
Internet Engineering Task Force SIMPLE WG
Internet Draft Rosenberg et al.
draft-rosenberg-impp-presence-01.txt Various Places
March 2, 2001
Expires: September 2001

SIP Extensions for Presence

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as work in progress.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document proposes an extension to SIP for subscriptions and
 notifications of user presence. User presence is defined as the
 willingness and ability of a user to communicate with other users on
 the network. Historically, presence has been limited to "on-line" and
 "off-line" indicators; the notion of presence here is broader.
 Subscriptions and notifications of user presence are supported by
 defining an event package within the general SIP event notification
 framework. This protocol is also compliant with the Common Presence
 and Instant Messaging (CPIM) framework.

1 Introduction

 Presence is (indirectly) defined in RFC2778 [1] as subscription to
 and notification of changes in the communications state of a user.

Rosenberg et al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-rosenberg-impp-presence-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2778

Internet Draft presence March 2, 2001

 This communications state consists of the set of communications
 means, communications address, and status of that user. A presence
 protocol is a protocol for providing such a service over the Internet
 or any IP network.

 This document proposes an extension to the Session Initiation
 Protocol (SIP) [2] for presence. This extension is a concrete
 instantiation of the general event notification framework defined for
 SIP [3], and as such, makes use of the SUBSCRIBE and NOTIFY methods
 defined there. User presence is particularly well suited for SIP. SIP
 registrars and location services already hold user presence
 information; it is uploaded to these devices through REGISTER
 messages, and used to route calls to those users. Furthermore, SIP
 networks already route INVITE messages from any user on the network
 to the proxy that holds the registration state for a user. As this
 state is user presence, those SIP networks can also allow SUBSCRIBE
 requests to be routed to the same proxy. This means that SIP networks
 can be reused to establish global connectivity for presence
 subscriptions and notifications.

 This extension is based on the concept of a presence agent, which is
 a new logical entity that is capable of accepting subscriptions,
 storing subscription state, and generating notifications when there
 are changes in user presence. The entity is defined as a logical one,
 since it is generally co-resident with another entity, and can even
 move around during the lifetime of a subscription.

 This extension is also compliant with the Common Presence and Instant
 Messaging (CPIM) framework that has been defined in [4]. This allows
 SIP for presence to easily interwork with other presence systems
 compliant to CPIM.

2 Definitions

 This document uses the terms as defined in [1]. Additionally, the
 following terms are defined and/or additionally clarified:

 Presence User Agent (PUA): A Presence User Agent manipulates
 presence information for a presentity. In SIP terms, this
 means that a PUA generates REGISTER requests, conveying
 some kind of information about the presentity. We
 explicitly allow multiple PUAs per presentity. This means
 that a user can have many devices (such as a cell phone and
 PDA), each of which is independently generating a component
 of the overall presence information for a presentity. PUAs
 push data into the presence system, but are outside of it,
 in that they do not receive SUBSCRIBE messages, or send
 NOTIFY.

Rosenberg et al. [Page 2]

Internet Draft presence March 2, 2001

 Presence Agent (PA): A presence agent is a SIP user agent which
 is capable of receiving SUBSCRIBE requests, responding to
 them, and generating notifications of changes in presence
 state. A presence agent must have complete knowledge of the
 presence state of a presentity. Typically, this is
 accomplished by co-locating the PA with the
 proxy/registrar, or the presence user agent of the
 presentity. A PA is always addressable with a SIP URL.

 Presence Server: A presence server is a logical entity that can
 act as either a presence agent or as a proxy server for
 SUBSCRIBE requests. When acting as a PA, it is aware of the
 presence information of the presentity through some
 protocol means. This protocol means can be SIP REGISTER
 requests, but other mechanisms are allowed. When acting as
 a proxy, the SUBSCRIBE requests are proxied to another
 entity that may act as a PA.

 Presence Client: A presence client is a presence agent that is
 colocated with a PUA. It is aware of the presence
 information of the presentity because it is co-located with
 the entity that manipulates this presence information.

3 Overview of Operation

 In this section, we present an overview of the operation of this
 extension.

