
INTERNET-DRAFT D.R.T. Robinson
<draft-robinson-www-interface-01.txt> University of Cambridge
Expires 15 August 1996 15 February 1996

The WWW Common Gateway Interface Version 1.1

Status of this memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as `work in progress'.

 To learn the current status of any Internet-Draft, please check the
 `1id-abstracts.txt' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited. Please send comments to
 the author; general discussion about CGI should take place on the
 <www-talk@w3.org> mailing list.

Abstract

 The Common Gateway Interface (CGI) is a simple interface for running
 external programs, software or gateways under an information server
 in a platform-independent manner. Currently, the supported
 information servers are HTTP servers.

 The interface has been in use by the World-Wide Web since 1993. This
 specification defines the interface known as `CGI/1.1', and its use
 on the Unix(R) and AmigaDOS(tm) systems.

1. Introduction

1.1. Purpose

 Together the HTTP [3] server and the CGI script are responsible for
 servicing a client request by sending back responses. The client
 request comprises a Universal Resource Identifier (URI) [1], a
 request method and various ancillary information about the request
 provided by the transport mechanism.

Robinson [Page 1]

https://datatracker.ietf.org/doc/html/draft-robinson-www-interface-01.txt

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 The CGI defines the abstract parameters, known as environment
 variables, which describe the client's request. Together with a
 concrete programmer interface this specifies a platform-independent
 interface between the script and the HTTP server.

1.2. Requirements

 This specification uses the same words as RFC 1123 [5] to define the
 significance of each particular requirement. These are:

 must

 This word or the adjective `required' means that the item is an
 absolute requirement of the specification.

 should

 This word or the adjective `recommended' means that there may
 exist valid reasons in particular circumstances to ignore this
 item, but the full implications should be understood and the case
 carefully weighed before choosing a different course.

 may

 This word or the adjective `optional' means that this item is
 truly optional. One vendor may choose to include the item because
 a particular marketplace requires it or because it enhances the
 product, for example; another vendor may omit the same item.

 An implementation is not compliant if it fails to satisfy one or more
 of the `must' requirements for the protocols it implements. An
 implementation that satisfies all of the `must' and all of the
 `should' requirements for its features is said to be `unconditionally
 compliant'; one that satisfies all of the `must' requirements but not
 all of the `should' requirements for its features is said to be
 `conditionally compliant'.

1.3. Specifications

 Not all of the functions and features of the CGI are defined in the
 main part of this specification. The following phrases are used to
 describe the features which are not specified:

 system defined

 The feature may differ between systems, but must be the same for
 different implementations using the same system. A system will
 usually identify a class of operating-systems. Some systems are

https://datatracker.ietf.org/doc/html/rfc1123

Robinson [Page 2]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 defined in section 12 of this document. New systems may be defined
 by new specifications without revision of this document.

 implementation defined

 The behaviour of the feature may vary from implementation to
 implementation, but a particular implementation must document its
 behaviour.

1.4. Terminology

 This specification uses many terms defined in the HTTP/1.0
 specification [3]; however, the following terms are used here in a
 sense which may not accord with their definitions in that document,
 or with their common meaning.

 environment variable

 A named parameter that carries information from the server to the
 script. It is not necessarily a variable in the operating-system's
 environment, although that is the most common implementation.

 script

 The software which is invoked by the server via this interface. It
 need not be a standalone program, but could be a
 dynamically-loaded or shared library, or even a subroutine in the
 server.

 server

 The application program which invokes the script in order to
 service requests.

2. Notational Conventions and Generic Grammar

2.1. Augmented BNF

 All of the mechanisms specified in this document are described in
 both prose and an augmented Backus-Naur Form (BNF) similar to that
 used by RFC 822 [6]. This augmented BNF contains the following
 constructs:

 name = definition

 The name of a rule is simply the name itself; it is separated from
 the definition by the equal character ("="). Whitespace is only
 significant in that continuation lines of a definition are

https://datatracker.ietf.org/doc/html/rfc822

Robinson [Page 3]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 indented.

 "literal"

 Quotation marks (") surround literal text, except for a literal
 quotation mark, which is surrounded by angle-brackets ("<" and
 ">"). Unless stated otherwise, the text is case-sensitive.

 rule1 | rule2

 Alternative rules are separated by a vertical bar ("|").

 (rule1 rule2 rule3)

 Elements enclosed in parentheses are treated as a single element.

