
Workgroup: Network Working Group

Internet-Draft:

draft-robert-privacypass-batched-tokens-01

Published: 13 March 2023

Intended Status: Informational

Expires: 14 September 2023

Authors: R. Robert

Phoenix R&D

C. A. Wood

Cloudflare

Batched Token Issuance Protocol

Abstract

This document specifies a variant of the Privacy Pass issuance

protocol that allows for batched issuance of tokens. This allows

clients to request more than one token at a time and for issuers to

isse more than one token at a time.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction

2.  Motivation

3.  Client-to-Issuer Request

4.  Issuer-to-Client Response

5.  Finalization

6.  Security considerations

7.  IANA considerations

7.1.  Token Type

8.  References

8.1.  Normative References

8.2.  Informative References

Authors' Addresses

1. Introduction

This document specifies a variant of the Privacy Pass issuance

protocol (as defined in [ARCH]) that allows for batched issuance of

tokens. This allows clients to request more than one token at a time

and for issuers to isse more than one token at a time.

The base Privacy Pass issuance protocol [ISSUANCE] defines stateless

anonymous tokens, which can either be publicly verifiable or not.

While it is possible to run multiple instances of the issuance

protocol in parallel, e.g., over a multiplexed transport such as

HTTP/3 [HTTP3], the cost of doing so scales linearly with the number

of instances.

This variant builds upon the privately verifiable issuance protocol

that uses VOPRF [OPRF], and allows for batched issuance of tokens.

This allows clients to request more than one token at a time and for

issuers to issue more than one token at a time. In effect, batched

issuance performance scales better than linearly.

This issuance protocol registers the batched token type

(Section 7.1), to be used with the PrivateToken HTTP authentication

scheme defined in [AUTHSCHEME].

2. Motivation

Privately Verifiable Tokens (as defines in [ISSUANCE]) offer a

simple way to unlink the issuance from the redemption. The base

protocol however only allows for a single token to be issued at a

time for every challenge. In some cases, especially where a large

number of clients need to fetch a large number of tokens, this may

introduce performance bottlenecks. The Batched Token Issuance

¶

¶

¶

¶



Protocol improves upon the basic Privately Verifiable Token issuance

protocol in the following key ways:

Issuing multiple tokens at once in response to a single

TokenChallenge, thereby reducing the size of the proofs

required for multiple tokens.

Improving server and client issuance efficiency by amortizing

the cost of the VOPRF proof generation and verification,

respectively.

3. Client-to-Issuer Request

Except where specified otherwise, the client follows the same

protocol as described in [ISSUANCE], Section 5.1.

The Client first creates a context as follows:

Here, "ristretto255-SHA512" is the identifier corresponding to the

OPRF(ristretto255, SHA-512) ciphersuite in [OPRF]. SetupVOPRFClient

is defined in [OPRF], Section 3.2.

Nr denotes the number of tokens the clients wants to request. For

every token, the Client then creates an issuance request message for

a random value nonce with the input challenge and Issuer key

identifier as described below:

The above is repeated for each token to be requested. Importantly, a

fresh nonce MUST be sampled each time.

The Client then creates a TokenRequest structured as follows:

¶

1. 

¶

2. 

¶

¶

¶

client_context = SetupVOPRFClient("ristretto255-SHA512", pkI)¶

¶

¶

nonce_i = random(32)

challenge_digest = SHA256(challenge)

token_input = concat(0xF91A, nonce_i, challenge_digest, key_id)

blind_i, blinded_element_i = client_context.Blind(token_input)

¶

¶

¶

struct {

    uint8_t blinded_element[Ne];

} BlindedElement;

struct {

   uint16_t token_type = 0xF91A;

   uint8_t token_key_id;

   BlindedElement blinded_elements<0..2^16-1>;

} TokenRequest;

¶

https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-10#section-5.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21#section-3.2


The structure fields are defined as follows:

"token_type" is a 2-octet integer, which matches the type in the

challenge.

"token_key_id" is the least significant byte of the key_id in

network byte order (in other words, the last 8 bits of key_id).

