
ALTO WG W. Roome
Internet-Draft Alcatel-Lucent
Intended status: Standards Track X. Shi
Expires: August 3, 2015 Y. Yang
 Yale University
 January 30, 2015

ALTO Incremental Updates Using Server-Sent Events (SSE)
draft-roome-alto-incr-update-sse-01

Abstract

 The Application-Layer Traffic Optimization (ALTO) [RFC7285] protocol
 provides network related information to client applications so that
 clients may make informed decisions. To that end, an ALTO Server
 provides Network and Cost Maps. Using those maps, an ALTO Client can
 determine the costs between endpoints.

 However, the ALTO protocol does not define a mechanism to allow a
 client to obtain updates to those maps, other than by periodically
 re-fetching them. Because the maps may be very large (potentially
 tens of megabytes), and because parts of the maps may change
 frequently (especially Cost Maps), that can be extremely inefficient.

 Therefore this document presents a mechanism to allow an ALTO Server
 to provide updates to ALTO Clients. Updates can be both immediate,
 in that the server can send updates as soon as they are available,
 and incremental, in that if only a small section of a map changes,
 the server can send just the changes.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

Roome, et al. Expires August 3, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7285
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft ALTO Incremental Updates January 2015

 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 3, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Roome, et al. Expires August 3, 2015 [Page 2]

Internet-Draft ALTO Incremental Updates January 2015

Table of Contents

1. Introduction . 4
2. Overview of Approach . 4
3. Update Events . 5
3.1. Overview of SSEs . 6
3.2. ALTO Update Events . 6
3.3. Keep-Alive Messages 7

4. Incremental Update Message Format 7
4.1. Overview of JSON Merge Patch 7
4.2. JSON Merge Patch Applied to Network Map Messages 8
4.3. JSON Merge Patch Applied to Cost Map Messages 10

5. Update Stream Service . 11
5.1. Media Type . 11
5.2. HTTP Method . 11
5.3. Accept Input Parameters 11
5.4. Capabilities . 12
5.5. Uses . 12
5.6. Response . 12
5.6.1. Event Sequence Requirements 12
5.6.2. Cross-Stream Consistency Requirements 13

5.7. Example . 13
6. Filtered Update Stream Service 14
6.1. Media Type . 14
6.2. HTTP Method . 14
6.3. Accept Input Parameters 15
6.4. Capabilities and Uses 16
6.5. Response . 16
6.6. Example: Network and Cost Map Updates 16
6.7. Example: Endpoint Property Updates 17

7. Client Actions When Receiving Update Messages 19
8. IRD Example . 19
9. Design Decisions and Discussions 21
9.1. HTTP2 Server-Push . 21
9.2. Not Allowing Stream Restart 21
9.3. Is Incremental Update Useful for Network Maps? 22
9.4. Other Incremental Update Message Types 23

10. Security Considerations 24
11. IANA Considerations . 24
12. References . 25

 Authors' Addresses . 26

Roome, et al. Expires August 3, 2015 [Page 3]

Internet-Draft ALTO Incremental Updates January 2015

1. Introduction

 The Application-Layer Traffic Optimization (ALTO) [RFC7285] protocol
 provides network related information to client applications so that
 clients may make informed decisions. To that end, an ALTO Server
 provides Network and Cost Maps. Network Maps partition the set of
 endpoints into a manageable number of Provider-Defined Identifiers
 (PIDs), and Cost Maps provide directed costs between PIDs. Given
 Network and Cost Maps, an ALTO Client can obtain costs between
 endpoints by using the Network Map to get the PID for each endpoint,
 and then using the Cost Map to get the costs between those PIDs.

 However, the ALTO protocol does not define a mechanism to allow a
 client to obtain updates to those maps, other than by periodically
 re-fetching them. Because the maps may be very large (potentially
 tens of megabytes), and because parts of the maps may change
 frequently (especially Cost Maps), that can be extremely inefficient.

 Therefore this document presents a mechanism to allow an ALTO Server
 to provide updates to ALTO Clients. Updates can be both immediate,
 in that the server can send updates as soon as they are available,
 and incremental, in that if only a small section of a map changes,
 the server can send just the changes.

 While primarily intended to provide updates to Network and Cost Maps,
 an ALTO Server can use the mechanisms defined in this document to
 provide updates to any ALTO resource, including POST-mode services
 such as Endpoint Property and Endpoint Cost Services, as well as new
 ALTO services to be defined by future extensions.

Section 2 gives an overview of the incremental update approach, which
 is based on Server-Sent Events (SSEs). Section 3 defines the update
 events, and Section 4 defines the format of the incremental update
 messages. Sections 5 and 6 define two new Update Stream Services.

Section 7 describes how a client should handle incoming updates, and
Section 8 gives an example of the Information Resource Directory

 (IRD) for an ALTO Server that offers a comprehensive set of Update
 Services. Section 9 discusses the design decisions behind this
 update mechanism. The remaining sections review the security and
 IANA considerations.

