
TSVWG V. Roca
Internet-Draft INRIA
Intended status: Standards Track June 27, 2017
Expires: December 29, 2017

The Sliding Window Random Linear Code (RLC) Forward Erasure Correction
(FEC) Scheme for FECFRAME

draft-roca-tsvwg-rlc-fec-scheme-01

Abstract

 This document describes a fully-specified FEC scheme for the Sliding
 Window Random Linear Codes (RLC) over GF(2^^m), where m equals 1
 (binary case), 4 or 8, that can be used to protect arbitrary media
 streams along the lines defined by FECFRAME extended to sliding
 window codes. These sliding window FEC codes rely on an encoding
 window that slides over the source symbols, generating new repair
 symbols whenever needed. Compared to block FEC codes, these sliding
 window FEC codes offer key advantages with real-time flows in terms
 of reduced FEC-related latency while often providing improved erasure
 recovery capabilities.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 29, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Roca Expires December 29, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RLC FEC Scheme June 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Limits of Block Codes with Real-Time Flows 3

 1.2. Lower Latency and Better Protection of Real-Time Flows
 with the Sliding Window RLC Codes 3
 1.3. Small Transmission Overheads with the Sliding Window RLC
 FEC Scheme . 4

1.4. Document Organization 5
2. Definitions and Abbreviations 5
3. Procedures . 6
3.1. Parameters Derivation 6
3.2. ADU, ADUI and Source Symbols Mappings 7
3.3. Encoding Window Management 9
3.4. Pseudo-Random Number Generator 9
3.5. Coding Coefficients Generation Function 10

4. Sliding Window RLC FEC Scheme for Arbitrary ADU Flows 12
4.1. Formats and Codes . 12
4.1.1. FEC Framework Configuration Information 12
4.1.2. Explicit Source FEC Payload ID 13
4.1.3. Repair FEC Payload ID 13
4.1.4. Additional Procedures 15

5. FEC Code Specification 15
5.1. Encoding Side . 15
5.2. Decoding Side . 15

6. Implementation Status . 16
7. Security Considerations 16
7.1. Attacks Against the Data Flow 17
7.1.1. Access to Confidential Content 17
7.1.2. Content Corruption 17

7.2. Attacks Against the FEC Parameters 17
 7.3. When Several Source Flows are to be Protected Together . 18

7.4. Baseline Secure FEC Framework Operation 18
8. Operations and Management Considerations 18

 8.1. Operational Recommendations: Finite Field Element Size (m
 Parameter) . 18

9. IANA Considerations . 19
10. Acknowledgments . 19
11. References . 19
11.1. Normative References 19
11.2. Informative References 20

Roca Expires December 29, 2017 [Page 2]

Internet-Draft RLC FEC Scheme June 2017

Appendix A. Decoding Beyond Maximum Latency Optimization 22
 Author's Address . 22

1. Introduction

 Application-Level Forward Erasure Correction (AL-FEC) codes are a key
 element of communication systems. They are used to recover from
 packet losses (or erasures) during content delivery sessions to a
 large number of receivers (multicast/broadcast transmissions). This
 is the case with the FLUTE/ALC protocol [RFC6726] in case of reliable
 file transfers over lossy networks, and the FECFRAME protocol for
 reliable continuous media transfers over lossy networks.

 The present document only focusses on the FECFRAME protocol, used in
 multicast/broadcast delivery mode, with contents that feature
 stringent real-time constraints: each source packet has a maximum
 validity period after which it will not be considered by the
 destination application.

1.1. Limits of Block Codes with Real-Time Flows

 With FECFRAME, there is a single FEC encoding point (either a end-
 host/server (source) or a middlebox) and a single FEC decoding point
 (either a end-host (receiver) or middlebox). In this context,
 currently standardized AL-FEC codes for FECFRAME like Reed-Solomon
 [RFC6865], LDPC-Staircase [RFC6816], or Raptor/RaptorQ, are all
 linear block codes: they require the data flow to be segmented into
 blocks of a predefined maximum size. The block size is a balance
 between robustness (in particular in front of long erasure bursts for
 which there is an incentive to increase the block size) and maximum
 decoding latency (for which there is an incentive to decrease the
 block size). Therefore, with a multicast/broadcast session, the
 block code is dimensioned by considering the worst communication
 channel one wants to support, and this choice impacts all receivers,
 no matter their individual channel quality.

1.2. Lower Latency and Better Protection of Real-Time Flows with the
 Sliding Window RLC Codes

 This document introduces a fully-specified FEC scheme that follows a
 totally different approach: the Sliding Window Random Linear Codes
 (RLC) over GF(2^^m), where m equals 1, 4 or 8. This FEC scheme is
 used to protect arbitrary media streams along the lines defined by
 FECFRAME extended to sliding window codes [fecframe-ext]. This FEC
 scheme is extremely efficient for instance with media that feature
 real-time constraints sent within a multicast/broadcast session.

https://datatracker.ietf.org/doc/html/rfc6726
https://datatracker.ietf.org/doc/html/rfc6865
https://datatracker.ietf.org/doc/html/rfc6816

Roca Expires December 29, 2017 [Page 3]

Internet-Draft RLC FEC Scheme June 2017

 The RLC codes belong to the broad class of sliding window AL-FEC
 codes (A.K.A. convolutional codes). The encoding process is based on
 an encoding window that slides over the set of source packets (in
 fact source symbols as we will see in Section 3.2), and which is
 either of fixed or variable size (elastic window). Repair packets
 (symbols) are generated and sent on-the-fly, after computing a random
 linear combination of the source symbols present in the current
 encoding window.