"blinded_elements" is a list of Nr serialized elements, each of

length Ne bytes and computed as 

SerializeElement(blinded_element_i), where blinded_element_i is

the i-th output sequence of Blind invocations above. Ne is as

defined in [OPRF], Section 4.

Upon receipt of the request, the Issuer validates the following

conditions:

The TokenRequest contains a supported token_type equal to 0xF91A.

The TokenRequest.token_key_id corresponds to a key ID of a Public

Key owned by the issuer.

Nr, as determined based on the size of

TokenRequest.blinded_elements, is less than or equal to the

number of tokens that the issuer can issue in a single batch.

If any of these conditions is not met, the Issuer MUST return an

HTTP 400 error to the client.

4. Issuer-to-Client Response

Except where specified otherwise, the client follows the same

protocol as described in [ISSUANCE], Section 5.2.

Upon receipt of a TokenRequest, the Issuer tries to deseralize the

i-th element of TokenRequest.blinded_elements using

DeserializeElement from Section 2.1 of [OPRF], yielding 

blinded_element_i of type Element. If this fails for any of the

TokenRequest.blinded_elements values, the Issuer MUST return an HTTP

400 error to the client. Otherwise, if the Issuer is willing to

produce a token to the Client, the issuer forms a list of Element

values, denoted blinded_elements, and computes a blinded response as

follows:

SetupVOPRFServer is defined in [OPRF], Section 3.2. The issuer uses

a list of blinded elements to compute in the proof generation step.

The BlindEvaluateBatch function is a batch-oriented version of the 

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

server_context = SetupVOPRFServer("ristretto255-SHA512", skI, pkI)

evaluated_elements, proof = server_context.BlindEvaluateBatch(skI, blinded_elements)

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21#section-4
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-10#section-5.2
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21#section-2.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21#section-3.2


BlindEvaluate function described in [OPRF], Section 3.3.2. The

description of BlindEvaluateBatch is below.

The Issuer then creates a TokenResponse structured as follows:

The structure fields are defined as follows:

"evaluated_elements" is a list of Nr serialized elements, each of

length Ne bytes and computed as 

SerializeElement(evaluate_element_i), where evaluate_element_i is

the i-th output of BlindEvaluate.

"evaluated_proof" is the (Ns+Ns)-octet serialized proof, which is

a pair of Scalar values, computed as 

concat(SerializeScalar(proof[0]), SerializeScalar(proof[1])),

where Ns is as defined in [OPRF], Section 4.

¶

Input:

  Element blindedElements[Nr]

Output:

  Element evaluatedElements[Nr]

  Proof proof

Parameters:

  Group G

  Scalar skS

  Element pkS

def BlindEvaluateBatch(blindedElements):

  evaluatedElements = []

  for blindedElement in blindedElements:

    evaluatedElements.append(skS * blindedElement)

  proof = GenerateProof(skS, G.Generator(), pkS,

                        blindedElements, evaluatedElements)

  return evaluatedElements, proof

¶

¶

struct {

    uint8_t evaluated_element[Ne];

} EvaluatedElement;

struct {

   EvaluatedElement evaluated_elements<0..2^16-1>;

   uint8_t evaluated_proof[Ns + Ns];

} TokenResponse;

¶

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21#section-3.3.2
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21#section-4


5. Finalization

Upon receipt, the Client handles the response and, if successful,

deserializes the body values TokenResponse.evaluate_response and

TokenResponse.evaluate_proof, yielding evaluated_elements and proof.