2. Overview of Approach

 This section presents a non-normative overview of the update
 mechanism.

 An ALTO Server can offer one or more Update Stream resources. Each

https://datatracker.ietf.org/doc/html/rfc7285

Roome, et al. Expires August 3, 2015 [Page 4]

Internet-Draft ALTO Incremental Updates January 2015

 stream presents a continuous sequence of update messages for a set of
 ALTO resources selected by the server. Each message updates one
 resource. The messages are Server-Sent Events (SSEs), as defined by
 [SSE]. An update message is either a complete replacement or else an
 incremental change. Complete replacement updates use the JSON
 message formats defined by the ALTO protocol. Incremental updates
 use JSON Merge Patch ([RFC7386]) to describe the changes to the
 resource. The ALTO Server decides when to send update messages, and
 whether to send a full replacement or an incremental update. These
 decisions can vary from resource to resource and from update to
 update.

 There are two types of Update Stream resources: Full Update Streams
 and Filtered Update Streams. A Full Update Stream is a GET-mode
 resource that provides updates to a set of GET-mode resources
 selected by the server.

 A Filtered Update Stream is a POST-mode resource, and allows the
 client to select a subset of the update events offered by the server
 for that stream. In particular, a client may ask a server to send
 full updates events instead of incremental updates. A Filtered
 Update Stream can also provide updates to POST-mode resources such as
 the Endpoint Property Service.

 An ALTO Server may offer any number of Update Stream resources, for
 any collection of the server's resources. A server may offer updates
 to the same resource via several different Update Stream resources,
 provided that the different update messages yield the same net
 result.

 An ALTO Server's Information Resource Directory (IRD) defines its
 Update Stream resources.

 When an ALTO Client requests an Update Stream resource, the client
 establishes a new persistent connection to the server. The
 connection remains open, and the server continues to send updates,
 until either the client or server closes it. A client may connect to
 any number of Update Stream resources. Because each connection
 consumes resources on the server, a server may limit the number of
 open Update Streams, may close inactive streams, may provide Update
 Streams via other processors, or may require client authorization/
 authentication.

3. Update Events

https://datatracker.ietf.org/doc/html/rfc7386

Roome, et al. Expires August 3, 2015 [Page 5]

Internet-Draft ALTO Incremental Updates January 2015

3.1. Overview of SSEs

 The following is a non-normative summary of Server-Sent Events. See
 [SSE] for the normative definition.

 Server-Sent Events enable a server to send new data to a client by
 "server-push". The client establishes an HTTP ([RFC2616]) connection
 to the server, and keeps the connection open. The server continually
 sends messages. Messages are delimited by two new-lines (this is a
 slight simplification; see [SSE] for details). Messages may contain
 three fields: an event type, an id, and data. All fields are
 strings. The data field may contain new-lines; the other fields
 cannot. The event type and id fields are optional.

 Here is a sample SSE stream, starting with the client request. The
 server sends three events and then closes the stream. Note that the
 server may "chunk" the returned data (see [RFC2616]); for simplicity,
 we have omitted those details.

 GET /stream HTTP/1.1
 Host: example.com
 Accept: text/event-stream

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: start
 id: 1
 data: hello there

 event: middle
 id: 2
 data: let's chat some more ...
 data: and more and more and ...

 event: end
 id: 3
 data: good bye

3.2. ALTO Update Events

 In the events defined in this document, the data field is a JSON
 object. That object is either a complete specificiation of an ALTO
 resource, or else a JSON Merge Patch object describing changes to
 apply to an ALTO resource. We will refer to these as full-
 replacement and Merge Patch messages, respectively. The data objects

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Roome, et al. Expires August 3, 2015 [Page 6]

Internet-Draft ALTO Incremental Updates January 2015

 in full-replacement messages are defined by [RFC7285]; examples are
 Network and Cost Map messages. The data objects in Merge Patch
 messages are defined by [RFC7386].

 The event type field has two sub-fields: the resource-id of an ALTO
 resource, and the media-type of the JSON message in the data field.
 The media-types for full-replacement messages are defined by
 [RFC7285], and include "application/alto-networkmap+json" for Network
 Map messages and "application/alto-costmap+json" for Cost Map
 messages. The media-type for a JSON Merge Patch message is
 "application/merge-patch+json", and is defined by [RFC7386].

 We do not use the SSE id field.

 We encode the event type sub-fields as:

 resource-id , media-type

 Note that commas (character code 0x2c) are allowed in ALTO resource-
 ids, but not in media-type names. Hence when parsing the SSE event
 type into sub-types, a client MUST split the string on the last
 comma.

 Here examples of ALTO update events:

 event: my-network-map,application/alto-networkmap+json
 data: { ... full Network Map message ... }

 event: my-routingcost-map,application/alto-costmap+json
 data: { ... full Cost Map message ... }

 event: my-routingcost-map,application/merge-patch+json
 data: { ... Merge Patch update for previous Cost Map ... }

3.3. Keep-Alive Messages

 An SSE event with an empty event type is a keep-alive message. An
 ALTO Server MAY send keep-alive messages as needed. An ALTO Client
 MUST ignore any keep-alive messages.

