
Workgroup: NETCONF

Internet-Draft:

draft-rogaglia-netconf-trace-ctx-extension-01

Published: 13 January 2023

Intended Status: Standards Track

Expires: 17 July 2023

Authors: R. Gagliano

Cisco Systems

K. Larsson

Deutsche Telekom AG

J. Lindblad

Cisco Systems

NETCONF Extension to support Trace Context propagation

Abstract

This document defines how to propagate trace context information

across the Network Configuration Protocol (NETCONF), that enables

distributed tracing scenarios. It is an adaption of the HTTP-based

W3C specification.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at TBD. Status

information for this document may be found at https://

datatracker.ietf.org/doc/draft-rogaglia-netconf-trace-ctx-

extension/.

Discussion of this document takes place on the NETCONF Working Group

mailing list (mailto:netconf@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/netmod/. Subscribe at

https://www.ietf.org/mailman/listinfo/netconf/.

Source for this draft and an issue tracker can be found at https://

github.com/TBD.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/TBD
https://datatracker.ietf.org/doc/draft-rogaglia-netconf-trace-ctx-extension/
https://datatracker.ietf.org/doc/draft-rogaglia-netconf-trace-ctx-extension/
https://datatracker.ietf.org/doc/draft-rogaglia-netconf-trace-ctx-extension/
mailto:netconf@ietf.org
https://mailarchive.ietf.org/arch/browse/netmod/
https://www.ietf.org/mailman/listinfo/netconf/
https://github.com/TBD
https://github.com/TBD
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 17 July 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Implementation example 1: OpenTelemetry

1.2. Implementation example 2: YANG DataStore

1.3. Use Cases

1.3.1. Provisioning root cause analysis

1.3.2. System performaednce profiling

1.3.3. Billing and auditing

1.4. Terminology

2. NETCONF Extension

3. Security Considerations

4. IANA Considerations

5. Acknowledgments

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Changes

A.1. From version 00 to 01

Appendix B. TO DO List (to be deleted by RFC Editor)

Appendix C. XML Attributes vs RPCs input augmentations discussion

(to be deleted by RFC Editor)

Authors' Addresses

1. Introduction

Network automation and management systems commonly consist of

multiple sub-systems and together with the network devices they

manage, they effectively form a distributed system. Distributed

tracing is a methodology implemented by tracing tools to follow,

analyze and debug operations, such as configuration transactions,

across multiple distributed systems. An operation is uniquely

¶

¶

¶

https://trustee.ietf.org/license-info

identified by a trace-id and through a trace context, carries some

metadata about the operation. Propagating this "trace context"

between systems enables forming a coherent view of the entire

operation as carried out by all involved systems.

The W3C has defined two HTTP headers for context propagation that

are useful in use case scenarios of distributed systems like the

ones defined in [RFC8309]. This document defines an extension to the

NETCONF protocol to add the same concepts and enable trace context

propagation over NETCONF.

It is worth noting that the trace context is not meant to have any

relationship with the data that is carried with a given operation

(including configurations, service identifiers or state

information).

A trace context also differs from

[I-D.lindblad-netconf-transaction-id] in several ways as the trace

operation may involve any operation (including for example validate,

lock, unlock, etc.) Additionally, a trace context scope may include

the full application stack (orchestrator, controller, devices, etc)

rather than a single NETCONF server, which is the scope for the

transaction-id. The trace context is also complemetary to

[I-D.lindblad-netconf-transaction-id] as a given trace-id can can

associated to the different transaction-ids as part of the

information exported to the collector.

The following enhancement of the reference SDN Architecture from RFC

8309 shows the impact of distributed traces for a network operator.

¶

¶

¶

¶

¶

The network automation, management and control architectures are

distributed in nature. In order to "manage the managers", operators

would like to use the same techniques as any other distributed

systems in their IT environment. Solutions for analysing Metrics,

Events, Logs and Traces (M.E.L.T) are key for the successful

monitoring and troubleshooting of such applications. Initiatives

such as the OpenTelemetry [OpenTelemetry] enable rich ecosystems of

tools that NETCONF-based applications would want to participate in.