 *rule

 A rule preceded by an asterisk ("*") may have zero or more
 occurrences. A rule preceded by an integer followed by an asterisk
 must occur at least the specified number of times.

 [rule]

 A element enclosed in square brackets ("[" and "]") is optional.

2.2. Basic Rules

 The following rules are used throughout this specification to
 describe basic parsing constructs.

 alpha = lowalpha | hialpha
 lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h"
 | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p"
 | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x"
 | "y" | "z"
 hialpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H"
 | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P"
 | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X"
 | "Y" | "Z"
 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7"
 | "8" | "9"
 OCTET = <any 8-bit byte>
 CHAR = <any character>
 CTL = <any control character>
 SP = <space character>
 NL = <newline>
 LWSP = SP | NL | <horizontal-tab>

Robinson [Page 4]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 tspecial = "(" | ")" | "@" | "," | ";" | ":" | "\" | <">
 | "/" | "[" | "]" | "?" | SP
 token = 1*<any CHAR except CTLs or tspecials>
 quoted-string = (<"> *qdtext <">) | ("<" *qatext ">")
 qdtext = <any CHAR except <"> and CTLs but including LWSP>
 qatext = <any CHAR except "<", ">" and CTLs but
 including LWSP>

 Note that newline (NL) need not be a single character, but can be a
 character sequence.

3. URL Encoding

 Some variables and constructs used here are described as being
 `URL-encoded'. This encoding is described in section 2.2 of RFC 1738
 [4]. In a URL encoded string an escape sequence consists of a percent
 character ("%") followed by two hexadecimal digits, where the two
 hexadecimal digits form an octet. An escape sequence represents the
 graphic character which has the octet as its code within the US-ASCII
 [11] coded character set, if it exists. If no such graphic character
 exists, then the escape sequence represents the octet value itself.

 Note that some unsafe characters may have different semantics if they
 are encoded. The definition of which characters are unsafe depends on
 the context.

4. The Script URI

 A `Script URI' can be defined; this describes the resource identified
 by the environment variables. Often, this URI will be the same as the
 URI requested by the client (the `Client URI'); however, it need not
 be. Instead, it could be a URI invented by the server, and so it can
 only be used in the context of the server and its CGI interface.

 The script URI has the syntax of generic-RL as defined in section 2.1
 of RFC 1808 [7], with the exception that object parameters and
 fragment identifiers are not permitted:

 <scheme>://<host>:<port>/<path>?<query>

 The various components of the script URI are defined by some of the
 environment variables (see below);

 script-uri = protocol "://" SERVER_NAME ":" SERVER_PORT enc-script
 enc-path-info "?" QUERY_STRING

 where `protocol' is found from SERVER_PROTOCOL, `enc-script' is a
 URL-encoded version of SCRIPT_NAME and `enc-path-info' is a

https://datatracker.ietf.org/doc/html/rfc1738#section-2.2
https://datatracker.ietf.org/doc/html/rfc1808#section-2.1
https://datatracker.ietf.org/doc/html/rfc1808#section-2.1

Robinson [Page 5]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 URL-encoded version of PATH_INFO.

5. Environment variables

 Environment variables are used to pass data about the request from
 the server to the script. They are accessed by the script in a system
 defined manner. In all cases, a missing environment variable is
 equivalent to a zero-length (NULL) value, and vice versa. The
 representation of the characters in the environment variables is
 system defined.

 Case is not significant in the names, in that there cannot be two
 different variable whose names differ in case only. Here they are
 shown using a canonical representation of capitals plus underscore
 ("_"). The actual representation of the names is system defined; for
 a particular system the representation may be defined differently to
 this.

 The variables are:

 AUTH_TYPE
 CONTENT_LENGTH
 CONTENT_TYPE
 GATEWAY_INTERFACE
 HTTP_*
 PATH_INFO
 PATH_TRANSLATED
 QUERY_STRING
 REMOTE_ADDR
 REMOTE_HOST
 REMOTE_IDENT
 REMOTE_USER
 REQUEST_METHOD
 SCRIPT_NAME
 SERVER_NAME
 SERVER_PORT
 SERVER_PROTOCOL
 SERVER_SOFTWARE

 AUTH_TYPE

 This variable is specific to requests made with HTTP.

 If the script URI would require access authentication for external
 access, then this variable is found from the `auth-scheme' token
 in the request, otherwise NULL.