 At the receiver, a linear system is managed from the set of received
 source and repair packets. New variables (representing source
 symbols) and equations (representing the linear combination of each
 repair symbol received) are added upon receiving new packets.
 Variables are removed when they are too old with respect to their
 validity period (real-time constraints), as well as the associated
 equations they are involved in (Appendix A introduces an optimisation
 that extends the time a variable is considered in the system).
 Erased source symbols are then recovered thanks this linear system
 whenever its rank permits it.

 With RLC codes (more generally with sliding window codes), the
 protection of a multicast/broadcast session also needs to be
 dimensioned by considering the worst communication channel one wants
 to support. However the receivers experiencing a good to medium
 channel quality observe a FEC-related latency close to zero [Roca16]
 since an isolated erased source packet is quickly recovered by the
 following repair packet. On the opposite, with a block code,
 recovering an isolated erased source packet always requires waiting
 the end of the block for the first repair packet to arrive.
 Additionally, under certain situations (e.g., with a limited FEC-
 related latency budget and with constant bit rate transmissions after
 FECFRAME encoding), sliding window codes achieve more easily a target
 transmission quality (e.g., measured by the residual loss after FEC
 decoding) by sending fewer repair packets (i.e., higher code rate)
 than block codes.

1.3. Small Transmission Overheads with the Sliding Window RLC FEC
 Scheme

 The Sliding Window RLC FEC scheme is designed so as to reduce the
 transmission overhead. The main requirement is that each repair
 packet header must enable a receiver to reconstruct the list of
 source symbols and the associated random coefficients used during the
 encoding process. In order to minimize packet overhead, the set of
 symbols in the encoding window as well as the set of coefficients
 over GF(2^^m) used in the linear combination are not individually
 listed in the repair packet header. Instead, each FEC repair packet
 header contains:

Roca Expires December 29, 2017 [Page 4]

Internet-Draft RLC FEC Scheme June 2017

 o the Encoding Symbol Identifier (ESI) of the first source symbol in
 the encoding window as well as the number of symbols (since this
 number may vary with a variable size, elastic window). These two
 pieces of information enable each receiver to easily reconstruct
 the set of source symbols considered during encoding, the only
 constraint being that there cannot be any gap;
 o the seed used by a coding coefficients generation function
 (Section 3.5). This information enables each receiver to generate
 the same set of coding coefficients over GF(2^^m) as the sender;

 Therefore, no matter the number of source symbols present in the
 encoding window, each FEC repair packet features a fixed 64-bit long
 header, called Repair FEC Payload ID (Figure 7). Similarly, each FEC
 source packet features a fixed 32-bit long trailer, called Explicit
 Source FEC Payload ID (Figure 5), that contains the ESI of the first
 source symbol (see the ADUI and source symbol mapping, Section 3.2).

1.4. Document Organization

 This fully-specified FEC scheme follows the structure required by
[RFC6363], section 5.6. "FEC Scheme Requirements", namely:

 3. Procedures: This section describes procedures specific to this
 FEC scheme, namely: RLC parameters derivation, ADUI and source
 symbols mapping, pseudo-random number generator, and coding
 coefficients generation function;
 4. Formats and Codes: This section defines the Source FEC Payload
 ID and Repair FEC Payload ID formats, carrying the signalling
 information associated to each source or repair symbol. It also
 defines the FEC Framework Configuration Information (FFCI)
 carrying signalling information for the session;
 5. FEC Code Specification: Finally this section provides the code
 specification.

2. Definitions and Abbreviations

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document uses the following definitions and abbreviations:

 GF(q) denotes a finite field (also known as the Galois Field) with q
 elements. We assume that q = 2^^m in this document
 m defines the length of the elements in the finite field, in bits.
 In this document, m is equal to 1, 4 or 8
 ADU: Application Data Unit

https://datatracker.ietf.org/doc/html/rfc6363#section-5.6
https://datatracker.ietf.org/doc/html/rfc2119

Roca Expires December 29, 2017 [Page 5]

Internet-Draft RLC FEC Scheme June 2017

 ADUI: Application Data Unit Information (includes the F, L and
 padding fields in addition to the ADU)
 E: encoding symbol size (i.e., source or repair symbol), assumed
 fixed (in bytes)
 br_out: transmission bitrate at the output of the FECFRAME sender,
 assumed fixed (in bits/s)
 max_lat: maximum FEC-related latency within FECFRAME (in seconds)
 cr: AL-FEC coding rate
 plr: packet loss rate on the erasure channel
 ew_size: encoding window current size at a sender (in symbols)
 ew_max_size: encoding window maximum size at a sender (in symbols)
 dw_size: decoding window current size at a receiver (in symbols)
 dw_max_size: decoding window maximum size at a receiver (in symbols)
 ls_max_size: linear system maximum size (or width) at a receiver (in
 symbols)
 ls_size: linear system current size (or width) at a receiver (in
 symbols)
 PRNG: pseudo-random number generator
 pmms_rand(maxv): PRNG defined in Section 3.4 and used in this
 specification, that returns a new random integer in [0; maxv-1]

3. Procedures

 This section introduces the procedures that are used by this FEC
 scheme.