With the implementation of this trace context propagation extension

to NETCONF, backend systems behind the M.E.L.T collector will be

able to correlate information from different systems but related to

a common context.

1.1. Implementation example 1: OpenTelemetry

We will describe an example to show the value of trace context

propagation in the NETCONF protocol. In Figure 2, we show a

deployment based on Figure 1 with a single controller and two

network elements. In this example, the NETCONF protocol is running

between the Orchestrator and the Controller. NETCONF is also used

between the Controller and the Network Elements.

Let's assume an edit-config operation between the orchestrator and

the controller that results (either synchronously or asynchronously)

in corresponding edit-config operations from the Controller towards

 ------------------ -------------

 | Orchestrator | | |

 | | ------------> | |

 .------------------. | |

 . : . | |

 . : . | Collector |

 ------------ ------------ ------------ | (Metrics, |

 | | | | | | | Events, |

 | Controller | | Controller | | Controller | --> | Logs, |

 | | | | | | | Traces) |

 ------------ ------------ ------------ | |

 : . . : | |

 : . . : | |

 : . . : | |

 --------- --------- --------- --------- | |

| Network | | Network | | Network | | Network | | |

| Element | | Element | | Element | | Element | -> | |

 --------- --------- --------- --------- -------------

 Figure 1: A Sample SDN Architecture from RFC8309 augmented

 to include the export of metrics, events, logs and traces

 from the different components to a common collector.

¶

¶

¶

¶

the two network elements. All trace operations are related and will

create M.E.L.T data.

Each of the components in this example (Orchestrator, Controller and

Network Elements) is exporting M.E.L.T information to the collector

using the OpenTelemetry Protocol (OTLP).

For every edit-config operation, the trace context is included. In

particular, the same trace-id "1" (simplified encoding for

documentation) is included in all related NETCONF messages, which

enables the collector and any backend application to correlate all

M.E.L.T messages related to this transaction in this distributed

stack.

Another interesting attribute is the parent-id. We can see in this

example that the parent-id between the orchestrator and the

controller ("A") is different from the one between the controller

and the network elements ("B"). This attribute will help the

collector and the backend applications to build a connectivity graph

to understand how M.E.L.T information exported from one component

relates to the information exported from a different component.

With this additional metadata exchanged between the components and

exposed to the M.E.L.T collector, there are important improvements

¶

 ------------------ -------------

 | Orchestrator | OTLP protocol | |

 | | -------------------> | |

 .------------------. | |

 . NETCONF | |

 . edit-config (trace-id "1", parent-id "A") | Collector |

 ------------ | (Metrics, |

| | | Events, |

| Controller | ------------------------------------> | Logs, |

| | OTLP protocol | Traces) |

 ------------ | |

 : . NETCONF | |

 : . edit-config (trace-id "1", parent-id "B") | |

 : . | |

 --------- --------- | |

| Network | | Network | OTLP protocol | |

| Element | | Element | --------------------------> | |

 --------- --------- -------------

 Figure 2: An implementation example where the NETCONF

 protocol is used between the Orchestrator and the Controller

 and also between the Controller and the Network Elements.

 Every component exports M.E.L.T information to the collector

 using the OTLP protocol.

¶

¶

¶

¶

to the monitor and troubleshooting operations for the full

application stack.

1.2. Implementation example 2: YANG DataStore

OpenTelemetry implements the "push" model for data streaming where

information is sent to the back-end as soon as produced and is not

required to be stored in the system. In certain cases, a "pull"

model may be envisioned, for example for performing forensic

analysis while not all OTLP traces are available in the back-end

systems.

An implementation of a "pull" mechanism for M.E.L.T. information in

general and for traces in particular, could consist of storying

traces in a yang datastore (particularly the operational datastore.)

Implementations should consider the use of circular buffers to avoid

resources exhaustion. External systems could access traces (and

particularly past traces) via NETCONF, RESTCONF, gNMI or other

polling mechanisms. Finally, storying traces in a YANG datastore

enables the use of YANG-Push [RFC8641] or gNMI Telemetry as an

additional "push" mechanisms.