 AUTH_TYPE = "" | auth-scheme

Robinson [Page 6]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 auth-scheme = "Basic" | token

 HTTP access authentication schemes are described in section 11 of
 the HTTP/1.0 specification [3]. The auth-scheme is not
 case-sensitive.

 CONTENT_LENGTH

 The size of the entity attached to the request, if any, in decimal
 number of octets. If no data is attached, then NULL. The syntax is
 the same as the HTTP Content-Length header (section 10, HTTP/1.0
 specification [3]).

 CONTENT_LENGTH = "" | [1*digit]

 CONTENT_TYPE

 The Internet Media Type [9] of the attached entity. The syntax is
 the same as the HTTP Content-Type header.

 CONTENT_TYPE = "" | media-type
 media-type = type "/" subtype *(";" parameter)
 type = token
 subtype = token
 parameter = attribute "=" value
 attribute = token
 value = token | quoted-string

 The type, subtype and parameter attribute names are not
 case-sensitive. Parameter values may be case sensitive. Media
 types and their use in HTTP are described section 3.6 of the
 HTTP/1.0 specification [3]. Example:

 application/x-www-form-urlencoded

 There is no default value for this variable. If and only if it is
 unset, then the script may attempt to determine the media type
 from the data received. If the type remains unknown, then
 application/octet-stream should be assumed.

 GATEWAY_INTERFACE

 The version of the CGI specification to which this server
 complies. Syntax:

 GATEWAY_INTERFACE = "CGI" "/" 1*digit "." 1*digit

 Note that the major and minor numbers are treated as separate

Robinson [Page 7]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 integers and that each may be incremented higher than a single
 digit. Thus CGI/2.4 is a lower version than CGI/2.13 which in
 turn is lower than CGI/12.3. Leading zeros must be ignored by
 scripts and should never be generated by servers.

 This document defines the 1.1 version of the CGI interface.

 HTTP_*

 These variables are specific to requests made with HTTP.
 Interpretation of these variables may depend on the value of
 SERVER_PROTOCOL.

 Environment variables with names beginning with "HTTP_" contain
 header data read from the client, if the protocol used was HTTP.
 The HTTP header name is converted to upper case, has all
 occurrences of "-" replaced with "_" and has "HTTP_" prepended to
 give the environment variable name. The header data may be
 presented as sent by the client, or may be rewritten in ways which
 do not change its semantics. If multiple headers with the same
 field-name are received then they must be rewritten as a single
 header having the same semantics. Similarly, a header that is
 received on more than one line must be merged onto a single line.
 The server must, if necessary, change the representation of the
 data (for example, the character set) to be appropriate for a CGI
 environment variable.

 The server is not required to create environment variables for all
 the headers that it receives. In particular, it may remove any
 headers carrying authentication information, such as
 "Authorization"; it may remove headers whose value is available to
 the script via other variables, such as "Content-Length" and
 "Content-Type".

 PATH_INFO

 A path to be interpreted by the CGI script. It identifies the
 resource or sub-resource to be returned by the CGI script. The
 syntax and semantics are similar to a decoded HTTP URL `hpath'
 token (defined in RFC 1738 [4]), with the exception that a
 PATH_INFO of "/" represents a single void path segment. Otherwise,
 the leading "/" character is not part of the path.

 PATH_INFO = "" | "/" path
 path = segment *("/" segment)
 segment = *pchar
 pchar = <any CHAR except "/">

https://datatracker.ietf.org/doc/html/rfc1738

Robinson [Page 8]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 The PATH_INFO string is the trailing part of the <path> component
 of the script URI that follows the SCRIPT_NAME part of the path.

 PATH_TRANSLATED

 The OS path to the file that the server would attempt to access
 were the client to request the absolute URL containing the path
 PATH_INFO. i.e for a request of

 protocol "://" SERVER_NAME ":" SERVER_PORT enc-path-info

 where `enc-path-info' is a URL-encoded version of PATH_INFO. If
 PATH_INFO is NULL then PATH_TRANSLATED is set to NULL.

 PATH_TRANSLATED = *CHAR

 PATH_TRANSLATED need not be supported by the server. The server
 may choose to set PATH_TRANSLATED to NULL for reasons of security,
 or because the path would not be interpretable by a CGI script;
 such as the object it represented was internal to the server and
 not visible in the file-system; or for any other reason.

 The algorithm the server uses to derive PATH_TRANSLATED is
 obviously implementation defined; CGI scripts which use this
 variable may suffer limited portability.

