attribute Name | Reference |
 +----------+---------------------+-----------+
 | 1600 | Load-Info | RFC xxxx |
 | 1601 | Supported-Scopes | RFC xxxx |
 | 1602 | Overload-Algorithm | RFC xxxx |
 | 1603 | Overload-Info-Scope | RFC xxxx |
 | 1604 | Overload-Metric | RFC xxxx |
 | 1605 | Period-Of-Validity | RFC xxxx |
 | 1606 | Session-Group | RFC xxxx |
 | 1607 | Load | RFC xxxx |
 +----------+---------------------+-----------+

7.2. New Diameter Disconnect-Cause

 The following entry is added to the "Disconnect-Cause AVP Values
 (code 273)" table in the "aaa-parameters" registry:

Roach Expires April 25, 2013 [Page 32]

Internet-Draft Diameter Overload Control October 2012

 +------------------------+---------------------+-----------+
 | AVP Values | Attribute Name | Reference |
 +------------------------+---------------------+-----------+
 | 128 [actual value TBD] | NEGOTIATION_FAILURE | RFC xxxx |
 +------------------------+---------------------+-----------+

7.3. New Diameter Response Code

 The following entry is added to the "Result-Code AVP Values (code
 268) - Transient Failures" table in the "aaa-parameters" registry:

 +-------------------------+---------------------------+-----------+
 | AVP Values | Attribute Name | Reference |
 +-------------------------+---------------------------+-----------+
 | 4128 [actual value TBD] | DIAMETER_PEER_IN_OVERLOAD | RFC xxxx |
 +-------------------------+---------------------------+-----------+

7.4. New Command Flag

 The following entry is added to the "Command Flags" table in the
 "aaa-parameters" registry:

 +-----+------------+-----------+
 | bit | Name | Reference |
 +-----+------------+-----------+
 | 4 | 'O'verload | RFC xxxx |
 +-----+------------+-----------+

7.5. Overload Algorithm Registry

 This document defines a new table, to be titled "Overload-Algorithm
 Values (code 1602)", in the "aaa-parameters" registry. Its initial
 values are to be taken from the table in Section 5.3.

 New entries in this table follow the IANA policy of "Specification
 Required." (Open Issue: The WG should discuss registration policy to
 ensure that we think this is the right balance).

7.6. Overload Scope Registry

 This document defines a new table, to be titled "Overload-Info-Scope
 Values (code 1603)", in the "aaa-parameters" registry. Its initial
 values are to be taken from the table in Section 5.4.

 New entries in this table follow the IANA policy of "Specification
 Required." (Open Issue: The WG should discuss registration policy to
 ensure that we think this is the right balance).

Roach Expires April 25, 2013 [Page 33]

Internet-Draft Diameter Overload Control October 2012

8. References

8.1. Normative References

 [I-D.ietf-dime-overload-reqs]
 McMurry, E. and B. Campbell, "Diameter Overload Control
 Requirements", draft-ietf-dime-overload-reqs-00 (work in
 progress), September 2012.

 [I-D.ietf-dime-rfc3588bis]
 Fajardo, V., Arkko, J., Loughney, J., and G. Zorn,
 "Diameter Base Protocol", draft-ietf-dime-rfc3588bis-34
 (work in progress), June 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [I-D.ietf-soc-overload-control]
 Gurbani, V., Hilt, V., and H. Schulzrinne, "Session
 Initiation Protocol (SIP) Overload Control",

draft-ietf-soc-overload-control-10 (work in progress),
 October 2012.

 [RFC3588] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

 [RFC6357] Hilt, V., Noel, E., Shen, C., and A. Abdelal, "Design
 Considerations for Session Initiation Protocol (SIP)
 Overload Control", RFC 6357, August 2011.

Appendix A. Acknowledgements

 This work was inspired by and borrows heavily from the SIP overload
 control mechanism described in [I-D.ietf-soc-overload-control]. The
 authors of this document are deeply grateful to the editor and
 authors of that work, as well as its many contributors.

 Thanks to Ben Campbell and Eric McMurry for significant input to the
 initial mechanism design. The author also thanks Martin Dolly, Bob
 Wallace, John Gilmore, Matt McCann, Jonathan Palmer, Kedar Karmarkar,
 Imtiaz Shaikh, Jouni Korhonen, Uri Baniel, Jianrong Wang, Brian
 Freeman, and Eric Noel for early feedback on the mechanism.

https://datatracker.ietf.org/doc/html/draft-ietf-dime-overload-reqs-00
https://datatracker.ietf.org/doc/html/draft-ietf-dime-rfc3588bis-34
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-soc-overload-control-10
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc6357

Roach Expires April 25, 2013 [Page 34]

Internet-Draft Diameter Overload Control October 2012

Appendix B. Requirements Analysis

 This section analyzes the mechanism described in this document
 against the set of requirements detailed in
 [I-D.ietf-dime-overload-reqs].

 Open Issue: This analysis to be performed after requirements have
 been finalized.

Appendix C. Extending the Overload Mechanism

 This specification includes two key extension points to allow for new
 behaviors to be smoothly added to the mechanism in the future. The
 following sections discuss the means by which future documents are
 expected to extend the mechanism.

C.1. New Algorithms

 In order to provide the ability for different means of traffic
 abatement in the future, this specification allows for descriptions
 of new traffic reduction algorithms. In general, documents that
 define new algorithms need to describe externally-observable node
 behavior in sufficient detail as to allow interoperation.

 At a minimum, such description needs to include:

 1. The name and IANA-registered number for negotiating the algorithm
 (see Section 5.3).
 2. A clear description of how the Overload-Metric AVP is to be
 interpreted, keeping in mind that "0" is reserved to indicate
 that no overload condition exists.
 3. An example, proof-of-concept description (preferably in pseudo-
 code) of how nodes can implement the algorithm.

 New algorithms must be capable of working with all applications, not
 just a subset of applications.

C.2. New Scopes

 Because it is impossible to foresee all the potential constructs that
 it might be useful to scope operations to for the purposes of
 overload, we allow for the registration of new scopes.

 At a minimum, such description needs to include:

Roach Expires April 25, 2013 [Page 35]

Internet-Draft Diameter Overload Control October 2012

 1. The name and IANA-registered number for negotiating and
 indicating the scope (see Section 5.4).
 2. A syntax for the "Details" field of the Overload-Info-Scope AVP,
 preferably derived from one of the base Diameter data types.
 3. An explicit and unambiguous description of how both parties to
 the overload control mechanism can determine which transactions
 correspond to the indicated scope.
 4. A clear and exhaustive list that extends the one in Section 2.2,
 indicating exactly which combinations of scopes are allowed with
 the new scope. This list must take into account all of the IANA-
 registered scopes at the time of its publication.

 It is acceptable for new scopes to be specific to constructs within
 one or several applications. In other words, it may be desirable to
 define scopes that can be applied to one kind of application while
 not making sense for another. Extension documents should be very
 clear that such is the case, however, if they choose to do so.

Appendix D. Design Rationale

 The current design proposed in this document takes into account
 several trade-offs and requirements that may not be immediately
 obvious. The remainder of this appendix highlights some of the
 potentially more controversial and/or non-obvious of these, and
 attempts to explain why such decisions were made they way they were.

 That said, none of the following text is intended to represent a line
 in the sand. All of the decisions can be revisited if necessary,
 especially if additional facts are brought into the analysis that
 change the balance of the decisions.

D.1. Piggybacking

 The decision to piggyback load information on existing messages
 derives primarily from REQ 14 in [I-D.ietf-dime-overload-reqs]: "The
 mechanism SHOULD provide for increased feedback when traffic levels
 increase. The mechanism MUST NOT do this in such a way that it
 increases the number of messages while at high loads."

 If we were to introduce new messaging -- say, by defining a new
 overload control Application -- then a node in overload would be
 required to generate more messages at high load in order to keep
 overload information in its peers up-to-date.

 If further analysis determines that other factors are ultimately more
 important than the provisions of REQ 14, several factors would need
 to be considered.

Roach Expires April 25, 2013 [Page 36]

Internet-Draft Diameter Overload Control October 2012

 First and foremost would be the prohibition, in the base Diameter
 specification ([I-D.ietf-dime-rfc3588bis]), against adding new
 commands to an existing application. Specifically, section 1.3.4
 stipulates: "[A] new Diameter application MUST be created when one or
 more of the following criteria are met:... A new command is used
 within the existing application either because an additional command
 is added, an existing command has been modified so that a new Command
 Code had to be registered, or a command has been deleted." Because
 of this stipulation, the addition of new command codes to existing
 applications would require registration of entirely new application
 IDs for those applications to support overload control. We consider
 this to be too disruptive a change to consider.

 By the author's reading, there is no provision that exempts the
 "Diameter Common Messages" Application (Application ID 0) from the
 above clauses. This effectively prohibits the additional of new
 messages to this Application. While it may be theoretically possible
 to specify behavior that hijacks the DWR/DWA watchdog messages for
 the purpose of overload control messaging, doing so requires a
 complete redefinition of their behavior and, fundamentally, their
 semantics. This approach seems, at first blush, to be an
 unacceptable change to the base Application.

 The remaining approach -- defining a new application for overload
 control -- has some promise, if we decide not to fulfill REQ 14. It
 remains to be seen whether the users of the Diameter protocol,
 including other SDOs who define applications for Diameter, are
 willing to specify the use of multiple Diameter Applications for use
 on a single reference point.

D.2. Load AVP in All Packets

 Some have questioned the currently specified behavior of message
 senders including a Load AVP in every message sent. This is being
 proposed as a potential performance enhancement, with the idea being
 that message recipients can save processing time by examining
 arbitrarily selected messages for load information, rather than
 looking for a Load AVP in every message that arrives. Of course, to
 enable this kind of sampling, the Load AVP must be guaranteed to be
 present; otherwise, attempts to find it will occasionally fail.

 The reciprocal approach, of sending a Load AVP only when the Load has
 changed (or changed by more than a certain amount), requires the
 recipient to search through the Load-Info grouped AVP in every
 message received in order to determine whether a Load AVP is present.

 On a cursory analysis, we determined that appending a Load AVP to
 each message is fundamentally a cheaper operation than traversing the

Roach Expires April 25, 2013 [Page 37]

Internet-Draft Diameter Overload Control October 2012

 contents of each Load-Info AVP to determine whether a Load AVP is
 present.

 If a later decision is made to require examination of each message to
 determine whether it include a Load AVP, we may be able to obtain
 some efficiencies by requiring Load to be the first AVP in the Load-
 Info AVP.

D.3. Graceful Failure

 Some commenters have raised the question of whether a node can reject
 an incoming connection upon recognizing that the remote node does not
 support the Diameter overload control mechanism. One suggestion has
 been to add a response code to indicate exactly such a situation.

 So far, we have opted against doing so. Instead, we anticipate an
 incremental deployment of the overload control mechanism, which will
 likely consist of a mixture of nodes that support and node that do
 not support the mechanism. Were we to allow the rejection of
 connections that do not support the mechanism, we would create a
 situation that necessitates a "flag day," on which every Diameter
 node in a network is required to simultaneously, and in perfect
 synchronization, switch from not supporting the overload mechanism,
 to supporting it.

 Given the operational difficulty of the foregoing, we have decided
 that defining a response code, even if optional, that was to be used
 to reject connections merely for the lack of overload control
 support, would form an attractive nuisance for implementors. The
 result could easily be a potential operational nightmare for network
 operators.

Author's Address

 Adam Roach
 Tekelec
 17210 Campbell Rd.
 Suite 250
 Dallas, TX 75252
 US

 Email: adam@nostrum.com

Roach Expires April 25, 2013 [Page 38]