 When an entity, the subscriber, wishes to learn about presence
 information from some user, it creates a SUBSCRIBE request. This
 request identifies the desired presentity in the request URI, using
 either a presence URL or a SIP URL. The subscription is carried along
 SIP proxies as any other INVITE would be. It eventually arrives at a
 presence server, which can either terminate the subscription (in
 which case it acts as the presence agent for the presentity), or
 proxy it on to a presence client. If the presence client handles the
 subscription, it is effectively acting as the presence agent for the
 presentity. The decision about whether to proxy or terminate the
 SUBSCRIBE is a local matter; however, we describe one way to effect
 such a configuration, using REGISTER.

 The presence agent (whether in the presence server or presence
 client) first authenticates the subscription, then authorizes it. The
 means for authorization are outside the scope of this protocol, and
 we expect that many mechanisms will be used. Once authorized, the
 presence agent sends a 202 Accepted response. It also sends an
 immediate NOTIFY message containing the state of the presentity. As
 the state of the presentity changes, the PA generates NOTIFYs for all

Rosenberg et al. [Page 3]

Internet Draft presence March 2, 2001

 subscribers.

 The SUBSCRIBE message effectively establishes a session with the
 presence agent. As a result, the SUBSCRIBE can be record-routed, and
 rules for tag handling and Contact processing mirror those for
 INVITE. Similarly, the NOTIFY message is handled in much the same way
 a re-INVITE within a call leg is handled.

4 Naming

 A presentity is identified in the most general way through a presence
 URI [4], which is of the form pres:user@domain. These URIs are
 protocol independent. Through a variety of means, these URIs can be
 resolved to determine a specific protocol that can be used to access
 the presentity. Once such a resolution has taken place, the
 presentity can be addressed with a sip URL of nearly identical form:
 sip:user@domain. The protocol independent form (the pres: URL) can be
 thought of as an abstract name, akin to a URN, which is used to
 identify elements in a presence system. These are resolved to
 concrete URLs that can be used to directly locate those entities on
 the network.

 When subscribing to a presentity, the subscription can be addressed
 using the protocol independent form or the sip URL form. In the SIP
 context, "addressed" refers to the request URI. It is RECOMMENDED
 that if the entity sending a SUBSCRIBE is capable of resolving the
 protocol independent form to the SIP form, this resolution is done
 before sending the request. However, if the entity is incapable of
 doing this translation, the protocol independent form is used in the
 request URI. Performing the translation as early as possible means
 that these requests can be routed by SIP proxies that are not aware
 of the presence namespace.

 The result of this naming scheme is that a SUBSCRIBE request is
 addressed to a user the exact same way an INVITE request would be
 addressed. This means that the SIP network will route these messages
 along the same path an INVITE would travel. One of these entities
 along the path may act as a PA for the subscription. Typically, this
 will either be the presence server (which is the proxy/registrar
 where that user is registered), or the presence client (which is one
 of the user agents associated with that presentity).

 SUBSCRIBE messages also contain logical identifiers that define the
 originator and recipient of the subscription (the To and From header
 fields). Since these identifiers are logical ones, it is RECOMMENDED
 that these use the protocol independent format whenever possible.
 This also makes it easier to interwork with other systems which
 recognize these forms.

Rosenberg et al. [Page 4]

Internet Draft presence March 2, 2001

 The Contact, Record-Route and Route fields do not identify logical
 entities, but rather concrete ones used for SIP messaging. As such,
 they MUST use the SIP URL forms in both SUBSCRIBE and NOTIFY.

5 Presence Event Package

 The SIP event framework [3] defines an abstract SIP extension for
 subscribing to, and receiving notifications of, events. It leaves the
 definition of many additional aspects of these events to concrete
 extensions, also known as event packages. This extension qualifies as
 an event package. This section fills in the information required by
 [3].

5.1 Package Name

 The name of this package is "presence". This name MUST appear within
 the Event header in SUBSCRIBE request and NOTIFY request. This
 section also serves as the IANA registration for the event package
 "presence".

 TODO: Define IANA template in sub-notify and fill it in here.