 QUERY_STRING

 A URL-encoded search string; the <query> part of the script URI.

 QUERY_STRING = query-string
 query-string = *qchar
 qchar = unreserved | escape | reserved
 unreserved = alpha | digit | safe | extra
 reserved = ";" | "/" | "?" | ":" | "@" | "&" | "="
 safe = "$" | "-" | "_" | "." | "+"
 extra = "!" | "*" | "'" | "(" | ")" | ","
 escape = "%" hex hex
 hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a"
 | "b" | "c" | "d" | "e" | "f"

 The URL syntax for a search string is described in RFC 1738 [4].

 REMOTE_ADDR

 The IP address of the agent sending the request to the server. Not
 necessarily that of the client.

https://datatracker.ietf.org/doc/html/rfc1738

Robinson [Page 9]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 REMOTE_ADDR = hostnumber
 hostnumber = digits "." digits "." digits "." digits
 digits = 1*digit

 REMOTE_HOST

 The fully qualified domain name of the agent sending the request
 to the server, if available, otherwise NULL. Not necessarily that
 of the client. Fully qualified domain names take the form as
 described in section 3.5 of RFC 1034 [8] and section 2.1 of RFC

1123 [5]; a sequence of domain labels separated by ".", each
 domain label starting and ending with an alphanumerical character
 and possibly also containing "-" characters. The rightmost domain
 label will never start with a digit. Domain names are not case
 sensitive.

 REMOTE_HOST = "" | hostname
 hostname = *(domainlabel ".") toplabel
 domainlabel = alphadigit [*alphahypdigit alphadigit]
 toplabel = alpha [*alphahypdigit alphadigit]
 alphahypdigit = alphadigit | "-"
 alphadigit = alpha | digit

 REMOTE_IDENT

 The identity information reported about the connection by a RFC
931 [10] request to the remote agent, if available. The server may

 choose not to support this feature, or not to request the data for
 efficiency reasons.

 REMOTE_IDENT = *CHAR

 The data returned is not appropriate for use as authentication
 information.

 REMOTE_USER

 This variable is specific to requests made with HTTP.

 If AUTH_TYPE is "Basic", then the user-ID sent by the client. If
 AUTH_TYPE is NULL, then NULL, otherwise undefined.

 REMOTE_USER = "" | userid | *OCTET
 userid = token

 REQUEST_METHOD

 This variable is specific to requests made with HTTP.

https://datatracker.ietf.org/doc/html/rfc1034#section-3.5
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc931
https://datatracker.ietf.org/doc/html/rfc931

Robinson [Page 10]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 The method with which the request was made, as described in
section 5.1.1 of the HTTP/1.0 specification [3].

 REQUEST_METHOD = http-method
 http-method = "GET" | "HEAD" | "POST" | extension-method
 extension-method = token

 The method is case sensitive.

 SCRIPT_NAME

 A URL path that could identify the CGI script (rather then the
 particular CGI output). The syntax and semantics are identical to
 a decoded HTTP URL `hpath' token [4].

 SCRIPT_NAME = "" | "/" [path]

 The leading "/" is not part of the path. It is optional if the
 path is NULL.

 The SCRIPT_NAME string is some leading part of the <path>
 component of the script URI derived in some implementation defined
 manner.

 SERVER_NAME

 The name for this server, as used in the <host> part of the script
 URI. Thus either a fully qualified domain name, or an IP address.

 SERVER_NAME = hostname | hostnumber

 SERVER_PORT

 The port on which this request was received, as used in the <port>
 part of the script URI.

 SERVER_PORT = 1*digit

 SERVER_PROTOCOL

 The name and revision of the information protocol this request
 came in with.

 SERVER_PROTOCOL = HTTP-Version | extension-version
 HTTP-Version = "HTTP" "/" 1*digit "." 1*digit
 extension-version = protocol "/" 1*digit "." 1*digit
 protocol = 1*(alpha | digit | "+" | "-" | ".")

Robinson [Page 11]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 `protocol' is a version of the <scheme> part of the script URI,
 and is not case sensitive. By convention, `protocol' is in upper
 case.

 SERVER_SOFTWARE

 The name and version of the information server software answering
 the request (and running the gateway).

 SERVER_SOFTWARE = *CHAR

6. Invoking the script

 This script is invoked in a system defined manner. Unless specified
 otherwise, this will be by treating the file containing the script as
 an executable, and running it as a child process of the server.