3.1. Parameters Derivation

 The Sliding Window RLC FEC Scheme relies on several key internal
 parameters:

 Maximum FEC-related latency budget, max_lat (in seconds) A source
 ADU flow can have real-time constraints, and therefore any
 FECFRAME related operation must take place within the validity
 period of each ADU. When there are multiple flows with different
 real-time constraints, we consider the most stringent constraints
 (see [RFC6363], Section 10.2, item 6, for recommendations when
 several flows are globally protected). This maximum FEC-related
 latency accounts for all sources of latency added by FEC encoding
 (sender) and FEC decoding (receiver). Other sources of latency
 (e.g., added by network communications) are out of scope and must
 be considered separately (e.g., they have already been deducted).
 It can be regarded as the latency budget permitted for all FEC-
 related operations. This is also an input parameter that enables
 to derive other internal parameters;
 Encoding window current (resp. maximum) size, ew_size (resp.
 ew_max_size) (in symbols):

https://datatracker.ietf.org/doc/html/rfc6363#section-10.2

Roca Expires December 29, 2017 [Page 6]

Internet-Draft RLC FEC Scheme June 2017

 these parameters are used by a sender during FEC encoding. More
 precisely, each repair symbol is a linear combination of the
 ew_size source symbols present in the encoding window when RLC
 encoding took place. In all situations, we MUST have ew_size <=
 ew_max_size;
 Decoding window current (resp. maximum) size, dw_size (resp.
 dw_max_size) (in symbols):
 these parameters are used by a receiver when managing the linear
 system used for decoding. dw_size is the current size of the
 decoding window, i.e., the set of received or erased source
 symbols that are currently part of the linear system. In all
 situations, we MUST have dw_size <= dw_max_size;

 In order to comply with the maximum FEC-related latency budget,
 assuming a constant transmission bitrate at the output of the
 FECFRAME sender (br_out), encoding symbol size (E), and code rate
 (cr), we have:

 dw_max_size = (max_lat * br_out * cr) / (8 * E)

 This dw_max_size defines the maximum delay after which an old source
 symbol may be recovered: after this delay, this old source symbol
 symbol will be removed from the decoding window.

 It is often good practice to choose:

 ew_max_size = dw_max_size / 2

 However any value ew_max_size < dw_max_size can be used without
 impact on the FEC-related latency budget. Finding the optimal value
 can depend on the erasure channel one wants to support and should be
 determined after simulations or field trials.

 Note that the decoding beyond maximum latency optimisation
 (Appendix A) enables an old source symbol to be kept in the linear
 system beyond the FEC-related latency budget, but not delivered to
 the receiving application. Here we have: ls_size >= dw_max_size

3.2. ADU, ADUI and Source Symbols Mappings

 An ADU, coming from the application, cannot be mapped to source
 symbols directly. Indeed, an erased ADU recovered at a receiver must
 contain enough information to be assigned to the right application
 flow (UDP port numbers and IP addresses cannot be used to that
 purpose as they are not protected by FEC encoding). This requires
 adding the flow identifier to each ADU before doing FEC encoding.

Roca Expires December 29, 2017 [Page 7]

Internet-Draft RLC FEC Scheme June 2017

 Additionally, since ADUs are of variable size, padding is needed so
 that each ADU (with its flow identifier) contribute to an integral
 number of source symbols. This requires adding the original ADU
 length to each ADU before doing FEC encoding. Because of these
 requirements, an intermediate format, the ADUI, or ADU Information,
 is considered [RFC6363].

 For each incoming ADU, an ADUI is created as follows. First of all,
 3 bytes are prepended: (Figure 1):

 Flow ID (F) (8-bit field): this unsigned byte contains the integer
 identifier associated to the source ADU flow to which this ADU
 belongs. It is assumed that a single byte is sufficient, which
 implies that no more than 256 flows will be protected by a single
 FECFRAME instance.
 Length (L) (16-bit field): this unsigned integer contains the length
 of this ADU, in network byte order (i.e., big endian). This
 length is for the ADU itself and does not include the F, L, or Pad
 fields.

 Then, zero padding is added to the ADU if needed:

 Padding (Pad) (variable size field): this field contains zero
 padding to align the F, L, ADU and padding up to a size that is
 multiple of E bytes (i.e., the source and repair symbol length).

 Each ADUI contributes to an integral number of source symbols. The
 data unit resulting from the ADU and the F, L, and Pad fields is
 called ADU Information (or ADUI). Since ADUs can be of different
 size, this is also the case for ADUIs.

 symbol length, E E E
 < ------------------ >< ------------------ >< ------------------ >
 +-+--+---+-------------+
 |F| L| ADU | Pad |
 +-+--+---+-------------+

 Figure 1: ADUI Creation example (here 3 source symbols are created
 for this ADUI).

 Note that neither the initial 3 bytes nor the optional padding are
 sent over the network. However, they are considered during FEC
 encoding. It means that a receiver who lost a certain FEC source
 packet (e.g., the UDP datagram containing this FEC source packet)
 will be able to recover the ADUI if FEC decoding succeeds. Thanks to
 the initial 3 bytes, this receiver will get rid of the padding (if
 any) and identify the corresponding ADU flow.

https://datatracker.ietf.org/doc/html/rfc6363

Roca Expires December 29, 2017 [Page 8]

Internet-Draft RLC FEC Scheme June 2017

3.3. Encoding Window Management

 Source symbols and the corresponding ADUs are removed from the
 encoding window:

 o when the sliding encoding window has reached its maximum size,
 ew_max_size. In that case the oldest symbol MUST be removed
 before adding a new symbol, so that the current encoding window
 size always remains inferior or equal to the maximum size: ew_size
 <= ew_max_size;
 o when an ADU has reached its maximum validity duration in case of a
 real-time flow. When this happens, all source symbols
 corresponding to the ADUI that expired SHOULD be removed from the
 encoding window;

 Source symbols are added to the sliding encoding window each time a
 new ADU arrives, once the ADU to ADUI and then to source symbols
 mapping has been performed (Section 3.2). The current size of the
 encoding window, ew_size, is updated after adding new source symbols.
 This process may require to remove old source symbols so that:
 ew_size <= ew_max_size.