This document does not specify the YANG module in which traces could

be stored inside the different components. That said, storing the

context information described in this document as part of the

recorded traces would allow back-end systems to correlate the

information from different components as in the OpenTelemetry

implementation.

Note to be removed in the future: Some initial ideas are under

discussion in the IETF for defining a standard YANG data model for

traces. For example see: I-D.quilbeuf-opsawg-configuration-tracing

which focusses only on configuration change root cause analysis use

case (see bellow the use case desciption.). This ideas are

complementary to this draft.

¶

¶

¶

¶

¶

1.3. Use Cases

1.3.1. Provisioning root cause analysis

When a provisioning activity fails, errors are typically propagated

northbound, however this information may be difficult to

troubleshoot and typically, operators are required to navigate logs

across all the different components.

With the support for trace context propagation as described in this

document for NETCONF, the collector will be able to search every

trace, event, metric, or log in connection to that trace-id and

faciliate the performance of a root cause analysis due to a network

changes. The trace information could also include as an optional

resource the different NETCONF transaction ids described in

[I-D.lindblad-netconf-transaction-id].

 ------------------ -------------

 | Orchestrator | | |

 | | NC/RC/gNMI or YP | |

 | YANG DataStore | <-------------------> | |

 .------------------. pull or push | |

 . NETCONF | |

 . edit-config (trace-id "1", parent-id "A") | Collector |

 ---------------- | (Metrics, |

| | NC/RC/gNMI or YP | Events, |

| Controller | --------------------------------> | Logs, |

| YANG DataStore| pull or push | Traces) |

 ---------------- | |

 : . NETCONF | |

 : . edit-config (trace-id "1", parent-id "B") | |

 : . | |

 --------- --------- | |

| Network | | Network | NC/RC/gNMI or YP | |

| Element | | Element | --------------------------> | |

| YG DS | | YG DS | pull or push | |

 --------- --------- -------------

 Figure 3: An implementation example where the NETCONF

 protocol is used between the Orchestrator and the Controller

 and also between the Controller and the Network Elements.

 M.E.L.T. information is stored in local Yang Datastores and

 accessed by the collector using "pull" mechanisms using the

 NETCONF (NC), RESTCONF (RC) or gNMI protocols. A "push"

 strategy is also possible via YANG-Push or gNMI.

¶

¶

¶

1.3.2. System performaednce profiling

When operating a distributed system such as the one shown in Figure

2, operators are expected to benchmark what are the Key Performance

Indicators (KPIs) for the most common tasks. For example, what is

the typical delay when provisioning a VPN service across different

controllers and devices.

Thanks to Application Performance Management (APM) systems, from

these KPIs, an operator can detect a normal and abnormal behaviour

of the distributed system. Also, an operator can better plan any

upgrades or enhancements in the platform.

With the support for context propagation as described in this

document for NETCONF, much richer system-wide KPIs can be defined

and used for troubleshooting as the metrics and traces propagated by

the different components share a common context. Troubleshooting for

abnormal behaviours can also be troubleshot from the system view

down to the individual element.

1.3.3. Billing and auditing

In certain circuntances, we could perceive that tracing infomration

could be used as additional inputs to billing systems. In

particular, trace context information could be used to validate that

a certain northbound order was carried out in southbound systems.

1.4. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL

NOT","SHOULD","SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",

and "OPTIONAL" in this document are to be interpreted as described

in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in

all capitals, as shown here.

The XML prefixes used in this document are mapped as follows:

xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0",

xmlns:notif="urn:ietf:params:xml:ns:netconf:notification:1.0",

xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-patch" and

xmlns:ypatch="urn:ietf:params:xml:ns:yang:ietf-yang-patch".

2. NETCONF Extension

When performing NETCONF operations by sending NETCONF RPCs, a

NETCONF client MAY include trace context information in the form of

XML attributes. The [W3C-Trace-Context] defines two HTTP headers;

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

traceparent and tracestate for this purpose. NETCONF clients that

are taking advantage of this feature MUST add one w3ctc:traceparent

attribute to the nc:rpc tag.