7. The CGI script command line

 Some systems support a method for supplying a array of strings to the
 CGI script. This is only used in the case of an `indexed' query. This
 is identified by a "GET" or "HEAD" HTTP request with a URL search
 string not containing any unencoded "=" characters. For such a
 request, the server should parse the search string into words, using
 the rule:

 search-string = search-word *("+" search-word)
 search-word = 1*schar
 schar = xunreserved | escape | xreserved
 xunreserved = alpha | digit | xsafe | extra
 xsafe = "$" | "-" | "_" | "."
 xreserved = ";" | "/" | "?" | ":" | "@" | "&"

 After parsing, each word is URL-decoded, optionally encoded in a
 system defined manner and then the argument list is set to the list
 of words.

 If the server cannot create any part of the argument list, then the
 server should generate no command line information. For example, the
 number of arguments may be greater than operating system or server
 limitations, or one of the words may not be representable as an
 argument.

8. Data input to the CGI script

 As there may be a data entity attached to the request, there must be
 a system defined method for the script to read this data. Unless
 defined otherwise, this will be via the `standard input' file

Robinson [Page 12]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 descriptor.

 There will be at least CONTENT_LENGTH bytes available for the script
 to read. The script is not obliged to read the data, but it must not
 attempt to read more than CONTENT_LENGTH bytes, even if more data is
 available.

 For non-parsed header (NPH) scripts (see below), the server should
 attempt to ensure that the script input comes directly from the
 client, with minimal buffering. For all scripts the data will be as
 supplied by the client.

9. Data output from the CGI script

 There must be a system defined method for the script to send data
 back to the server or client; a script will always return some data.
 Unless defined otherwise, this will be via the `standard output' file
 descriptor.

 There are two forms of output that the script can give; non-parsed
 header (NPH) output, and parsed header output. A server is only
 required to support the latter; distinguishing between the two types
 of output (or scripts) is implementation defined.

9.1. Non-Parsed Header Output

 The script must return a complete HTTP response message, as described
 in Section 6 of the HTTP specification [3]. Note that this allows an
 HTTP/0.9 response to an HTTP/1.0 request.

 The server should attempt to ensure that the script output is sent
 directly to the client, with minimal buffering.

9.2. Parsed Header Output

 The script returns a CGI response message.

 CGI-Response = *(CGI-Header | HTTP-Header) NL [Entity-Body]
 CGI-Header = Content-type
 | Location
 | Status
 | extension-header

 The response comprises headers and a body, separated by a blank line.
 The headers are either CGI headers to be interpreted by the server,
 or HTTP headers to be included in the response returned to the client
 if the request method is HTTP. At least one CGI-Header must be
 supplied, but no CGI header can be repeated with the same field-name.

Robinson [Page 13]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 If a body is supplied, then a Content-type header is required,
 otherwise the script must send a Location or Status header. If a
 Location header is returned, then no HTTP-Headers may be supplied.

 The CGI headers have the generic syntax:

 generic-header = field-name ":" [field-value] NL
 field-name = 1*<any CHAR, excluding CTLs, SP and ":">
 field-value = *(field-content | LWSP)
 field-content = *(token | tspecial | quoted-string)

 The field-name is not case sensitive; a NULL field value is
 equivalent to the header not being sent.

 Content-Type

 The Internet Media Type [9] of the entity body, which is to be
 sent unmodified to the client.

 Content-Type = "Content-Type" ":" media-type NL

 Location

 This is used to specify to the server that the script is returning
 a reference to a document rather than an actual document.

 Location = "Location" ":"
 (fragment-URI | rel-URL-abs-path) NL
 fragment-URI = URI [# fragmentid]
 URI = scheme ":" *qchar
 fragmentid = *qchar
 rel-URL-abs-path = "/" [hpath] ["?" query-string]
 hpath = fpsegment *("/" psegment)
 fpsegment = 1*hchar
 psegment = *hchar
 hchar = alpha | digit | safe | extra
 | ":" | "@" | "& | "="

 The location value is either an absolute URI with optional
 fragment, as defined in RFC 1630 [1], or an absolute path and
 optional query-string. If an absolute URI is returned by the
 script, then the server will generate a redirect HTTP response
 message, and if no entity body is supplied by the script, then the
 server will produce one. If the Location value is a path, then the
 server will generate the response that it would have produced in
 response to a request containing the URL

 protocol "://" SERVER_NAME ":" SERVER_PORT rel-URL-abs-path

https://datatracker.ietf.org/doc/html/rfc1630

Robinson [Page 14]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 The location header may only be sent if the REQUEST_METHOD is HEAD
 or GET.

 Status

 The Status header is used to indicate to the server what status
 code it will use in the response message. It should not be sent if
 the script returns a Location header.

 Status = "Status" ":" 3digit SP reason-phrase NL
 reason-phrase = *<CHAR, excluding CTLs, NL>

 The valid status codes are listed in section 6.1.1 of the HTTP/1.0
 specification [3]. If the script does not return a Status header,
 then "200 OK" should be assumed.

 HTTP headers

 The script may return any other headers defined by the HTTP/1.0
 specification [3]. The server must translate the header data from
 the CGI header syntax to the HTTP header syntax if these differ.
 For example, the character sequence for newline (such as Unix's
 ASCII NL) used by CGI scripts may not be the same as that used by
 HTTP (ASCII CR followed by LF). The server must also resolve any
 conflicts between headers returned by the script and headers that
 it would otherwise send itself.

10. Requirements for servers

 Servers must support the standard mechanism (described below) which
 allows the script author to determine what URL to use in documents
 which reference the script. Specifically, what URL to use in order to
 achieve particular settings of the environment variables. This
 mechanism is as follows:

 The value for SCRIPT_NAME is governed by the server configuration and
 the location of the script in the OS file-system. Given this, any
 access to the partial URL

 SCRIPT_NAME extra-path ? query-information

 where extra-path is either NULL or begins with a "/" and satisfies
 any other server requirements, will cause the CGI script to be
 executed with PATH_INFO set to the decoded extra-path, and
 QUERY_STRING set to query-information (not decoded).

 Servers may reject with error 404 any requests that would result in
 an encoded "/" being decoded into PATH_INFO or SCRIPT_NAME, as this

Robinson [Page 15]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 might represent a loss of information to the script.

 Although the server and the CGI script need not be consistent in
 their handling of URL paths (client URLs and the PATH_INFO data,
 respectively), server authors may wish to impose consistency. So the
 server implementation should define its behaviour for the following
 cases:

 o define any restrictions on allowed characters, in particular
 whether ASCII NULL is permitted;

 o define any restrictions on allowed path segments, in particular
 whether non-terminal NULL segments are permitted;

 o define the behaviour for "." or ".." path segments; i.e. whether
 they are prohibited, treated as ordinary path segments or
 interpreted in accordance with the relative URL specification
 [7];

 o define any limits of the implementation, including limits on
 path or search string lengths, and limits on the volume of
 headers the server will parse.

 Servers may generate the script URI in any way from the client URI,
 or from any other data (but the behaviour should be documented).

11. Recommendations for scripts

 Scripts should reject unexpected methods (such as DELETE etc.) with
 error 405 Method Not Allowed. If the script does not intend
 processing the PATH_INFO data, then it should reject the request with
 404 Not Found if PATH_INFO is not NULL.

 If the output of a form is being processed, check that CONTENT_TYPE
 is "application/x-www-form-urlencoded" [2].

 If parsing PATH_INFO, PATH_TRANSLATED or SCRIPT_NAME then be careful
 of void path segments ("//") and special path segments ("." and
 ".."). They should either be removed from the path before use in OS
 system calls, or the request should be rejected with 404 Not Found.
 It is very unlikely that any other use could be made of these.

 As it is impossible for the script to determine the client URI that
 initiated this request without knowledge of the specific server in
 use, the script should not return text/html documents containing
 relative URL links without including a <BASE> tag in the document.

 When returning headers, the script should try to send the CGI headers

Robinson [Page 16]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 as soon as possible, and preferably before any HTTP headers. This may
 help reduce the server's memory requirements.

12. System specifications

12.1. AmigaDOS

 Environment variables

 These are accessed by the DOS library routine GetVar. The flags
 argument should be 0. Case is ignored, but upper case is
 recommended for compatibility with case-sensitive systems.

 The current working directory

 The current working directory for the script is set to the
 directory containing the script.

 Character set

 The US-ASCII character set is used for the definition of
 environment variables and headers; the newline (NL) sequence is CR
 LF.

12.2. Unix

 For Unix compatible operating systems, the following are defined:

 Environment variables

 These are accessed by the C library routine getenv.