 Note that a FEC codec may feature practical limits in the number of
 source symbols in the encoding window (e.g., for computational
 complexity reasons). This factor may further limit the ew_max_lat
 value, in addition to the maximum FEC-related latency budget
 (Section 3.1).

3.4. Pseudo-Random Number Generator

 The RLC codes rely on the following Pseudo-Random Number Generator
 (PRNG), identical to the PRNG used with LDPC-Staircase codes
 ([RFC5170], section 5.7).

 The Park-Miler "minimal standard" PRNG [PM88] MUST be used. It
 defines a simple multiplicative congruential algorithm: Ij+1 = A * Ij
 (modulo M), with the following choices: A = 7^^5 = 16807 and M =
 2^^31 - 1 = 2147483647. A validation criteria of such a PRNG is the
 following: if seed = 1, then the 10,000th value returned MUST be
 equal to 1043618065.

 Several implementations of this PRNG are known and discussed in the
 literature. An optimized implementation of this algorithm, using
 only 32-bit mathematics, and which does not require any division, can
 be found in [rand31pmc]. It uses the Park and Miller algorithm
 [PM88] with the optimization suggested by D. Carta in [CA90]. The
 history behind this algorithm is detailed in [WI08]. Yet, any other
 implementation of the PRNG algorithm that matches the above

https://datatracker.ietf.org/doc/html/rfc5170#section-5.7

Roca Expires December 29, 2017 [Page 9]

Internet-Draft RLC FEC Scheme June 2017

 validation criteria, like the ones detailed in [PM88], is
 appropriate.

 This PRNG produces, natively, a 31-bit value between 1 and 0x7FFFFFFE
 (2^^31-2) inclusive. Since it is desired to scale the pseudo-random
 number between 0 and maxv-1 inclusive, one must keep the most
 significant bits of the value returned by the PRNG (the least
 significant bits are known to be less random, and modulo-based
 solutions should be avoided [PTVF92]). The following algorithm MUST
 be used:

 Input:

 raw_value: random integer generated by the inner PRNG algorithm,
 between 1 and 0x7FFFFFFE (2^^31-2) inclusive.
 maxv: upper bound used during the scaling operation.

 Output:

 scaled_value: random integer between 0 and maxv-1 inclusive.

 Algorithm:

 scaled_value = (unsigned long) ((double)maxv * (double)raw_value /
 (double)0x7FFFFFFF);
 (NB: the above C type casting to unsigned long is equivalent to
 using floor() with positive floating point values.)

 In this document, pmms_rand(maxv) denotes the PRNG function that
 implements the Park-Miller "minimal standard" algorithm, defined
 above, and that scales the raw value between 0 and maxv-1 inclusive,
 using the above scaling algorithm.

 Additionally, the pmms_srand(seed) function must be provided to
 enable the initialization of the PRNG with a seed before calling
 pmms_rand(maxv) the first time. The seed is a 31-bit integer between
 1 and 0x7FFFFFFE inclusive. In this specification, the seed is
 restricted to a value between 1 and 0xFFFF inclusive, as this is the
 Repair_Key 16-bit field value of the Repair FEC Payload ID
 (Section 4.1.3).

3.5. Coding Coefficients Generation Function

 The coding coefficients, used during the encoding process, are
 generated at the RLC encoder by the following function each time a
 new repair symbol needs to be produced:

Roca Expires December 29, 2017 [Page 10]

Internet-Draft RLC FEC Scheme June 2017

 <CODE BEGINS>
 /*
 * Fills in the table of coding coefficients (of the right size)
 * provided with the appropriate number of coding coefficients to
 * use for the repair symbol key provided.
 *
 * (in) repair_key key associated to this repair symbol
 * (in) cc_tab[] pointer to a table of the right size to store
 * coding coefficients. All coefficients are
 * stored as bytes, regardless of the m parameter,
 * upon return of this function.
 * (in) cc_nb[] number of entries in the table. This value is
 * equal to the current encoding window size.
 * (in) m Finite Field GF(2^^m) parameter.
 * (out) returns an error code
 */
 int generate_coding_coefficients (UINT16 repair_key,
 UINT8 cc_tab[],
 UINT16 cc_nb,
 UINT8 m)
 {
 UINT32 i;

 if (repair_key == 0) {
 return SOMETHING_WENT_WRONG;
 }
 pmms_srand(repair_key);
 if (m == 1) {
 /* 0 is a valid coefficient value in binary GF */
 for (i = 0 ; i < cc_nb ; i ++) {
 cc_tab[i] = (UINT8) pmms_rand(2);
 }
 } else {
 /* coefficient 0 is avoided in non-binary GF to consider each
 * source symbol */
 UINT32 maxv;
 maxv = get_gf_size(); /* i.e., 16 if m=4 or 256 if m=8 */
 for (i = 0 ; i < cc_nb ; i ++) {
 do {
 cc_tab[i] = (UINT8) pmms_rand(maxv);
 } while (cc_tab[i] == 0)
 }
 }
 return EVERYTHING_IS_OKAY;
 }
 <CODE ENDS>

 Figure 2: Coding Coefficients Generation Function pseudo-code

Roca Expires December 29, 2017 [Page 11]

Internet-Draft RLC FEC Scheme June 2017

4. Sliding Window RLC FEC Scheme for Arbitrary ADU Flows

4.1. Formats and Codes

4.1.1. FEC Framework Configuration Information

 The FEC Framework Configuration Information (or FFCI) includes
 information that MUST be communicated between the sender and
 receiver(s). More specifically, it enables the synchronization of
 the FECFRAME sender and receiver instances. It includes both
 mandatory elements and scheme-specific elements, as detailed below.

4.1.1.1. Mandatory Information

 o FEC Encoding ID: the value assigned to this fully specified FEC
 scheme MUST be XXXX, as assigned by IANA (Section 9).

 When SDP is used to communicate the FFCI, this FEC Encoding ID is
 carried in the 'encoding-id' parameter.

4.1.1.2. FEC Scheme-Specific Information

 The FEC Scheme-Specific Information (FSSI) includes elements that are
 specific to the present FEC scheme. More precisely:

 Encoding symbol size (E): a non-negative integer that indicates the
 size of each encoding symbol in bytes;
 m parameter (m): the length of the elements in the finite field, in
 bits, where m is equal to 1, 4 or 8;

 These elements are required both by the sender (RLC encoder) and the
 receiver(s) (RLC decoder).

 When SDP is used to communicate the FFCI, this FEC scheme-specific
 information is carried in the 'fssi' parameter in textual
 representation as specified in [RFC6364]. For instance:

 fssi=E:1400,m:8

 If another mechanism requires the FSSI to be carried as an opaque
 octet string (for instance, after a Base64 encoding), the encoding
 format consists of the following 2 octets:

 Encoding symbol length (E): 16-bit field.
 m parameter (m): 8-bit field.

https://datatracker.ietf.org/doc/html/rfc6364

Roca Expires December 29, 2017 [Page 12]

Internet-Draft RLC FEC Scheme June 2017

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+
 | Encoding Symbol Length (E) | m |
 +-+

 Figure 3: FSSI Encoding Format

4.1.2. Explicit Source FEC Payload ID

 A FEC source packet MUST contain an Explicit Source FEC Payload ID
 that is appended to the end of the packet as illustrated in Figure 4.

 +--------------------------------+
 | IP Header |
 +--------------------------------+
 | Transport Header |
 +--------------------------------+
 | ADU |
 +--------------------------------+
 | Explicit Source FEC Payload ID |
 +--------------------------------+

 Figure 4: Structure of an FEC Source Packet with the Explicit Source
 FEC Payload ID

 More precisely, the Explicit Source FEC Payload ID is composed of the
 following field (Figure 5):

 Encoding Symbol ID (ESI) (32-bit field): this unsigned integer
 identifies the first source symbol of the ADUI corresponding to
 this FEC source packet. The ESI is incremented for each new
 source symbol, and after reaching the maximum value (2^32-1),
 wrapping to zero occurs.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Encoding Symbol ID (ESI) |
 +-+

 Figure 5: Source FEC Payload ID Encoding Format

4.1.3. Repair FEC Payload ID

 A FEC repair packet MUST contain a Repair FEC Payload ID that is
 prepended to the repair symbol as illustrated in Figure 6. There can
 be one or more repair symbol per FEC repair packet. When this is the

Roca Expires December 29, 2017 [Page 13]

Internet-Draft RLC FEC Scheme June 2017

 case, the number of repair symbols within this FEC repair packet is
 easily deduced by comparing the known received FEC repair packet size
 (equal to the UDP payload size when UDP is the underlying transport
 protocol) and the symbol size, E, communicated in the FFCI.

 +--------------------------------+
 | IP Header |
 +--------------------------------+
 | Transport Header |
 +--------------------------------+
 | Repair FEC Payload ID |
 +--------------------------------+
 | Repair Symbol |
 +--------------------------------+

 Figure 6: Structure of an FEC Repair Packet with the Repair FEC
 Payload ID

 More precisely, the Repair FEC Payload ID is composed of the
 following fields (Figure 7):

 Repair_Key (16-bit field): this unsigned integer is used as a seed
 by the coefficient generation function (Section 3.5) in order to
 generate the desired number of coding coefficients. Value 0 MUST
 NOT be used. When a FEC repair packet contains several repair
 packets, this repair key value is that of the first repair symbol.
 The remaining repair keys can be deduced by incrementing by 1 this
 value, up to a maximum value of 65535 after which it loops back to
 1.
 Number of Source Symbols in the Encoding Window, NSS (16-bit field):

 this unsigned integer indicates the number of source symbols in
 the encoding window when this repair symbol was generated.
 ESI of first source symbol in encoding window, FSS_ESI (32-bit
 field):
 this unsigned integer indicates the ESI of the first source symbol
 in the encoding window when this repair symbol was generated.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Repair_Key | NSS (# source symbols in ew) |
 +-+
 | FSS_ESI |
 +-+

 Figure 7: Repair FEC Payload ID Encoding Format

Roca Expires December 29, 2017 [Page 14]

Internet-Draft RLC FEC Scheme June 2017

4.1.4. Additional Procedures

 The following procedure applies:

 o The ESI of source symbols MUST start with value 0 for the first
 source symbol and MUST be managed sequentially. Wrapping to zero
 will happen after reaching the maximum 32-bit value.