4. Incremental Update Message Format

4.1. Overview of JSON Merge Patch

 The following is a non-normative summary of JSON Merge Patch. See
 [RFC7386] for the normative definition.

https://datatracker.ietf.org/doc/html/rfc7285
https://datatracker.ietf.org/doc/html/rfc7386
https://datatracker.ietf.org/doc/html/rfc7285
https://datatracker.ietf.org/doc/html/rfc7386
https://datatracker.ietf.org/doc/html/rfc7386

Roome, et al. Expires August 3, 2015 [Page 7]

Internet-Draft ALTO Incremental Updates January 2015

 JSON Merge Patch is intended to allow applications to update server
 resources via the HTTP PATCH method [RFC5789]. This document adopts
 the JSON Merge Patch message format to encode incremental updates,
 but uses a different transport mechanism.

 The process of applying a Merge Patch is defined by the following
 recursive algorithm, as specified in [RFC7386]:

 define MergePatch(Target, Patch) {
 if Patch is an Object {
 if Target is not an Object {
 Target = {} # Ignore the contents and
 # set it to an empty Object
 }
 for each Name/Value pair in Patch {
 if Value is null {
 if Name exists in Target {
 remove the Name/Value pair from Target
 }
 } else {
 Target[Name] = MergePatch(Target[Name], Value)
 }
 }
 return Target
 } else {
 return Patch
 }
 }

 Note that null as the value of a name/value pair will delete the
 element with "name" in the original JSON document.

4.2. JSON Merge Patch Applied to Network Map Messages

Section 11.2.1.6 of [RFC7285] defines the format of a Network Map
 message. Here is a simple example:

https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc7386
https://datatracker.ietf.org/doc/html/rfc7285#section-11.2.1.6

Roome, et al. Expires August 3, 2015 [Page 8]

Internet-Draft ALTO Incremental Updates January 2015

 {
 "meta" : {
 "vtag": {
 "resource-id" : "my-network-map",
 "tag" : "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
 }
 },
 "network-map" : {
 "PID1" : {
 "ipv4" : ["192.0.2.0/24", "198.51.100.0/25"]
 },
 "PID2" : {
 "ipv4" : ["198.51.100.128/25"]
 },
 "PID3" : {
 "ipv4" : ["0.0.0.0/0"],
 "ipv6" : ["::/0"]
 }
 }
 }

 When applied to that message, the following Merge Patch update
 message adds the ipv6 prefix "2000::/3" to "PID1", deletes "PID2",
 and assigns a new "tag" to the Network Map:

 {
 "meta" : {
 "vtag" : {
 "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
 },
 "network-map": {
 "PID1" : {
 "ipv6" : ["2000::/3"]
 },
 "PID2" : null
 }
 }

 Here is the updated Network Map:

Roome, et al. Expires August 3, 2015 [Page 9]

Internet-Draft ALTO Incremental Updates January 2015

 {
 "meta" : {
 "vtag": {
 "resource-id" : "my-network-map",
 "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
 },
 "network-map" : {
 "PID1" : {
 "ipv4" : ["192.0.2.0/24", "198.51.100.0/25"],
 "ipv6" : ["2000::/3"]
 },
 "PID3" : {
 "ipv4" : ["0.0.0.0/0"],
 "ipv6" : ["::/0"]
 }
 }
 }

4.3. JSON Merge Patch Applied to Cost Map Messages

Section 11.2.3.6 of [RFC7285] defines the format of a Cost Map
 message. Here is a simple example:

 {
 "meta" : {
 "dependent-vtags" : [
 {"resource-id": "my-network-map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
],
 "cost-type" : {
 "cost-mode" : "numerical",
 "cost-metric": "routingcost"
 }
 },
 "cost-map" : {
 "PID1": { "PID1": 1, "PID2": 5, "PID3": 10 },
 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
 "PID3": { "PID1": 20, "PID2": 15 }
 }
 }

 The following Merge Patch message updates that cost map so that
 PID1->PID2 is 9 instead of 5, PID3->PID1 is no longer available, and
 PID3->PID3 is now defined as 1:

https://datatracker.ietf.org/doc/html/rfc7285#section-11.2.3.6

Roome, et al. Expires August 3, 2015 [Page 10]

Internet-Draft ALTO Incremental Updates January 2015

 {
 "cost-map" : {
 "PID1" : { "PID2" : 9 },
 "PID3" : { "PID1" : null, "PID3" : 1 }
 }
 }

 Here is the updated Cost Map:

 {
 "meta" : {
 "dependent-vtags" : [
 {"resource-id": "my-network-map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
],
 "cost-type" : {
 "cost-mode" : "numerical",
 "cost-metric": "routingcost"
 }
 },
 "cost-map" : {
 "PID1": { "PID1": 1, "PID2": 9, "PID3": 10 },
 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
 "PID3": { "PID2": 15, "PID3": 1 }
 }
 }

5. Update Stream Service

 An Update Stream Service returns a stream of SSE messages, as defined
 in Section 3.2.

5.1. Media Type

 The media type of an ALTO Update Stream resource is "text/
 event-stream".

5.2. HTTP Method

 An ALTO Update Stream resource is requested using the HTTP GET
 method.

5.3. Accept Input Parameters

 None.

Roome, et al. Expires August 3, 2015 [Page 11]

Internet-Draft ALTO Incremental Updates January 2015

5.4. Capabilities

 The capabilities are defined by an object of type
 UpdateStreamCapabilities:

 object {
 JSONString update-events<1..*>;
 } UpdateEventStreamCapabilities;

 The strings in the array are the event types (see Section 3.2) sent
 by this Update Stream.

 If an Update Event Service's "update-events" capability list has an
 event with a media-type of "application/merge-patch+json" for a
 resource-id, then the event capability list MUST also have a full-
 replacement event for that resource-id. For example, suppose "my-
 costmap" is the resource-id of a Cost Map. Then if the event list has
 "my-costmap,application/merge-patch+json", it MUST also have the
 event "my-costmap,application/alto-costmap+json".

5.5. Uses

 An array with the resource-ids of the resources for which this stream
 sends updates. This array MUST contain the resource-ids of every
 event type in the "update-events" capability.

5.6. Response

 The response is a stream of SSE update events. Section 3.2 defines
 the events, and [SSE] defines how they are encoded into a stream.

 There are additional requirements between events in the stream, as
 described below.

5.6.1. Event Sequence Requirements

 o The ALTO Server MUST send a full-replacement update event for each
 resource-id covered by this Update Stream resource as soon as
 possible after the client initiates the connection.

 o The ALTO Server MUST send a full-replacement update event for a
 resource-id before sending the first Merge Patch event for that
 resource-id.

 o If this stream provides updates for resource-ids R0 and R1, and if
 R1 depends on R0, then the ALTO Server MUST send the update for R0
 before sending the related update for R1. For example, suppose a
 stream provides updates to a Network Map and its dependent Cost

Roome, et al. Expires August 3, 2015 [Page 12]

Internet-Draft ALTO Incremental Updates January 2015

 Maps. When the Network Map changes, the ALTO Server MUST send the
 Network Map update before sending the Cost Map updates.

 o If this stream provides updates for resource-ids R0 and R1, and if
 R1 depends on R0, then the ALTO Server SHOULD send an update for
 R1 as soon as possible after sending the update for R0. For
 example, when a Network Map changes, the ALTO Server SHOULD send
 update events for the dependent Cost Maps as soon as possible
 after the update event for the Network Map.

5.6.2. Cross-Stream Consistency Requirements

 If several distinct Update Stream resources offer updates for the
 same resource-id, the ALTO Server MUST send the same update data on
 all of those Update Streams. Similarly, the server MUST send the
 same updates to all clients connected to the that stream. However,
 the server MAY pack data items into different Merge Patch events, as
 long as the net result of applying those updates is the same.

 For example, suppose two different clients open the same Cost Map
 Update Stream, and suppose the ALTO Server processes three separate
 cost point updates with a brief pause between each update. The
 server MUST send all three new cost points to both clients. But the
 server MAY send a single Merge Patch event (with all three cost
 points) to one client, while sending three separate Merge Patch
 events (with one cost point per event) to the other client.

5.7. Example

 Here is an example of a client's request and the server's immediate
 response, using the Update Stream resource "my-routingcost-update-
 stream" defined in the IRD in Section 8. This assumes the Update
 Stream service sends updates for a Network Map with resource-id "my-
 network-map" and an associated Cost Map with resource-id "my-
 routingcost-map". Note that the server may "chunk" the returned data
 (see [RFC2616]); for simplicity, we have omitted those details.

https://datatracker.ietf.org/doc/html/rfc2616

Roome, et al. Expires August 3, 2015 [Page 13]

Internet-Draft ALTO Incremental Updates January 2015

 GET /updates/routingcost HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: my-network-map,application/alto-networkmap+json
 data: { ... full Network Map message ... }

 event: my-routingcost-map,application/alto-costmap+json
 data: { ... full Cost Map message ... }

 After sending those two events immediately, the ALTO Server will send
 additional events as the maps change. For example, the following
 represents a small change to the Cost Map:

 event: my-routingcost-map,application/merge-patch+json
 data: {"cost-map": {"PID1" : {"PID2" : 9}}}

 If a major change to the Network Map occurs, the ALTO Server MAY
 choose to send full Network and Cost Map messages rather than Merge
 Patch messages:

 event: my-network-map,application/alto-networkmap+json
 data: { ... full Network Map message ... }

 event: my-routingcost-map,application/alto-costmap+json
 data: { ... full Cost Map message ... }

6. Filtered Update Stream Service

 The Filtered Update Stream service is similar to the Update Stream
 service (Section 5), except that the client can select the types of
 update events.

6.1. Media Type

 The media type of an ALTO Update Stream resource is "text/
 event-stream".

6.2. HTTP Method

 A Filtered ALTO Update Stream resource is requested using the HTTP
 POST method.

Roome, et al. Expires August 3, 2015 [Page 14]

Internet-Draft ALTO Incremental Updates January 2015

6.3. Accept Input Parameters

 An ALTO Client supplies filtering parameters by specifying media type
 "application/alto-updatestreamfilter+json" with HTTP POST body
 containing a JSON object of type ReqFilteredUpdateStream, where:

 object {
 [UpdateEventType update-events<1..*>;]
 [VersionTag vtags<1..*>;]
 [ResourceInputs inputs<1..*>;]
 } ReqFilteredUpdateStream;

 object-map {
 ResourceID -> JSONObject;
 } ResourceInputs;

 The "update-events" field gives the types of the events the ALTO
 Client wishes to receive. These events MUST be a subset of the
 "update-events" capability of this resource; the ALTO Server MUST
 ignore any events not in the resource's capability list. If the
 "update-events" list is omitted, the ALTO Server MUST send all event
 types in the "update-events" capability of this resource.

 The "vtags" field is an array of version tags, as defined in Section
10.3 of [RFC7285], for any resources which the client already has.

 At startup, the server SHOULD NOT send the full version of any
 resource for which the client has the current version.

 The "inputs" field gives the client input needed for any POST-mode
 resources requested by the client. The value is a JSON object. The
 keys are the resource-ids of the POST-mode resources, and the value
 for each resource-id is the JSON object that resource requires as its
 input.

 If the "update-events" field includes events for a POST-mode
 resource, but the "inputs" field for that resource is missing or
 invalid, then ALTO Server MUST return the same error response that
 that resource would return if given that input (see [RFC7285]). In
 this case, the server MUST close the Update Stream without sending
 any update events. If the inputs for several POST-mode resources are
 missing or invalid, the server MUST pick one error response and
 return it.

 If a client requests Merge Patch update events for a resource-id, the
 client MUST also request the corresponding full map update events for
 that resource-id.

 If a client requests the full-replacement update event for a

https://datatracker.ietf.org/doc/html/rfc7285#section-10.3
https://datatracker.ietf.org/doc/html/rfc7285#section-10.3
https://datatracker.ietf.org/doc/html/rfc7285

Roome, et al. Expires August 3, 2015 [Page 15]

Internet-Draft ALTO Incremental Updates January 2015

 resource-id, but does not request the Merge Patch update event for
 that resource-id, when that resource changes, the ALTO Server MUST
 send a full-replacement update instead of an incremental update. The
 ALTO Server SHOULD send the full-replacement message soon after the
 change, although the server MAY wait until more changes are
 available. Thus an ALTO Client which declines to accept Merge Patch
 events will not get updates as quickly as a client which does.

6.4. Capabilities and Uses

 The "capabilities" and "uses" fields are the same as for the Full
 Update Stream Service, as described in Section 5.4 and Section 5.5,
 respectively.

6.5. Response

 The format of the response, and the associated rules, are the same as
 for the Full Update Stream Service (Section 5.6), except that the
 ALTO Server SHOULD NOT send an initial full-replacement message for
 any resource for which the version in the "vtags" field of the
 client's input matches the resource's current version.

6.6. Example: Network and Cost Map Updates

 Here is an example of a client's request and the server's immediate
 response, using the Filtered Update Stream resource "my-allresources-
 update-stream" defined in the IRD in Section 8. The client requests
 updates for the Network Map and the "routingcost" Cost Map, but does
 not want updates for the "hopcount" Cost Map. The "vtags" field gives
 the client's version of the Network Map. Because that version is
 still current, the server does not send the full Network Map update
 event at the beginning of the stream. After that, the ALTO Server
 sends updates for the Network Map and "routingcost" Cost Map as they
 become available:

Roome, et al. Expires August 3, 2015 [Page 16]

Internet-Draft ALTO Incremental Updates January 2015

 POST /updates/allresources HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream
 Content-Type: application/alto-updatestreamfilter+json
 Content-Length: ###

 { "update-events": [
 "my-network-map,application/alto-networkmap+json",
 "my-routingcost-map,application/alto-costmap+json",
 "my-routingcost-map,application/merge-patch+json"
],
 "vtags": [
 {"resource-id": "my-network-map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
],
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: my-routingcost-map,application/alto-costmap+json
 data: { ... full Cost Map message ... }

 (pause)

 event: my-routingcost-map,application/merge-patch+json
 data: {"cost-map": {"PID2" : {"PID3" : 31}}}

6.7. Example: Endpoint Property Updates

 As another example, here is how a client can request updates for the
 property "priv:ietf-bandwidth" for a set of endpoints. The ALTO
 Server immediately sends a full-replacement message with the property
 values for all endpoints. After that, the server sends update events
 for the individual endpoints as their property values change.

Roome, et al. Expires August 3, 2015 [Page 17]

Internet-Draft ALTO Incremental Updates January 2015

 POST /updates/allresources HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream
 Content-Type: application/alto-updatestreamfilter+json
 Content-Length: ###

 { "update-events": [
 "my-properties,application/alto-endpointprops+json",
 "my-properties,application/merge-patch+json"
],
 "inputs": {
 "my-properties": {
 "properties" : ["priv:ietf-bandwidth"],
 "endpoints" : [
 "ipv4:1.0.0.1",
 "ipv4:1.0.0.2",
 "ipv4:1.0.0.3"
]
 }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: my-properties,application/alto-endpointprops+json
 data: { "endpoint-properties": {
 data: "ipv4:1.0.0.1" : { "priv:ietf-bandwidth": "13" },
 data: "ipv4:1.0.0.2" : { "priv:ietf-bandwidth": "42" },
 data: "ipv4:1.0.0.3" : { "priv:ietf-bandwidth": "27" }
 data: } }

 (pause)

 event: my-properties,application/merge-patch+json
 data: { "endpoint-properties":
 data: {"ipv4:1.0.0.1" : {"priv:ietf-bandwidth": "3"}}
 data: }

 (pause)

 event: my-properties,application/merge-patch+json
 data: { "endpoint-properties":
 data: {"ipv4:1.0.0.3" : {"priv:ietf-bandwidth": "38"}}
 data: }

Roome, et al. Expires August 3, 2015 [Page 18]

Internet-Draft ALTO Incremental Updates January 2015

7. Client Actions When Receiving Update Messages

 In general, when a client receives a full-replacement update message
 for a resource, the client should replace the current version with
 the new version. When a client receives a Merge Patch update message
 for a resource, the client should apply those patches to the current
 version of the resource.

 However, because resources can depend on other resources (e.g., Cost
 Maps depend on Network Maps), an ALTO Client MUST NOT use a dependent
 resource if the resource on which it depends has changed. There are
 at least two ways a client can do that. We will illustrate these
 techniques by referring to Network and Cost Map messages, although
 these techniques apply to any dependent resources.

 One approach is for the ALTO Client to save the Network Map update
 message in a buffer, and continue to use the previous Network Map,
 and the associated Cost Maps, until the client receives the update
 messages for all dependent Cost Maps. The client then applies all
 Network and Cost Map updates atomically.

 Alternatively, the client MAY update the Network Map immediately. In
 this case, the client MUST mark each dependent Cost Map as
 temporarily invalid, and MUST NOT use that map until the client
 receives a Cost Map update message with the new Network Map version
 tag. Note that the client MUST NOT delete the Cost Maps, because the
 server may send Merge Patch update messages.

 The ALTO Server SHOULD send updates for dependent resources in a
 timely fashion. However, if the client does not receive the expected
 updates, the client MUST close the Update Stream connection, discard
 the dependent resources, and reestablish the Update Stream. If the
 client uses the Filtered Update Stream service, the client MAY retain
 the version tag of the last version of any tagged resources, and give
 those version tags when requesting the new Update Stream. In this
 case, if a version is still current, the ALTO Server will not re-send
 that resource.

 Although not as efficient as possible, this recovery method is simple
 and reliable.

8. IRD Example

 Here is an example of an IRD that offers both regular and Filtered
 Update Stream services. The unfiltered Update Stream provides
 updates for the Network Map and "routingcost" Cost Map. The Filtered
 Update Stream provides update to both those maps, plus the "hopcount"

Roome, et al. Expires August 3, 2015 [Page 19]

Internet-Draft ALTO Incremental Updates January 2015

 Cost Map and the Endpoint Properties service.

 "my-network-map": {
 "uri": "http://alto.example.com/networkmap",
 "media-type": "application/alto-networkmap+json",
 },
 "my-routingcost-map": {
 "uri": "http://alto.example.com/costmap",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-networkmap+json"],
 "capabilities": {
 "cost-type-names": ["num-routingcost"]
 }
 },
 "my-hopcount-map": {
 "uri": "http://alto.example.com/costmap",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-networkmap+json"],
 "capabilities": {
 "cost-type-names": ["num-hopcount"]
 }
 },
 "my-properties": {
 "uri": "http://alto.example.com/properties",
 "media-type": "application/alto-endpointprops+json",
 "accepts": "application/alto-endpointpropparams+json",
 "capabilities": {
 "prop-types": ["priv:ietf-bandwidth"]
 }
 },
 "my-routingcost-update-stream": {
 "uri": "http://alto.example.com/updates/routingcost",
 "media-type": "text/event-stream",
 "uses": ["my-network-map", "my-routingcost-map"],
 "capabilities": {
 "update-events": [
 "my-network-map,application/alto-networkmap+json",
 "my-routingcost-map,application/alto-costmap+json",
 "my-routingcost-map,application/merge-patch+json"
]
 }
 },
 "my-allresources-update-stream": {
 "uri": "http://alto.example.com/updates/allresources",
 "media-type": "text/event-stream",
 "uses": [
 "my-network-map",
 "my-routingcost-map",

Roome, et al. Expires August 3, 2015 [Page 20]