 The command line

 This is accessed using the the argc and argv arguments to main().
 The words are have any characters which are `active' in the Bourne
 shell escaped with a backslash.

 The current working directory

 The current working directory for the script is set to the
 directory containing the script.

 Character set

 The US-ASCII character set is used for the definition of
 environment variables and headers; the newline (NL) sequence is
 LF; servers should also accept CR LF as a newline.

Robinson [Page 17]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

13. Security Considerations

13.1. Safe Methods

 As discussed in the security considerations of the HTTP specification
 [3], the convention has been established that the GET and HEAD
 methods should be `safe'; they should cause no side-effects and only
 have the significance of resource retrieval.

13.2. HTTP headers containing sensitive information

 Some HTTP headers may carry sensitive information which the server
 should not pass on to the script unless explicitly configured to do
 so. For example, if the server protects the script using the Basic
 authentication scheme, then the client will send an Authorization
 header containing a username and password. If the server, rather than
 the script, validates this information then it should not pass on the
 password via the HTTP_AUTHORIZATION environment variable.

13.3. Script interference with the server

 The most common implementation of CGI invokes the script as a child
 process using the same user and group as the server process. It
 should therefore be ensured that the script cannot interfere with the
 server process, its configuration or documents.

 If the script is executed by calling a function linked in to the
 server software (either at compile-time or run-time) then precautions
 should be taken to protect the core memory of the server, or to
 ensure that untrusted code cannot be executed.

14. Acknowledgements

 This work is based on the original CGI interface that arose out of
 discussions on the www-talk mailing list. In particular, Rob McCool,
 John Franks, Ari Luotonen, George Phillips and Tony Sanders deserve
 special recognition for their efforts in defining and implementing
 the early versions of this interface.

 This document has also greatly benefited from the comments and
 suggestions made Chris Adie, Dave Kristol and Mike Meyer.

15. References

 [1] Berners-Lee, T., `Universal Resource Identifiers in WWW: A
 Unifying Syntax for the Expression of Names and Addresses of
 Objects on the Network as used in the World-Wide Web', RFC 1630,
 CERN, June 1994.

https://datatracker.ietf.org/doc/html/rfc1630

Robinson [Page 18]

INTERNET-DRAFT Common Gateway Interface - 1.1 15 February 1996

 [2] Berners-Lee, T. and Connolly, D., `Hypertext Markup Language -
 2.0', RFC 1866, MIT/W3C, November 1995.

 [3] Berners-Lee, T., Fielding, R. T. and Frystyk Nielsen, H.,
 `Hypertext Transfer Protocol -- HTTP/1.0', Work in progress
 (draft-ietf-http-v10-spec-04.txt), MIT/LCS, UC Irvine, October
 1995.

 [4] Berners-Lee, T., Masinter, L. and McCahill, M., Editors,
 `Uniform Resource Locators (URL)', RFC 1738, CERN, Xerox
 Corporation, University of Minnesota, December 1994.

 [5] Braden, R., Editor, `Requirements for Internet Hosts --
 Application and Support', STD 3, RFC 1123, IETF, October 1989.

 [6] Crocker, D.H., `Standard for the Format of ARPA Internet Text
 Messages', STD 11, RFC 822, University of Delaware, August 1982.

 [7] Fielding, R., `Relative Uniform Resource Locators', RFC 1808, UC
 Irving, June 1995.

 [8] Mockapetris, P., `Domain Names - Concepts and Facilities', STD
 13, RFC 1034, ISI, November 1987.

 [9] Postel, J., `Media Type Registration Procedure', RFC 1590, ISI,
 March 1994.

 [10] StJohns, M., `Authentication Server', RFC 931, TPSC, January
 1985.

 [11] `Coded Character Set -- 7-bit American Standard Code for
 Information Interchange', ANSI X3.4-1986.

16. Author's Address

 David Robinson
 Institute of Astronomy
 University of Cambridge
 Madingley Road
 Cambridge CB3 0HA
 UK

 Tel: +44 (1223) 337528
 Fax: +44 (1223) 337523
 EMail: drtr@ast.cam.ac.uk

https://datatracker.ietf.org/doc/html/rfc1866
https://datatracker.ietf.org/doc/html/draft-ietf-http-v10-spec-04.txt
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1808
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1590
https://datatracker.ietf.org/doc/html/rfc931

Robinson [Page 19]