If deserialization of either value fails, the Client aborts the

protocol. Otherwise, the Client processes the response as follows:

The FinalizeBatch function is a batched variant of the Finalize

function as defined in [OPRF], Section 3.3.2. FinalizeBatch accepts

lists of evaluated elements and blinded elements as input

parameters, and is implemented as described below:

¶

authenticator_values = client_context.FinalizeBatch(token_input, blind, evaluated_elements, blinded_elements, proof)¶

¶

Input:

  PrivateInput input

  Scalar blind

  Element evaluatedElements[Nr]

  Element blindedElements[Nr]

  Proof proof

Output:

  opaque output[Nh * Nr]

Parameters:

  Group G

  Element pkS

Errors: VerifyError

def FinalizeBatch(input, blind, evaluatedElements, blindedElements, proof):

  if VerifyProof(G.Generator(), pkS, blindedElements,

                 evaluatedElements, proof) == false:

    raise VerifyError

  output = nil

  for evaluatedElement in evaluatedElements:

    N = G.ScalarInverse(blind) * evaluatedElement

    unblindedElement = G.SerializeElement(N)

    hashInput = I2OSP(len(input), 2) || input ||

                I2OSP(len(unblindedElement), 2) || unblindedElement ||

                "Finalize"

    output = concat(output, Hash(hashInput))

  return output

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21#section-3.3.2


[ARCH]

If this succeeds, the Client then constructs Nr Token values as

follows, where authenticator is the i-th Nh-byte length slice of 

authenticator_values that corresponds to nonce, the i-th nonce that

was sampled in Section 3:

If the FinalizeBatch function fails, the Client aborts the protocol.

6. Security considerations

Implementors SHOULD be aware of the security considerations

described in [OPRF], Section 6.2.3 and implement mitigation

mechanisms. Application can mitigate this issue by limiting the

number of clients and limiting the number of token requests per

client per key.

7. IANA considerations

7.1. Token Type

This document updates the "Token Type" Registry ([AUTHSCHEME]) with

the following value:

Value Name
Publicly

Verifiable

Public

Metadata

Private

Metadata
Nk Reference

0xF91A

Batched Token

VOPRF

(ristretto255,

SHA-512)

N N N 32
This

document

Table 1: Token Types

8. References

8.1. Normative References

Davidson, A., Iyengar, J., and C. A. Wood, "The Privacy

Pass Architecture", Work in Progress, Internet-Draft,

draft-ietf-privacypass-architecture-11, 6 March 2023, 

¶

struct {

    uint16_t token_type = 0xF91A

    uint8_t nonce[32];

    uint8_t challenge_digest[32];

    uint8_t token_key_id[32];

    uint8_t authenticator[Nh];

} Token;

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21#section-6.2.3


[AUTHSCHEME]

[ISSUANCE]

[OPRF]

[HTTP3]

<https://datatracker.ietf.org/doc/html/draft-ietf-

privacypass-architecture-11>. 

Pauly, T., Valdez, S., and C. A. Wood, "The Privacy

Pass HTTP Authentication Scheme", Work in Progress, 

Internet-Draft, draft-ietf-privacypass-auth-scheme-09, 6

March 2023, <https://datatracker.ietf.org/doc/html/draft-

ietf-privacypass-auth-scheme-09>. 

Celi, S., Davidson, A., Faz-Hernandez, A., Valdez, S.,

and C. A. Wood, "Privacy Pass Issuance Protocol", Work in

Progress, Internet-Draft, draft-ietf-privacypass-

protocol-10, 6 March 2023, <https://datatracker.ietf.org/

doc/html/draft-ietf-privacypass-protocol-10>. 

Davidson, A., Faz-Hernandez, A., Sullivan, N., and C. A.

Wood, "Oblivious Pseudorandom Functions (OPRFs) using

Prime-Order Groups", Work in Progress, Internet-Draft,

draft-irtf-cfrg-voprf-21, 21 February 2023, <https://

datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21>. 

8.2. Informative References

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>. 

Authors' Addresses

Raphael Robert

Phoenix R&D

Email: ietf@raphaelrobert.com

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-11
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-11
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-auth-scheme-09
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-auth-scheme-09
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-10
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-protocol-10
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-21
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
mailto:ietf@raphaelrobert.com
mailto:caw@heapingbits.net

	Batched Token Issuance Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Motivation
	3. Client-to-Issuer Request
	4. Issuer-to-Client Response
	5. Finalization
	6. Security considerations
	7. IANA considerations
	7.1. Token Type

	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses


