
Network Working Group A. B. Roach
Internet-Draft J. Rosenberg
Expires: April 25, 2003 B. Campbell
 dynamicsoft
 October 25, 2002

A Session Initiation Protocol (SIP) Event Template Package for
Collections

draft-roach-sip-list-template-00

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 25, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document presents a Session Initiation Protocol (SIP) event
 package template for subscribing to a collection of event packages.
 Instead of the subscriber sending a SUBSCRIBE to each notifier
 individually, the subscriber can subscribe to their an entire
 collection, and then receive notifications when the state of any of
 the notifiers in the collection changes.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Roach, et al. Expires April 25, 2003 [Page 1]

Internet-Draft List Event Template October 2002

Table of Contents

1. Introduction . 3
2. Overview of Operation 4
2.1 Recursive Application of the "list" Template 5
3. Template Event Package for "list" 7
3.1 Event Package Name . 7
3.2 Event Package Parameters 7
3.3 SUBSCRIBE Bodies . 7
3.4 Subscription Duration 7
3.5 NOTIFY Bodies . 8
3.6 Notifier Processing of SUBSCRIBE Requests 8
3.7 Notifier Generation of NOTIFY Requests 8
3.8 Subscriber Processing of NOTIFY Requests 9
3.9 Handling of Forked Requests 10
3.10 Rate of Notifications 10
3.11 State Agents . 10
4. Using multipart/mixed to Convey Aggregate State 12
4.1 Preamble Headers . 12
4.2 Body-Part Headers . 12
4.3 Constructing Coherent Resource State 13
4.4 Syntax . 14
4.5 Examples . 14
5. Security Considerations 15
6. IANA Considerations . 16
7. Open Issues . 17

 References . 18
 Authors' Addresses . 18
 Full Copyright Statement 20

Roach, et al. Expires April 25, 2003 [Page 2]

Internet-Draft List Event Template October 2002

1. Introduction

 The SIP-specific event notification mechanism [2] allows a user (the
 subscriber) to request to be notified of changes in the state of a
 particular resource. This is accomplished by having the subscriber
 generate a SUBSCRIBE request for the resource, which is processed by
 a notifier that represents the resource. In many cases, a subscriber
 has a collection of resources they are interested in.

 For environments where bandwidth is limited, such as a wireless
 network, subscribing to each resource individually is problematic.
 The specific problems are:

 o It generates substantial message traffic, in the form of the
 initial SUBSCRIBE requests for each resource, and the refreshes of
 each individual subscription.

 o The notifier may insist on low refresh intervals, in order to
 avoid long lived subscription state. This means that the
 subscriber may need to generate subscriptions faster than it would
 like to, or has the capacity to.

 o The notifier may generate NOTIFY requests more rapidly than the
 subscriber desires, causing NOTIFY traffic at a greater volume
 than is desired by the subscriber.

 o If a subscriber has only intermittent connectivity, and generally
 polls for state rather than simply subscribing, the latency to
 obtain the state of the entire resource can be large. The
 messaging required for each poll can also be substantial.

 To solve these problems, this specification defines a template event
 package for collections of resources. A resource list is identified
 by a SIP URI [1], and it represents a list of zero or more URIs.
 Each of these URIs is the Request URI for an individual resource for
 which the subscriber wants to receive information.

 The notifier for the collection is called an "resource list server",
 or RLS. In order to determine the state of the entire list, the RLS
 will typically generate a subscription to each element of the list.

 The resource list may exist within the domain of the subscriber, but
 it can also exist within a third party domain.

 The first section provides more detail on the operation of the RLS,
 and the second section defines the event package for resource list
 subscriptions.

Roach, et al. Expires April 25, 2003 [Page 3]

Internet-Draft List Event Template October 2002

2. Overview of Operation

 This section provides an overview of the typical mode of operation of
 this event template package. It is not normative.

 When a user wishes to subscribe to the resource of a list of
 resources, they create a resource list. This resource list is
 represented by a SIP URI. The list contains a set of URIs, each of
 which represents a resource for which the subscriber wants to receive
 information. The resource list can exist in any domain. Typically,
 the user who creates the list (and subsequently subscribes to it)
 will have a trust relationship with the domain that hosts the list.
 The specific means by which the list is created and maintained is
 outside of the scope of this specification. The list could be
 manipulated through a web page, through a voice response system, or
 through some protocol.

 To learn the resource state of the set of elements on the list, the
 user sends a single SUBSCRIBE request targeted to the URI of the
 list. This will be routed to an RLS for that URI. The RLS acts as a
 notifier, authenticates the subscriber, and accepts the subscription.

 The RLS may have direct information about some or all of the
 resources specified by the list. If it does not, it subscribes to
 the resource specified by the request URI, for the base event package
 to which ".list" has been appended.

 Since the RLS is acting on behalf of the user, it will provide the
 identity of the user in the From field. If the resources require
 credentials in order to accept the subscription, the user will have
 had to provide them to the RLS ahead of time. This requires a trust
 relationship between the user and RLS.

 As notifications arrive from individual resources, the RLS accepts
 them, extracts the resource information, and generates a notification
 to the subscriber. The RLS can, at its discretion, buffer
 notifications that it receives, and send the resource information to
 the subscriber in batches, rather than individually. This allows the
 RLS to provide rate limiting for the subscriber.

 Joe RLS User A User B
 | | | |
 |(1) SUBSCRIBE | | |
 | Event: foo.list | | |
 |---------------->| | |
 |(2) 200 OK | | |

Roach, et al. Expires April 25, 2003 [Page 4]

Internet-Draft List Event Template October 2002

 |<----------------| | |
 |(3) NOTIFY | | |
 | Event: foo.list | | |
 |<----------------| | |
 |(4) 200 OK | | |
 |---------------->| | |
 | |(5) SUBSCRIBE a | |
 | | Event: foo | |
 | |---------------->| |
 | |(6) SUBSCRIBE b | |
 | | Event: foo | |
 | |---------------------------------->|
 | |(7) 200 OK | |
 | |<----------------| |
 | |(8) 200 OK | |
 | |<----------------------------------|
 | |(9) NOTIFY | |
 | | Event: foo | |
 | |<----------------| |
 | |(10) 200 OK | |
 | |---------------->| |
 |(11) NOTIFY | | |
 | Event: foo.list | | |
 | a's state | | |
 |<----------------| | |
 |(12) 200 OK | | |
 |---------------->| | |
 | |(13) NOTIFY | |
 | | Event: foo | |
 | |<----------------------------------|
 | |(14) 200 OK | |
 | |---------------------------------->|
 |(15) NOTIFY | | |
 | Event: foo.list | | |
 | b's state | | |
 |<----------------| | |
 |(16) 200 OK | | |
 |---------------->| | |

 As an example, consider a resource list with two resources,
 sip:userA@a.com and sip:userB@b.com. A typical flow for a
 subscription to this resource list is shown in Figure 1.

2.1 Recursive Application of the "list" Template

 As described in [2], one of the key features of any template package
 is that it can be applied to any other defined package -- including
 other templates, and even itself. For many templates, the arbitrary

Roach, et al. Expires April 25, 2003 [Page 5]

Internet-Draft List Event Template October 2002

 recursive application of the template to itself may be of
 questionable value. For the "list" template, however, there is
 significant utility that can be provided in this fashion. Take the
 example of applying "list" to the "presence" event package [5]. A
 user may quite reasonably maintain several lists of users for whom
 they want to know presence information.

 TBD: Addtional motivating text here.

Roach, et al. Expires April 25, 2003 [Page 6]

Internet-Draft List Event Template October 2002

3. Template Event Package for "list"

 The following subsections formally define the resource list event
 package, following the requirements defined by the SIP events
 framework [2].

3.1 Event Package Name

 The name of this event template package is "list".

 The following is the information needed to register this event
 package with IANA:

 Package Name: list

 Type: template

 Contact: Jonathan Rosenberg, jdrosen@dynamicsoft.com

 Reference: RFC XXXX [[Note to RFC Editor: replace with the RFC number
 for this specification]]

3.2 Event Package Parameters

 This specification does not define any parameters in the Event header
 for this package. Any parameters that are present on the Event
 header, however, are propigated to any SUBSCRIBE messages generated
 for the base package to which it has been applied.

3.3 SUBSCRIBE Bodies

 The SUBSCRIBE message MAY contain a body whose purpose is to define
 filters on the operation of the list. These filters would include
 any rate limitation desired for the notifications, or any aggregation
 that is desired. There is no default or mandatory body type defined
 for this purpose.

3.4 Subscription Duration

 Since the primary benefit of the resource list server is to reduce
 the overall messaging volume to a handset, it is RECOMMENDED that the
 subscription duration to a list be reasonably long. The default,
 when no duration is specified, is two hours, which reduces the need
 to refresh too frequently. Of course, the standard techniques [2]
 can be used to increase or reduce this amount.

Roach, et al. Expires April 25, 2003 [Page 7]

Internet-Draft List Event Template October 2002

3.5 NOTIFY Bodies

 An implementation compliant to this specification MUST support the
 multipart/mixed type. This allows a notification to contain multiple
 resource documents.

 The absence of an Accept header in the SUBSCRIBE indicates support
 for multipart/mixed and the content type(s) used by the base package.
 If an Accept header is present, these types MUST be included, in
 additional to any other types supported by the client.

3.6 Notifier Processing of SUBSCRIBE Requests

 All subscriptions for resourcce lists SHOULD be authenticated. The
 use of the SIP HTTP Digest mechanism [1] over TLS is RECOMMENDED.

 Once authenticated, the subscription is authorized. Typically, each
 resource list is associated with a particular user (the one who
 created it and manages the set of elements in it), and only that user
 will be allowed to subscribe. Of course, there may be exceptions to
 this rule, and a notifier MAY use any authorization policy it
 chooses.

3.7 Notifier Generation of NOTIFY Requests

 This specification leaves the choice about how and when to generate
 NOTIFY requests at the discretion of the implementor. One of the
 value propositions of the RLS is the means by which it aggregates,
 rate limits, or optimizes the way in which notifications are
 generated.

 As a baseline behavior, if the RLS acts as a subscriber to determine
 the state of the resources on the resource list, it MAY generate a
 NOTIFY to the RLS subscriber whenever it receives a NOTIFY about a
 state change in one or more resources. The body of the NOTIFY would
 merely be copied from that NOTIFY into the NOTIFY sent by the RLS to
 the subscriber.

 If a subscription to a resource is terminated by the notifier and the
 RLS is unable to re-establish the subscription by the recovery
 mechanisms described in SIP Events [2], that resource is still
 present in resource list NOTIFY messages as appropriate. The
 "Subscription-State" body-header is set to "terminated", and the
 "reason" parameter is copied from the NOTIFY received from the
 resource.

 If a SUBSCRIBE to a resource is refused with a response code that
 cannot be recovered from, that resource is still present in resource

Roach, et al. Expires April 25, 2003 [Page 8]

Internet-Draft List Event Template October 2002

 list NOTIFY messages as appropriate. The resource will be reported
 with a a "Subscription-State" value of "terminated," and a "reason"
 parmeter of "rejected".

 When the first SUBSCRIBE message for a particular subscription is
 received by a resource list notifier, the notifier will often not
 know state information for all of the resources specified by the
 resource list. The NOTIFY message triggered from the initial
 SUBSCRIBE message will contain a multipart/mixed message, with one
 section for each resource in the list. Sections corrsponding to
 resources for which no state information is yet available will
 contain zero-byte bodies. The Resource-URI header will be populated,
 and the Subscription-State header will be set to "unknown".

 Sections corresponding to resources for which the resource list
 notifier does have state SHOULD be populated with correct data
 (subject, of course, to local policy decisions). This will often
 occur if the resource list server is colocated with the server for
 one or more of the resources specified on the list.

 Immediate notifications triggered as a result of subsequent SUBSCRIBE
 messages SHOULD result in the full state of all resources to be
 present in the NOTIFY. This allows the subscriber to refresh their
 state, and to recover from lost notifications.

 Note that a consequence of the way in which resource list
 subscriptions work, polling of resource state will often not be
 particularly useful. While such polls will retrieve the resource
 list (and potentially even some of the states if a resource on the
 list is colocated with the resource list server), they will often not
 contain state for some or all of the resources on the list.

3.8 Subscriber Processing of NOTIFY Requests

 The SIP Events framework expects packages to specify how a subscriber
 processes NOTIFY requests in any package specific ways, and in
 particular, how it uses the NOTIFY requests to contruct a coherent
 view of the state of the subscribed resource.

 Notifications within this package can convey partial information;
 that is, they can indicate information about a subset of the state
 associated with the subscription. This means that an explicit
 algorithm needs to be defined in order to construct coherent and
 consistent state.

 For this template package, each section of the multipart/mixed
 document contains a URI which uniquely identifies the resource to
 which that section corresponds. When a NOTIFY arrives, the recipient

Roach, et al. Expires April 25, 2003 [Page 9]

Internet-Draft List Event Template October 2002

 of the NOTIFY updates information for each identified resource.
 Information for any resources that are not identified in the NOTIFY
 are not changed, even if they were indicated in previous NOTIFY
 mesages. See section Section 4.3 for more information.

 Note that the package to which the ".list" template has been applied
 may, in turn, have rules for compositing partial state notification.
 When processing data related to those packages, their rules apply
 (i.e. the fact that they were reported as part of a collection does
 not change their partial notification semantics).

3.9 Handling of Forked Requests

 Forking makes little sense with this event package, since the whole
 idea is a centralization of the source of notifications. Therefore,
 a subscriber MUST create just a single dialog as a result of a single
 subscription request, using the techniques described in [2].

3.10 Rate of Notifications

 One potential role of the RLS is to perform rate limitations on
 behalf of the subscriber. As such, this specification does not
 mandate any particular rate limitation, and rather leaves that to the
 discretion of the implementation.

3.11 State Agents

 Effectively, a resource list server is nothing more than a state
 agent for the resource event type. A separate event package is
 needed because of the differing body types which can be used in
 NOTIFY, and the need to construct complete state from the partial
 notifications. Furthermore, there are differing values of the
 subscription interval, differing recommendations on rate limitation,
 and so on.

 The usage of the RLS does introduce some security considerations.
 The end user is no longer the direct subscriber to the state of the
 resource. If the notifier for the resource demands end-to-end
 authentication, the RLS will need to be provided appropriate
 credentials to access those resources (e.g. shared secrets for
 Digest authentication). This requires a certain level of trust
 between the user and their RLS. This specification does not describe
 any particular means of providing such credentials to the RLS (such
 as uploading a shared secret). However, any such upload mechanism
 MUST ensure privacy of the key data; using HTTPS to fill out a form
 is a reasonable method.

 If the notifier for the resource is using a transitive trust model to

Roach, et al. Expires April 25, 2003 [Page 10]

Internet-Draft List Event Template October 2002

 validate the subscriber, then this works well with the RLS concept.
 The RLS would authenticate the subscriber, and then MAY use the SIP
 extensions for network asserted identity [3][4] to provide an
 authenticated identity to the PA.

Roach, et al. Expires April 25, 2003 [Page 11]

Internet-Draft List Event Template October 2002

4. Using multipart/mixed to Convey Aggregate State

 In order to convey the state of multiple resources, the list template
 package uses the "multipart/mixed" mime type. The syntax for
 multipart/mixed is defined in MIME Part 1 [6].

 Because the document itself must contain several pieces of
 information that aren't conveyed by default, multipart/mixed bodies
 used for delivering collections of state have a few additional
 requirements beyond those describe in MIME.

4.1 Preamble Headers

 The preamble section of a multipart/mixed body used in a list
 notification MUST contain two headers. Note that these headers
 follow the same syntax rules as defined for headers in SIP [1], with
 the distinction that the list of headers is not required to end with
 CRLF.

 The first mandatory preamble header is "Version", which contains a
 number from 0 to 2^32-1. This version number MUST be 0 for the first
 NOTIFY message sent within a subscription (typically in response to a
 SUBSCRIBE request), and MUST increase by exactly one for each
 subsequent NOTIFY sent within a subscription.

 The second mandatory preamble header is "State". The "State" header
 indicates whether the NOTIFY message contains one section for each
 resource in the collection. If it does, the value of the header is
 "full"; otherwise, it is "partial". Note that the first NOTIFY sent
 in a subscription MUST contain full state, as must the first NOTIFY
 sent after receipt of a SUBSCRIBE request for the subscription.

4.2 Body-Part Headers

 Each body part of mime/multipart documents contains zero or more
 headers that convey information about the contents of that section.
 When used in list templates, each body part also MUST contain two
 addtional headers.

 The first mandatory body-part header is "Resource-URI". This header
 contains the URI that uniquely identifies the resource whose state is
 contained in the body part. Note that "Resource-URI" might also
 contain a name-addr syntax; this can be used to convey a human-
 readable description of the resource that is identified by the URI in
 the "Resource-URI" header (if the RLS has such a description).

 The second mandatory body-part header is "Subscription-State". This
 header contains the "Subscription-State" for the individual resource

Roach, et al. Expires April 25, 2003 [Page 12]

Internet-Draft List Event Template October 2002

 defined in this body-part. The syntax and meaning for this header
 are defined in SIP Events [2]. In a resource list, however, the
 "expires" and "retry-after" parameters have no semantics associated
 with them, and the "reason" parameter is included for informational
 purposes only. That is, the subscriber to a resource list does not
 take action based on the "reason" parameter in a body-part
 "Subscrtiption-State" header.

 In the simplest case (i.e. the RLS issues literal SUBSCRIBE requests
 and receives literal NOTIFY requests), an RLS can copy the
 "Subscription-State" header from the NOTIFY received for that
 resource into the body-part headers. The RLS MAY remove the
 "expires" and "retry-after" parameters from the "Subscription-State"
 header when it does so.

4.3 Constructing Coherent Resource State

 The resource list subscriber maintains a table for each resource
 list. The table contains a row for each resource in the resource
 list. Each row is indexed by the URI for that resource. That URI is
 obtained from the "Resource-URI" body-part header. The contents of
 each row contain the state of that resource as conveyed in the
 resource document.

 For resources that provide versioning information (which is mandated
 by [2] for any formats that allow partial notification), each row
 also contains a version number. The version number of the row is
 initialized with the version specified in the first document
 received, as defined by the corrsponding event package.

 Each time a new document for a resource is received, the value of the
 local version number is compared to the version number of the new
 document. If the value in the new document is one higher than the
 local version number, the local version number is increased by one,
 and the document is processed. If the value in the document is more
 than one higher than the local version number, the local version
 number is set to the value in the new document, the document is
 processed, and the .list subscriber SHOULD generate a refresh request
 to trigger a full state notification. If the value in the document
 is less than or equal to the local version, the document is discarded
 without processing.

 The processing of the resource list notification depends on whether
 it contains full or partial state. If it contains full state,
 indicated by the value of the preable header "State", the contents of
 the resource-list table are flushed. They are repopulated from the
 document. A new row in the table is created for each "resource"
 element.

Roach, et al. Expires April 25, 2003 [Page 13]

Internet-Draft List Event Template October 2002

 If the resource list document contains partial state, as indicated by
 the value of the preable header "State", the document is used to
 update the table. For each resource listed in the document, the
 subscriber checks to see whether a row exists for that resource.
 This check is done by comparing the Resource-URI value with the URI
 associated with the row. If the resource doesn't exist in the table,
 a row is added, and its state is set to the information from that
 "resource" element. If the resource does exist, its state is updated
 to be the information from that "resource" element. If a row is
 updated or created such that its state is now "terminated," that
 entry MAY be removed from the table at any time.

4.4 Syntax

 This section uses ABNF to define the additional syntactic elements
 required by this document. It uses elements from the base SIP
 specification [1], the SIP Events document [2], and MIME [6].

 Preamble-Headers = (Version CRLF State *CRLF) /
 (State CRLF Version *CRLF)

 Version = "Version" HCOLON 1*DIGIT

 State = "State" HCOLON ("full" / "partial")

 Bodypart-Headers = * (Resource-URI
 / Subscription-State
 / content
 / description
 / encoding
 / id
) CRLF

 Resource-URI = "Resource-URI" HCOLON (name-addr / addr-spec)

 Further, this document defines an additional substate-value of
 "unknown" for the "Subscription-State" header.

4.5 Examples

 TBD: Add examples.

Roach, et al. Expires April 25, 2003 [Page 14]

Internet-Draft List Event Template October 2002

5. Security Considerations

 This package does introduce some security considerations, which are
 discussed in Section Section 3.11.

Roach, et al. Expires April 25, 2003 [Page 15]

Internet-Draft List Event Template October 2002

6. IANA Considerations

 This document defines a new Template Event Package, as described in
 [2]. The information necessary to register this Template Event
 Package is given in section Section 3.1.

 OPEN ISSUE: Do we need to register the headers we define for the
 preamble and body parts? It's not clear where we would do so. Do
 we need to create a new registry?

Roach, et al. Expires April 25, 2003 [Page 16]

Internet-Draft List Event Template October 2002

7. Open Issues

 o Technically, MIME [6] talks about multipart/mixed representing
 ordered body parts, while multipart/parallel is used for unordered
 body parts. The delivery of state of a collection of resources
 seems unordered; should we be using multipart/parallel instead of
 multipart/mixed?

 o Technically, MIME [6] says that the preamble portion of multitype
 bodies is ignored. However, this definition of multitype bodies
 was aimed more at mail delivery than use in other contexts. We
 have the need to convey body-level information that applies to all
 parts of a multitype document, and have elected to use the
 preamble for this purpose. Are there any problems with doing so?

 o Similaraly, MIME [6] also says that any headers appearing in body
 parts other than Content-* cannot be depended on. The rationale
 for this restriction, however, is that intervening mail gateways
 may discard such headers. Of course, this reasoning does not have
 any chance of applying to the use described in this document, so
 we reason that such headers *can* be relied upon in this context.
 Are there any flaws in this reasoning?

 o Do the new headers require any additional IANA action? (section
Section 6)

Roach, et al. Expires April 25, 2003 [Page 17]

Internet-Draft List Event Template October 2002

References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [3] Watson, M., Peterson, J. and C. Jennings, "Private Extensions to
 the Session Initiation Protocol (SIP) for Asserted Identity
 within Trusted Networks", draft-ietf-sip-asserted-identity-02
 (work in progress), August 2002.

 [4] Peterson, J., "Enhancements for Authenticated Identity
 Management in the Session Initiation Protocol (SIP)", draft-

peterson-sip-identity-01 (work in progress), July 2002.

 [5] Rosenberg, J., "Session Initiation Protocol (SIP) Extensions for
 Presence", draft-ietf-simple-presence-07 (work in progress), May
 2002.

 [6] Borenstein, N. and N. Freed, "MIME (Multipurpose Internet Mail
 Extensions) Part One: Mechanisms for Specifying and Describing
 the Format of Internet Message Bodies", RFC 1521, September
 1993.

Authors' Addresses

 Adam Roach
 dynamicsoft
 5100 Tennyson Pkwy
 Suite 1200
 Plano, TX 75024
 US

 EMail: adam@dynamicsoft.com

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Ave.
 First Floor
 East Hanover, NJ 07936
 US

 EMail: jdrosen@dynamicsoft.com

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/draft-ietf-sip-asserted-identity-02
https://datatracker.ietf.org/doc/html/draft-peterson-sip-identity-01
https://datatracker.ietf.org/doc/html/draft-peterson-sip-identity-01
https://datatracker.ietf.org/doc/html/draft-ietf-simple-presence-07
https://datatracker.ietf.org/doc/html/rfc1521

Roach, et al. Expires April 25, 2003 [Page 18]

Internet-Draft List Event Template October 2002

 Ben Campbell
 dynamicsoft
 5100 Tennyson Pkwy
 Suite 1200
 Plano, TX 75024
 US

 EMail: bcampbell@dynamicsoft.com

Roach, et al. Expires April 25, 2003 [Page 19]

Internet-Draft List Event Template October 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Roach, et al. Expires April 25, 2003 [Page 20]