 Example:

 Event: presence

5.2 SUBSCRIBE bodies

 The body of a SUBSCRIBE request MAY contain a body. The purpose of
 the body depends on its type. In general, subscriptions will normally
 not contain bodies. The request URI, which identifies the presentity,
 combined with the event package name, are sufficient for user
 presence.

 We anticipate that document formats could be defined to act as
 filters for subscriptions. These filters would indicate certain user
 presence events that would generate notifies, or restrict the set of
 data returned in NOTIFY requests. For example, a presence filter
 might specify that the notifications should only be generated when
 the status of the users instant message inbox changes. It might also
 say that the content of these notifications should only contain the
 IM related information.

5.3 Expiration

Rosenberg et al. [Page 5]

Internet Draft presence March 2, 2001

 User presence changes as a result of events that include:

 o Turning on and off of a cell phone

 o Modifying the registration from a softphone

 o Changing the status on an instant messaging tool

 These events are usually triggered by human intervention, and occur
 with a frequency on the order of minutes or hours. As such, it is
 subscriptions should have an expiration in the middle of this range,
 which is roughly one hour. Therefore, the default expiration time for
 subscriptions within this package is 3600 seconds. As per [3], the
 subscriber MAY include an alternate expiration time. Whatever the
 indicated expiration time, the server MAY reduce it but MUST NOT
 increase it.

5.4 NOTIFY Bodies

 The body of the notification contains a presence document. This
 document describes the user presence of the presentity that was
 subscribed to. All subscribers MUST support the presence data format
 described in [fill in with IMPP document TBD], and MUST list its MIME
 type, [fill in with MIME type] in an Accept header present in the
 SUBSCRIBE request.

 Other presence data formats might be defined in the future. In that
 case, the subscriptions MAY indicate support for other presence
 formats. However, they MUST always support and list [fill in with
 MIME type of IMPP presence document] as an allowed format.

 Of course, the notifications generated by the presence agent MUST be
 in one of the formats specified in the Accept header in the SUBSCRIBE
 request.

5.5 Processing Requirements at the PA

 User presence is highly sensitive information. Because the
 implications of divulging presence information can be severe, strong
 requirements are imposed on the PA regarding subscription processing,
 especially related to authentication and authorization.

 A presence agent MUST authenticate all subscription requests. This
 authentication can be done using any of the mechanisms defined for
 SIP. It is not considered sufficient for the authentication to be
 transitive; that is, the authentication SHOULD use an end-to-end
 mechanism. The SIP basic authentication mechanism MUST NOT be used.

Rosenberg et al. [Page 6]

Internet Draft presence March 2, 2001

 It is RECOMMENDED that any subscriptions that are not authenticated
 do not cause state to be established in the PA. This can be
 accomplished by generating a 401 in response to the SUBSCRIBE, and
 then discarding all state for that transaction. Retransmissions of
 the SUBSCRIBE generate the same response, guaranteeing reliability
 even over UDP.

 Furthermore, a PA MUST NOT accept a subscription unless authorization
 has been provided by the presentity. The means by which authorization
 are provided are outside the scope of this document. Authorization
 may have been provided ahead of time through access lists, perhaps
 specified in a web page. Authorization may have been provided by
 means of uploading of some kind of standardized access control list
 document. Back end authorization servers, such as a DIAMETER [5],
 RADIUS [6], or COPS [7], can also be used. It is also useful to be
 able to query the user for authorization following the receipt of a
 subscription request for which no authorization information was
 present. Appendix A provides a possible solution for such a scenario.

 The result of the authorization decision by the server will be
 reject, accept, or pending. Pending occurs when the server cannot
 obtain authorization at this time, and may be able to do so at a
 later time, when the presentity becomes available.

 Unfortunately, if the server informs the subscriber that the
 subscription is pending, this will divulge information about the
 presentity - namely, that they have not granted authorization and are
 not available to give it at this time. Therefore, a PA SHOULD
 generate the same response for both pending and accepted
 subscriptions. This response SHOULD be a 202 Accepted response.