5. FEC Code Specification

5.1. Encoding Side

 This section provides a high level description of a Sliding Window
 RLC encoder.

 Whenever a new FEC repair packet is needed, the RLC encoder instance
 first gathers the ew_size source symbols currently in the sliding
 encoding window. Then it chooses a repair key, which can be a non
 zero monotonically increasing integer value, incremented for each
 repair symbol up to a maximum value of 65535 (as it is carried within
 a 16-bit field) after which it loops back to 1 (indeed, being used as
 a PRNG seed, value 0 is prohibited). This repair key is communicated
 to the coefficient generation function (Section Section 3.5) in order
 to generate ew_size coding coefficients. Finally, the FECFRAME
 sender computes the repair symbol as a linear combination of the
 ew_size source symbols using the ew_size coding coefficients. When E
 is small and when there is an incentive to pack several repair
 symbols within the same FEC Repair Packet, the appropriate number of
 repair symbols are computed. The only constraint is to increment by
 1 the repair key for each of them, keeping the same ew_size source
 symbols, since only the first repair key will be carried in the
 Repair FEC Payload ID. The FEC repair packet can then be sent. The
 source versus repair FEC packet transmission order is out of scope of
 this document and several approaches exist that are implementation
 specific.

5.2. Decoding Side

 This section provides a high level description of a Sliding Window
 RLC decoder.

 A FECFRAME receiver needs to maintain a linear system whose variables
 are the received and lost source symbols. Upon receiving a FEC
 repair packet, a receiver first extracts all the repair symbols it
 contains (in case several repair symbols are packed together). For
 each repair symbol, when at least one of the corresponding source
 symbols it protects has been lost, the receiver adds an equation to
 the linear system (or no equation if this repair packet does not

Roca Expires December 29, 2017 [Page 15]

Internet-Draft RLC FEC Scheme June 2017

 change the linear system rank). This equation of course re-uses the
 ew_size coding coefficients that are computed by the same coefficient
 generation function (Section Section 3.5), using the repair key and
 encoding window descriptions carried in the Repair FEC Payload ID.
 Whenever possible (i.e., when a sub-system covering one or more lost
 source symbols is of full rank), decoding is performed in order to
 recover lost source symbols. Each time an ADUI can be totally
 recovered, it is assigned to the corresponding application flow
 (thanks to the Flow ID (F) field of the ADUI) and padding (if any)
 removed (thanks to the Length (L) field of the ADUI). This ADU is
 finally passed to the corresponding upper application. Received FEC
 source packets, containing an ADU, can be passed to the application
 either immediately or after some time to guaranty an ordered delivery
 to the application(s). This document does not mandate any approach
 as this is an operational and management decision.

 With real-time flows, a lost ADU that is decoded after the maximum
 latency (or an ADU received far too late) should not be considered by
 the application. Instead the associated source symbols should be
 removed from the linear system maintained by the receiver(s).

Appendix A discusses a backward compatible optimization whereby those
 late source symbols may still be useful to improve the global loss
 recovery performance.

6. Implementation Status

 Editor's notes: RFC Editor, please remove this section motivated by
RFC 6982 before publishing the RFC. Thanks.

 An implementation of the Sliding Window RLC FEC Scheme for FECFRAME
 exists:

 o Organisation: Inria
 o Description: This is an implementation of the Sliding Window RLC
 FEC Scheme. It relies on a modified version of our OpenFEC
 (http://openfec.org) FEC code library. It is integrated in our
 FECFRAME software (see [fecframe-ext]).
 o Maturity: prototype.
 o Coverage: this software complies with the Sliding Window RLC FEC
 Scheme (limited to m=8 as of June, 2017).
 o Lincensing: proprietary.
 o Contact: vincent.roca@inria.fr

7. Security Considerations

 The FEC Framework document [RFC6363] provides a comprehensive
 analysis of security considerations applicable to FEC schemes.

https://datatracker.ietf.org/doc/html/rfc6982
http://openfec.org
https://datatracker.ietf.org/doc/html/rfc6363

Roca Expires December 29, 2017 [Page 16]

Internet-Draft RLC FEC Scheme June 2017

 Therefore, the present section follows the security considerations
 section of [RFC6363] and only discusses specific topics.

7.1. Attacks Against the Data Flow

7.1.1. Access to Confidential Content

 The Sliding Window RLC FEC Scheme specified in this document does not
 change the recommendations of [RFC6363]. To summarize, if
 confidentiality is a concern, it is RECOMMENDED that one of the
 solutions mentioned in [RFC6363] is used with special considerations
 to the way this solution is applied (e.g., is encryption applied
 before or after FEC protection, within the end-system or in a
 middlebox) to the operational constraints (e.g., performing FEC
 decoding in a protected environment may be complicated or even
 impossible) and to the threat model.

7.1.2. Content Corruption

 The Sliding Window RLC FEC Scheme specified in this document does not
 change the recommendations of [RFC6363]. To summarize, it is
 RECOMMENDED that one of the solutions mentioned in [RFC6363] is used
 on both the FEC Source and Repair Packets.