Internet-Draft ALTO Incremental Updates January 2015

 "my-hopcount-map",
 "my-properties"
],
 "accepts": "application/alto-updatestreamfilter+json",
 "capabilities": {
 "update-events": [
 "my-network-map,application/alto-networkmap+json",
 "my-routingcost-map,application/alto-costmap+json",
 "my-routingcost-map,application/merge-patch+json"
 "my-hopcount-map,application/alto-costmap+json",
 "my-hopcount-map,application/merge-patch+json"
 "my-properties,application/alto-endpointprops+json",
 "my-properties,application/merge-patch+json"
]
 }
 }

9. Design Decisions and Discussions

9.1. HTTP2 Server-Push

 An alternative would be to use HTTP 2 Server-Push [I-D-ietf-http2],
 instead of SSE over HTTP 1.1, as the transport mechanism for update
 messages. That would have several advantages: HTTP 2 Server-Push is
 designed to allow a server to send asynchronous messages to the
 client, and HTTP library packages should make it simple for servers
 to send those asynchronous messages, and for clients to receive them.

 The disadvantage is HTTP 2 is a new protocol, and it is considerably
 more complicated than HTTP 1.1. While there is every reason to
 expect that HTTP library packages will eventually support HTTP 2, we
 do not want to delay deployment of an ALTO incremental update
 mechanism until that time.

 Hence we have chosen to base ALTO updates on HTTP 1.1 and SSE. When
 HTTP 2 support becomes ubiquitous, a future extension of this
 document may define updates via HTTP 2 Server-Push.

9.2. Not Allowing Stream Restart

 If an update stream is closed accidentally, when the client
 reconnects, the server must resend the full maps. This is clearly
 inefficient. To avoid that inefficiency, the SSE specification
 allows a server to assign an id to each event. When a client
 reconnects, the client can present the id of the last successfully
 received event, and the server restarts with the next event.

Roome, et al. Expires August 3, 2015 [Page 21]

Internet-Draft ALTO Incremental Updates January 2015

 However, that mechanism adds additional complexity. The server must
 save SSE messages in a buffer, in case clients reconnect. But that
 mechanism will never be perfect: if the client waits too long to
 reconnect, or if the client sends an invalid id, then the server will
 have to resend the complete maps anyway.

 Also, although this is a theoretical inefficiency, in practice it is
 unlikely to be a problem. Clients who want continuous updates for
 large resources, such as full Network and Cost Maps, are likely to be
 things like P2P trackers. These clients will be well connected to
 the network; they will rarely drop connections.

 Mobile devices certainly can and do drop connections, and will have
 to reconnect. But mobile devices will not need continuous updates
 for multi-megabyte Cost Maps. If mobile devices need continuous
 updates at all, they will need them for small queries, such as the
 costs from a small set of media servers from which the device can
 stream the currently playing movie. If the mobile device drops the
 connection and reestablishes the Update Stream, the ALTO Server will
 have to retransmit only a small amount of redundant data.

 In short, using event ids to avoid resending the full map adds a
 considerable amount of complexity to avoid a situation which is
 hopefully very rare. We believe that complexity is not worth the
 benefit.

 The Filtered Update Stream service does allow the client to specify
 the vtag of the last received version of any tagged resource, and if
 that is still current, the server need not retransmit the full
 resource. Hence clients can use this to avoid retransmitting full
 Network Maps. Cost Maps are not tagged, so this will not work for
 them. Of course, the ALTO protocol could be extended by adding
 version tags to Cost Maps, which would solve the retransmission-on-
 reconnect problem. However, adding vtags to Cost Maps might add a
 new set of complications.

9.3. Is Incremental Update Useful for Network Maps?

 It is not clear whether incremental updates (that is, Merge Patch
 updates) are useful for Network Maps. For minor changes, such as
 moving a prefix from one PID to another, they can be useful. But
 more involved changes to the Network Map are likely to be "flag
 days": they represent a completely new Network Map, rather than a
 simple, well-defined change.

 At this point we do not have sufficient experience with ALTO
 deployments to know how frequently Network Maps will change, or how
 extensive those changes will be. For example, suppose a link goes

Roome, et al. Expires August 3, 2015 [Page 22]

Internet-Draft ALTO Incremental Updates January 2015

 down and the network uses an alternative route. This is a frequent
 occurance. If an ALTO Server models that by moving prefixes from one
 PID to another, then Network Maps will change frequently. However,
 an ALTO Server might model that as a change in costs between PIDs,
 rather than a change in the PID definitions. If a server takes that
 approach, simple routing changes will affect Cost Maps, but not
 Network Maps.

 So while we allow a server to use Merge Patch on Network Maps, we do
 not require the server to do so. Each server may decide on its own
 whether to use Merge Patch for Network Maps.

 This is not to say that Network Map updates are not useful. Clearly
 Network Maps will change, and update events are necessary to inform
 clients of the new map.