 If the server informs the subscriber that the subscription is
 rejected, this also divulges information about the presentity -
 namely, that they have explicitly blocked the subscription
 previously, or are available at this time and chose to decline the
 subscription. If the policy of the server is not to divulge this
 information, the PA MAY respond with a 202 Accepted response even
 though the subscription is rejected. Alternatively, if the policy of
 the presentity or the PA is that it is acceptable to inform the
 subscriber of the rejection, a 603 Decline SHOULD be used.

 Note that since the response to a subscription does not contain any
 useful information about the presentity, privacy and integrity of
 SUBSCRIBE responses is not deemed important.

5.6 Generation of Notifications

 Upon acceptance of a subscription, the PA SHOULD generate an

Rosenberg et al. [Page 7]

Internet Draft presence March 2, 2001

 immediate NOTIFY with the current presence state of the presentity.

 If a subscription is received, and is marked as pending or was
 rejected, the PA SHOULD generate an immediate NOTIFY. This NOTIFY
 should contain a valid state for the presentity, yet be one which
 provides no useful information about the presentity. An example of
 this is to provide an IM URL that is the same form as the presence
 URL, and mark that IM address as "not available". The reason for this
 process of "lying" is that without it, a subscriber could tell the
 difference between a pending subscription and an accepted
 subscription based on the existence and content of an immediate
 NOTIFY. The approach defined here ensures that the presence delivered
 in a NOTIFY generated by a pending or rejected subscription is also a
 valid one that could have been delivered in a NOTIFY generated by an
 accepted subscription.

 If the policy of the presence server or the presentity is that it is
 acceptable to divulge information about whether the subscription
 succeeded or not, the immediate NOTIFY need not be sent for pending
 or rejected subscriptions.

 Of course, once a subscription is accepted, the PA SHOULD generate a
 NOTIFY for the subscription when it determines that the presence
 state of the presentity has changed. Section 6 describes how the PA
 makes this determination.

 For reasons of privacy, it will frequently be necessary to encrypt
 the contents of the notifications. This can be accomplished using the
 standard SIP encryption mechanisms. The encryption should be
 performed using the key of the subscriber as identified in the From
 field of the SUBSCRIBE. Similarly, integrity of the notifications is
 important to subscribers. As such, the contents of the notifications
 SHOULD be authenticated using one of the standardized SIP mechanisms.
 Since the NOTIFY are generated by the presence server, which may not
 have access to the key of the user represented by the presentity, it
 will frequently be the case that the NOTIFY are signed by a third
 party. It is RECOMMENDED that the signature be by an authority over
 domain of the presentity. In other words, for a user
 pres:user@example.com, the signator of the NOTIFY SHOULD be the
 authority for example.com.

5.7 Rate Limitations on NOTIFY

 For reasons of congestion control, it is important that the rate of
 notifications not become excessive. As a result, it is RECOMMENDED
 that the PA not generate notifications for a single presentity at a
 rate faster than once every 5 seconds.

Rosenberg et al. [Page 8]

Internet Draft presence March 2, 2001

5.8 Refresh Behavior

 Since SUBSCRIBE is routed by proxies as any other method, it is
 possible that a subscription might fork. The result is that it might
 arrive at multiple devices which are configured to act as a PA for
 the same presentity. Each of these will respond with a 202 response
 to the SUBSCRIBE. Based on the forking rules in SIP, only one of
 these responses is passed to the subscriber. However, the subscriber
 will receive notifications from each of those PA which accepted the
 subscriptions. The SIP event framework allows each package to define
 the handling for this case.

 The processing in this case is identical to the way INVITE would be
 handled. The 202 Accepted to the SUBSCRIBE will result in the
 installation of subscription state in the subscriber. The
 subscription is associated with the To and From (both with tags) and
 Call-ID from the 202. When notifications arrive, those from the PA's
 whose 202's were discarded in the forking proxy will not match the
 subscription ID stored at the subscriber (the From tags will differ).
 These SHOULD be responded to with a 481. This will disable the
 subscriptions from those PA. Furthermore, when refreshing the
 subscription, the refresh SHOULD make use of the tags from the 202
 and make use of any Contact or Record-Route headers in order to
 deliver the SUBSCRIBE back to the same PA that sent the 202.