7.2. Attacks Against the FEC Parameters

 The FEC Scheme specified in this document defines parameters that can
 be the basis of attacks. More specifically, the following parameters
 of the FFCI may be modified by an attacker who only targets receivers
 (Section 4.1.1.2):

 o FEC Encoding ID: changing this parameter leads the receivers to
 consider a different FEC Scheme, which enables an attacker to
 create a Denial of Service (DoS);
 o Encoding symbol length (E): setting this E parameter to a
 different value will confuse the receivers and create a DoS. More
 precisely, the FEC Repair Packets received will probably no longer
 be multiple of E, leading receivers to reject them;
 o m parameter: changing this parameter triggers a DoS since the
 receivers will generate a different set of coding coefficients.
 The recovered source symbols (and thereafter ADUs) will be
 corrupted.

 An attacker who only targets a sender will achieve the same results.
 However if the attacker targets both sender and receivers at the same
 time (the same wrong piece of information is communicated to
 everybody), the results will be suboptimal but less severe.

https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6363

Roca Expires December 29, 2017 [Page 17]

Internet-Draft RLC FEC Scheme June 2017

 It is therefore RECOMMENDED that security measures are taken to
 guarantee the FFCI integrity, as specified in [RFC6363]. How to
 achieve this depends on the way the FFCI is communicated from the
 sender to the receiver, which is not specified in this document.

 Similarly, attacks are possible against the Explicit Source FEC
 Payload ID and Repair FEC Payload ID: by modifying the Encoding
 Symbol ID (ESI), or the repair key, NSS or FSS_ESI. It is therefore
 RECOMMENDED that security measures are taken to guarantee the FEC
 Source and Repair Packets as stated in [RFC6363].

7.3. When Several Source Flows are to be Protected Together

 The Sliding Window RLC FEC Scheme specified in this document does not
 change the recommendations of [RFC6363].

7.4. Baseline Secure FEC Framework Operation

 The Sliding Window RLC FEC Scheme specified in this document does not
 change the recommendations of [RFC6363] concerning the use of the
 IPsec/ESP security protocol as a mandatory to implement (but not
 mandatory to use) security scheme. This is well suited to situations
 where the only insecure domain is the one over which the FEC
 Framework operates.

8. Operations and Management Considerations

 The FEC Framework document [RFC6363] provides a comprehensive
 analysis of operations and management considerations applicable to
 FEC schemes. Therefore, the present section only discusses specific
 topics.

8.1. Operational Recommendations: Finite Field Element Size (m
 Parameter)

 The present document requires that m equals 1 (binary case), 4 or 8.
 It is expected that m = 8 will be mostly used since it warrants a
 high loss protection. Additionally, elements in the finite field are
 8 bits long, which makes read/write memory operations aligned on
 bytes during encoding and decoding.

 An alternative when one can accommodate a lower loss protection is
 m = 4. Elements in the finite field are 4 bits long, so if 2
 elements are accessed at a time, read/write memory operations are
 aligned on bytes during encoding and decoding.

 Finally, in particular when dealing with large encoding windows, an
 alternative is m = 1. In that case operations symbols can be

https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/rfc6363

Roca Expires December 29, 2017 [Page 18]

Internet-Draft RLC FEC Scheme June 2017

 directly XORed together which warrants high bitrate encoding and
 decoding operations.

 Since several values for the m parameter are possible, the use case
 SHOULD define which value or values need to be supported. In any
 case, any compliant implementation MUST support at least the default
 m = 8 value.

9. IANA Considerations

 This document registers one value in the "FEC Framework (FECFRAME)
 FEC Encoding IDs" registry [RFC6363] as follows:

 o XXX refers to the Sliding Window Random Linear Codes (RLC) FEC
 Scheme for Arbitrary Packet Flows, as defined in Section XXX of
 this document.

10. Acknowledgments

 The authors would like to thank Belkacem Teibi (Inria) who in
 particular implemented the RLC codec. The author would also like to
 thank Marie-Jose Montpetit for her valuable feedbacks on this
 document.

11. References

11.1. Normative References

 [fecframe-ext]
 Roca, V. and A. Begen, "Forward Error Correction (FEC)
 Framework Extension to Sliding Window Codes", Transport
 Area Working Group (TSVWG) draft-roca-tsvwg-fecframev2
 (Work in Progress), June 2017,
 <https://tools.ietf.org/html/draft-roca-tsvwg-fecframev2>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6363] Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363,
 DOI 10.17487/RFC6363, October 2011,
 <http://www.rfc-editor.org/info/rfc6363>.

https://datatracker.ietf.org/doc/html/rfc6363
https://datatracker.ietf.org/doc/html/draft-roca-tsvwg-fecframev2
https://tools.ietf.org/html/draft-roca-tsvwg-fecframev2
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6363
http://www.rfc-editor.org/info/rfc6363

Roca Expires December 29, 2017 [Page 19]

Internet-Draft RLC FEC Scheme June 2017

 [RFC6364] Begen, A., "Session Description Protocol Elements for the
 Forward Error Correction (FEC) Framework", RFC 6364,
 DOI 10.17487/RFC6364, October 2011,
 <http://www.rfc-editor.org/info/rfc6364>.

11.2. Informative References

 [CA90] Carta, D., "Two Fast Implementations of the Minimal
 Standard Random Number Generator", Communications of the
 ACM, Vol. 33, No. 1, pp.87-88, January 1990.