A NETCONF server that receives a trace context attribute in the form

of a w3ctc:traceparent attribute SHOULD apply the mutation rules

described in [W3C-Trace-Context]. A NETCONF server MAY add one

w3ctc:traceparent attribute in the nc:rpc-reply response to the

nc:rpc tag above. NETCONF servers MAY also add one w3ctc:traceparent

attribute in notification and update message envelopes:

notif:notification, yp:push-update and yp:push-change-update.

For example, a NETCONF client might send:

In all cases above where a client or server adds a w3ctc:traceparent

attribute to a tag, that client or server MAY also add one

w3ctc:tracestate attribute to the same tag.

The proper encoding and interpretation of the contents of the

w3ctc:traceparent attribute is described in [W3C-Trace-Context]

section 3.2 except 3.2.1. The proper encoding and interpretation of

the contents in the w3ctc:tracestate attribute is described in

[W3C-Trace-Context] section 3.3 except 3.3.1 and 3.3.1.1. A NETCONF

tag can only have zero or one w3ctc:tracestate attributes, so its

content MUST always be encoded as a single string. The tracestate

field value is a list of list-members separated by commas (,). A

list-member is a key/value pair separated by an equals sign (=).

Spaces and horizontal tabs surrounding list-members are ignored.

There is no limit to the number of list-members in a list.

For example, a NETCONF client might send:

As in all XML documents, the order between the attributes in an XML

tag has no significance. Clients and servers MUST be prepared to

handle the attributes no matter in which order they appear. The

¶

¶

¶

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1"

 xmlns:w3ctc="urn:ietf:params:xml:ns:netconf:w3ctc:1.0"

 w3ctc:traceparent=

 "00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01">

 <get-config/>

</rpc>

¶

¶

¶

¶

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1"

 xmlns:w3ctc="urn:ietf:params:xml:ns:netconf:w3ctc:1.0"

 w3ctc:tracestate="rojo=00f067aa0ba902b7,congo=t61rcWkgMzE"

 w3ctc:traceparent=

 "00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01">

 <get-config/>

</rpc>

¶

[RFC2119]

tracestate value MAY contain double quotes in its payload. If so,

they MUST be encoded according to XML rules, for example:

TBD Errors

3. Security Considerations

TODO Security

4. IANA Considerations

This document registers the following capability identifier URN in

the 'Network Configuration Protocol (NETCONF) Capability URNs'

registry:

This document registers one XML namespace URN in the 'IETF XML

registry', following the format defined in [RFC3688] (https://

tools.ietf.org/html/rfc3688).

5. Acknowledgments

TBD

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1"

 xmlns:w3ctc="urn:ietf:params:xml:ns:netconf:w3ctc:1.0"

 w3ctc:traceparent=

 "00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01"

 w3ctc:tracestate=

 "value-with-quotes="Quoted string",other-value=123">

 <get-config/>

</rpc>

¶

¶

¶

¶

 urn:ietf:params:netconf:capability:w3ctc:1.0¶

¶

 URI: urn:ietf:params:xml:ns:netconf:w3ctc:1.0

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

¶

¶

[RFC3688]

[RFC8174]

[W3C-Trace-Context]

[I-D.lindblad-netconf-transaction-id]

[OpenTelemetry]

[RFC8309]

[RFC8641]

[W3C-Baggage]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

"W3C Recommendation on Trace Context", 23

November 2021, <https://www.w3.org/TR/2021/REC-trace-

context-1-20211123/>.

6.2. Informative References

Lindblad, J., "Transaction ID Mechanism for NETCONF",

Work in Progress, Internet-Draft, draft-lindblad-netconf-

transaction-id-02, 8 June 2022, <https://www.ietf.org/

archive/id/draft-lindblad-netconf-transaction-id-02.txt>.

"OpenTelemetry Cloud Native Computing Foundation

project", 29 August 2022, <https://opentelemetry.io>.

Wu, Q., Liu, W., and A. Farrel, "Service Models

Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,

<https://www.rfc-editor.org/info/rfc8309>.