 The result of this is that a presentity can have multiple PAs active,
 but these should be homogeneous, so that each can generate the same
 set of notifications for the presentity. Supporting heterogeneous
 PAs, each of which generated notifications for a subset of the
 presence data, is complex and difficult to manage. If such a feature
 is needed, it can be accomplished with a B2BUA rather than through a
 forking proxy.

6 Publication

 The user presence for a presentity can be obtained from any number of
 different ways. Baseline SIP defines a method that is used by all SIP
 clients - the REGISTER method. This method allows a UA to inform a
 SIP network of its current communications addresses (ie., Contact
 addresses) . Furthermore, multiple UA can independently register
 Contact addresses for the same SIP URL. These Contact addresses can
 be SIP URLs, or they can be any other valid URL.

 Using the register information for presence is straightforward. The
 address of record in the REGISTER (the To field) identifies the
 presentity. The Contact headers define communications addresses that
 describe the state of the presentity. The use of the SIP caller
 preferences extension [8] is RECOMMENDED for use with UAs that are

Rosenberg et al. [Page 9]

Internet Draft presence March 2, 2001

 interested in presence. It provides additional information about the
 Contact addresses that can be used to construct a richer presence
 document. The "description" attribute of the Contact header is
 explicitly defined here to be used as a free-form field that allows a
 user to define the status of the presentity at that communications
 address.

 We also allow REGISTER requests to contain presence documents, so
 that the PUAs can publish more complex information.

 Note that we do not provide for locking mechanisms, which would allow
 a client to lock presence state, fetch it, and update it atomically.
 We believe that this is not neeeded for the majority of use cases,
 and introduces substantial complexity. Most presence operations do
 not require get-before-set, since the SIP register mechanism works in
 such a way that data can be updated without a get.

 The application of registered contacts to presence increases the
 requirements for authenticity. Therefore, REGISTER requests used by
 presence user agents SHOULD be authenticated using either SIP
 authentication mechanisms, or a hop by hop mechanism.

 To indicate presence for instant messaging, the UA MAY either
 register contact addresses that are SIP URLs with the "methods"
 parameter set to indicate the method MESSAGE, or it MAY register an
 IM URL.

 TODO: This section needs work. Need to define a concrete example of
 mapping a register to a presence document, once IMPP generates the
 document format.

6.1 Migrating the PA Function

 It is important to realize that the PA function can be colocated with
 several elements:

 o It can be co-located with the proxy server handling
 registrations for the presentity. In this way, the PA knows
 the presence of the user through registrations.

 o It can be co-located with a PUA for that presentity. In the
 case of a single PUA per presentity, the PUA knows the state
 of the presentity by sheer nature of its co-location.

 o It can be co-located in any proxy along the call setup path.
 That proxy can learn the presence state of the presentity by
 generating its own SUBSCRIBE in order to determine it. In this
 case, the PA is effectively a B2BUA.

Rosenberg et al. [Page 10]

Internet Draft presence March 2, 2001

 Because of the soft-state nature of the subscriptions, it becomes
 possible for the PA function to migrate during the lifetime of a
 subscription. The most workable scenario is for the PA function to
 migrate from the presence server to the PUA, and back.

 Consider a subscription that is installed in a presence server.
 Assume for the moment that the presence server can determine that a
 downstream UA is capable of acting as a PA for the presentity. When a
 subscription refresh arrives, the PA destroys its subscription, and
 then acts as a proxy for the subscription. The subscription is then
 routed to the UA, where it can be accepted. The result is that the
 subscription becomes installed in the PUA.

 For this migration to work, the PUA MUST be prepared to accept
 SUBSCRIBE requests which already contain tags in the To field.
 Furthermore, the PUA MUST insert a Contact header into the 202, and
 this header MUST be used by the subscriber to update the contact
 address for the subscription.

 TODO: Does this work? What about getting a Record-Route in place at
 the PUA. This might only be possible for refreshes that don't use
 Route or tags.

 The presence server determines that a PUA is capable of supporting a
 PA function through the REGISTER message. Specifically, if a PUA
 wishes to indicate support for the PA function, it SHOULD include a
 contact address in its registration with a caller preferences
 "methods" parameter listing SUBSCRIBE.