 [PM88] Park, S. and K. Miller, "Random Number Generators: Good
 Ones are Hard to Find", Communications of the ACM, Vol.
 31, No. 10, pp.1192-1201, 1988.

 [PTVF92] Press, W., Teukolsky, S., Vetterling, W., and B. Flannery,
 "Numerical Recipies in C; Second Edition", Cambridge
 University Press, ISBN: 0-521-43108-5, 1992.

 [rand31pmc]
 Whittle, R., "31 bit pseudo-random number generator",
 September 2005, <http://www.firstpr.com.au/dsp/rand31/

rand31-park-miller-carta.cc.txt>.

 [RFC5170] Roca, V., Neumann, C., and D. Furodet, "Low Density Parity
 Check (LDPC) Staircase and Triangle Forward Error
 Correction (FEC) Schemes", RFC 5170, DOI 10.17487/RFC5170,
 June 2008, <http://www.rfc-editor.org/info/rfc5170>.

 [RFC6726] Paila, T., Walsh, R., Luby, M., Roca, V., and R. Lehtonen,
 "FLUTE - File Delivery over Unidirectional Transport",

RFC 6726, DOI 10.17487/RFC6726, November 2012,
 <http://www.rfc-editor.org/info/rfc6726>.

 [RFC6816] Roca, V., Cunche, M., and J. Lacan, "Simple Low-Density
 Parity Check (LDPC) Staircase Forward Error Correction
 (FEC) Scheme for FECFRAME", RFC 6816,
 DOI 10.17487/RFC6816, December 2012,
 <http://www.rfc-editor.org/info/rfc6816>.

 [RFC6865] Roca, V., Cunche, M., Lacan, J., Bouabdallah, A., and K.
 Matsuzono, "Simple Reed-Solomon Forward Error Correction
 (FEC) Scheme for FECFRAME", RFC 6865,
 DOI 10.17487/RFC6865, February 2013,
 <http://www.rfc-editor.org/info/rfc6865>.

https://datatracker.ietf.org/doc/html/rfc6364
http://www.rfc-editor.org/info/rfc6364
http://www.firstpr.com.au/dsp/rand31/rand31-park-miller-carta.cc.txt
http://www.firstpr.com.au/dsp/rand31/rand31-park-miller-carta.cc.txt
https://datatracker.ietf.org/doc/html/rfc5170
http://www.rfc-editor.org/info/rfc5170
https://datatracker.ietf.org/doc/html/rfc6726
http://www.rfc-editor.org/info/rfc6726
https://datatracker.ietf.org/doc/html/rfc6816
http://www.rfc-editor.org/info/rfc6816
https://datatracker.ietf.org/doc/html/rfc6865
http://www.rfc-editor.org/info/rfc6865

Roca Expires December 29, 2017 [Page 20]

Internet-Draft RLC FEC Scheme June 2017

 [Roca16] Roca, V., Teibi, B., Burdinat, C., Tran, T., and C.
 Thienot, "Block or Convolutional AL-FEC Codes? A
 Performance Comparison for Robust Low-Latency
 Communications", Submitted for publication

https://hal.inria.fr/hal-01395937/en/, November 2016, <
https://hal.inria.fr/hal-01395937/en/>.

 [WI08] Whittle, R., "Park-Miller-Carta Pseudo-Random Number
 Generator", http://www.firstpr.com.au/dsp/rand31/,
 January 2008, <http://www.firstpr.com.au/dsp/rand31/>.

Roca Expires December 29, 2017 [Page 21]

https://hal.inria.fr/hal-01395937/en/
https://hal.inria.fr/hal-01395937/en/
http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/

Internet-Draft RLC FEC Scheme June 2017

Appendix A. Decoding Beyond Maximum Latency Optimization

 This annex introduces non normative considerations. They are
 provided as suggestions, without any impact on interoperability. For
 more information see [Roca16].

 It is possible to improve the decoding performance of sliding window
 codes without impacting maximum latency, at the cost of extra CPU
 overhead. The optimization consists, for a receiver, to extend the
 linear system beyond the decoding window:

 ls_max_size > dw_max_size

 Usually the following choice is a good trade-off between decoding
 performance and extra CPU overhead:

 ls_max_size = 2 * dw_max_size

 ls_max_size
 /---------------------------------^-------------------------------\

 late source symbols
 (pot. decoded but not delivered) dw_max_size
 /--------------^-----------------\ /--------------^---------------\
 src0 src1 src2 src3 src4 src5 src6 src7 src8 src9 src10 src11 src12

 Figure 8: Relationship between parameters to decode beyond maximum
 latency.

 It means that source symbols (and therefore ADUs) may be decoded even
 if their transport protocol added latency exceeds the maximum value
 permitted by the application. It follows that these source symbols
 SHOULD NOT be delivered to the application and SHOULD be dropped once
 they are no longer needed. However, decoding these late symbols
 significantly improves the global robustness in bad reception
 conditions and is therefore recommended for receivers experiencing
 bad channels[Roca16]. In any case whether or not to use this
 facility and what exact value to use for the ls_max_size parameter
 are decisions made by each receiver independently, without any impact
 on others, neither the other receivers nor the source.

Author's Address

Roca Expires December 29, 2017 [Page 22]

Internet-Draft RLC FEC Scheme June 2017

 Vincent Roca
 INRIA
 Grenoble
 France

 EMail: vincent.roca@inria.fr

Roca Expires December 29, 2017 [Page 23]