9.4. Other Incremental Update Message Types

 Other JSON-based incremental update formats have been defined, in
 particular JSON Patch ([RFC6902]). The update events defined in this
 document have the media-type of the update data. JSON Patch has its
 own media type ("application/json-patch+json"), so this update
 mechanism could easily be extended to allow servers to use JSON Patch
 for incremental updates.

 However, we think that JSON Merge Patch is clearly superior to JSON
 Patch for describing incremental updates to Cost Maps, Endpoint
 Costs, and Endpoint Properties. For these data structures, JSON
 Merge Patch is more space-efficient, as well as simpler to apply; we
 see no advantage to allowing a server to use JSON Patch for those
 resources.

 The case is not as clear for incremental updates to Network Maps.
 For example, suppose a prefix moves from one PID to another. JSON
 Patch could encode that as a simple insertion and deletion, while
 Merge Patch would have to replace the entire array of prefixes for
 both PIDs. On the other hand, to process a JSON Patch update, the
 client would have to retain the indexes of the prefixes for each PID.
 Logically, the prefixes in a PID are an unordered set, not an array;
 aside from handling updates, a client has no need to retain the array
 indexes of the prefixes. Hence to take advantage of JSON Patch for
 Network Maps, clients would have to retain additional, otherwise
 unnecessary, data.

 However, it is entirely possible that JSON Patch will be appropriate
 for describing incremental updates to new, as yet undefined ALTO
 resources. In this case, the extensions defining those new resources
 can use the update framework defined in this document, but recommend

https://datatracker.ietf.org/doc/html/rfc6902

Roome, et al. Expires August 3, 2015 [Page 23]

Internet-Draft ALTO Incremental Updates January 2015

 using JSON Patch, or some other method, to describe the incremental
 changes.

10. Security Considerations

 Allowing persistent update stream connections enables a new class of
 Denial-of-Service attacks. An ALTO Server MAY choose to limit the
 number of active streams, and reject new requests when that threshold
 is reached. In this case the server should return the HTTP status
 "503 Service Unavailable".

 Alternatively an ALTO Server MAY return the HTTP status "307
 Temporary Redirect" to redirect the client to another ALTO Server
 which can better handle a large number of update streams.

 This extension does not introduce any privacy issues not already
 present in the ALTO protocol.

11. IANA Considerations

 This document defines a new media-type, "application/
 alto-updatestreamfilter+json", as described in Section 6.3. All
 other media-types used in this document have already been registered,
 either for ALTO or JSON Merge Patch.

 Type name: application

 Subtype name: alto-updatestreamfilter+json

 Required parameters: n/a

 Optional parameters: n/a

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type. See
 [RFC7159].

 Security considerations: Security considerations relating to the
 generation and consumption of ALTO Protocol messages are discussed
 in Section 10 of this document and Section 15 of [RFC7285].

 Interoperability considerations: This document specifies format of
 conforming messages and the interpretation thereof.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7285#section-15

Roome, et al. Expires August 3, 2015 [Page 24]

Internet-Draft ALTO Incremental Updates January 2015

 Published specification: Section 6.3 of this document.

 Applications that use this media type: ALTO servers and ALTO clients
 either stand alone or are embedded within other applications.

 Additional information:

 Magic number(s): n/a

 File extension(s): This document uses the mime type to refer to
 protocol messages and thus does not require a file extension.

 Macintosh file type code(s): n/a

 Person & email address to contact for further information: See
 Authors' Addresses section.

 Intended usage: COMMON

 Restrictions on usage: n/a

 Author: See Authors' Addresses section.

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org).

12. References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, BCP 14, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Burners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

 [RFC6902] Bryan, P. and M. Nottingham, "JavaScript Object Notation
 (JSON) Patch", RFC 6902, April 2013.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7285] Almi, R., Penno, R., Yang, Y., Kiesel, S., Previdi, S.,
 Roome, W., Shalunov, S., and R. Woundy, "Application-Layer
 Traffic Optimization (ALTO) Protocol", RFC 7285,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc6902
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7285

Roome, et al. Expires August 3, 2015 [Page 25]

Internet-Draft ALTO Incremental Updates January 2015

 September 2014.

 [RFC7386] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7386,
 October 2014.

 [I-D-ietf-http2]
 Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol version 2", draft-ietf-httpbis-http2-16 (work in
 progress), November 2014.

 [SSE] Hickson, I., "Server-Sent Events (W3C)", December 2012.

Authors' Addresses

 Wendy Roome
 Alcatel-Lucent/Bell Labs
 600 Mountain Ave, Rm 3B-324
 Murray Hill, NJ 07974
 USA

 Phone: +1-908-582-7974
 Email: w.roome@alcatel-lucent.com

 Xiao Shi
 Yale University
 51 Prospect Street
 New Haven, CT 06511
 USA

 Email: xiao.shi@yale.edu

 Y. Richard Yang
 Yale University
 51 Prospect St
 New Haven CT
 USA

 Email: yang.r.yang@gmail.com

https://datatracker.ietf.org/doc/html/rfc7386
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-16

Roome, et al. Expires August 3, 2015 [Page 26]