Clemm, A. and E. Voit, "Subscription to YANG

Notifications for Datastore Updates", RFC 8641, DOI

10.17487/RFC8641, September 2019, <https://www.rfc-

editor.org/info/rfc8641>.

"W3C Propagation format for distributed context

Baggage", 23 November 2021, <https://www.w3.org/TR/

baggage/#examples-of-http-headers>.

Appendix A. Changes

A.1. From version 00 to 01

Added new section: Implementation example 2: YANG DataStore

Added new use case: Billing and auditing

Added in introduction and in "Provisioning root cause analysis"

the idea that the different transaction-ids defined in

[I-D.lindblad-netconf-transaction-id] could be added as part of

* ¶

* ¶

*

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc8174
https://www.w3.org/TR/2021/REC-trace-context-1-20211123/
https://www.w3.org/TR/2021/REC-trace-context-1-20211123/
https://www.ietf.org/archive/id/draft-lindblad-netconf-transaction-id-02.txt
https://www.ietf.org/archive/id/draft-lindblad-netconf-transaction-id-02.txt
https://opentelemetry.io
https://www.rfc-editor.org/info/rfc8309
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/info/rfc8641
https://www.w3.org/TR/baggage/#examples-of-http-headers
https://www.w3.org/TR/baggage/#examples-of-http-headers

the tracing information to be exported to the collectors, showing

how the two documents are complementary.

Appendix B. TO DO List (to be deleted by RFC Editor)

Manage versioning of the trace-context specification

Error handling specification

We intend to extend the trace-concext capability to RESTCONF in a

future draft

The W3C is working on a draft document to introduce the concept

of "baggage" [W3C-Baggage] that we expect part of a future draft

for NETCONF and RESTCONF

Appendix C. XML Attributes vs RPCs input augmentations discussion (to

be deleted by RFC Editor)

There are arguments that can be raised regarding using XML Attribute

or to augment NETCONF RPCs.

We studied Pros/Cons of each option and decided to propose XML

attributes:

XML Attributes Pro:

Literal alignment with W3C specification

Same encoding for RESTCONF and NETCONF enabling code reuse

One specification for all current and future rpcs

XML Attributes Cons:

No YANG modeling, multiple values represented as a single string

Dependency on W3C for any extension or changes in the future as

encoding will be dictated by string encoding

RPCs Input Augmentations Pro:

YANG model of every leaf

Re-use of YANG toolkits

Simple updates by augmentations on existing YANG module

Possibility to express deviations in case of partial support

¶

* ¶

* ¶

*

¶

*

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

RPCs Input Augmentations Cons:

Need to augment every rpc, including future rpcs would need to

consider these augmentations, which is harder to maintain

There is no literal alignment with W3C standard. However, as

mentioned before most of the time there will be modifications to

the content

Would need updated RFP for each change at W3C, which will make

adoption of new features slower

Authors' Addresses

Roque Gagliano

Cisco Systems

Avenue des Uttins 5

CH-1180 Rolle

Switzerland

Email: rogaglia@cisco.com

Kristian Larsson

Deutsche Telekom AG

Email: kll@dev.terastrm.net

Jan Lindblad

Cisco Systems

Email: jlindbla@cisco.com

¶

*

¶

*

¶

*

¶

mailto:rogaglia@cisco.com
mailto:kll@dev.terastrm.net
mailto:jlindbla@cisco.com

	NETCONF Extension to support Trace Context propagation
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Implementation example 1: OpenTelemetry
	1.2. Implementation example 2: YANG DataStore
	1.3. Use Cases
	1.3.1. Provisioning root cause analysis
	1.3.2. System performaednce profiling
	1.3.3. Billing and auditing

	1.4. Terminology

	2. NETCONF Extension
	3. Security Considerations
	4. IANA Considerations
	5. Acknowledgments
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Changes
	A.1. From version 00 to 01

	Appendix B. TO DO List (to be deleted by RFC Editor)
	Appendix C. XML Attributes vs RPCs input augmentations discussion (to be deleted by RFC Editor)
	Authors' Addresses