7 Mapping to CPIM

 This section defines how a SIP for presence messages are converted to
 CPIM, and how a CPIM messages are converted to SIP for presence. SIP
 to CPIM conversion occurs when a SIP system sends a SUBSCRIBE request
 that contains a pres URL or SIP URL that corresponds to a user in a
 domain that runs a different presence protocol. CPIM to SIP involves
 the case where a user in a different protocol domain generates a
 subscription that is destined for a user in a SIP domain.

 Note that the process defined below requires that the gateway store
 subscription state. This unfortunate result is due to the need to
 remember the Call-ID, CSeq, and Route headers for subscriptions from
 the SIP side, so that they can be inserted into the SIP NOTIFY
 generated when a CPIM notification arrives.

7.1 SIP to CPIM

 SIP for presnce is converted to CPIM through a SIP to CPIM abstract

Rosenberg et al. [Page 11]

Internet Draft presence March 2, 2001

 gateway service, depicted in Figure 1.

 +-------------+
 | |
 | SIP to CPIM|
 | Conversion |
 | |
 SIP | | CPIM
 ---------------> | | ---------------->
 | |
 | |
 | |
 | |
 | |
 | |
 +-------------+

 Figure 1: SIP to CPIM Conversion

 The first step is that a SUBSCRIBE request is received at a gateway.
 The gateway generates a CPIM subscription request, with its
 parameters filled in as follows:

 o The watcher identity in the CPIM message is copied from the
 From field of the SUBSCRIBE. If the From field contains a SIP
 URL, it is converted to an equivalent pres URL by dropping all
 SIP URL parameters, and changing the scheme to pres.

 This conversion may not work - what if the SIP URL has
 no user name. Plus, converting from a URL back to a
 URN in this fashion may not do it correctly.

Rosenberg et al. [Page 12]

Internet Draft presence March 2, 2001

 o The target identity in the CPIM message is copied from the
 Request-URI field of the SUBSCRIBE. This may need to be
 converted to a pres URL as well.

 o The duration parameter in the CPIM message is copied from the
 Expires header in the SUBSCRIBE. If the Expires header
 specifies an absolute time, it is converted to a delta-time by
 the gateway. If no Expires header is present, one hour is
 assumed.

 o The transID parameter in the CPIM message is constructed by
 appending the Call-ID, the URI in the To field, the URI in the
 From field, the CSeq and the tag in the From field, and the
 request URI, and computing a hash of the resulting string.
 This hash is used as the transID. Note that the request URI is
 included in the hash. This is to differentiate forked requests
 within the SIP network that may arrive at the same gateway.

 The CPIM service then responds with either a success or failure. In
 the case of success, the SIP to CPIM gateway service generates a 202
 response to the SUBSCRIBE. It adds a tag to the To field in the
 response, which is the same as the transID field in the success
 response. The 202 response also contains a Contact header, which is
 the value of the target from the SUBSCRIBE request. It is important
 that the Contact header be set to the target, since that makes sure
 that subscription refreshes have the same value in the request URI as
 the original subscription. The duration value from the CPIM success
 response is placed into the Expires header of the 202. The gateway
 stores the Call-ID and Route header set for this subscription.

 If the CPIM service responds with a failure, the SIP to CPIM gateway
 generates a 603 response. It adds a tag to the To field in the
 response, which is the same as the transID field in the failure
 response.

 When the CPIM system generates a notification request, the SIP to
 CPIM gateway creates a SIP NOTIFY request. The request is constructed
 using the standard RFC2543 [2] procedures for constructing a request
 within a call leg. This will result in the To field containing the
 watcher field from CPIM, and the From field containing the target
 field from the CPIM notification. The tag in the From field will
 contain the transID. The presence information is copied into the body
 of the notification. The Call-ID and Route headers are constructed
 from the subscription state stored in the gateway. If no notification
 has yet been generated for this subscription, an initial CSeq value

https://datatracker.ietf.org/doc/html/rfc2543

Rosenberg et al. [Page 13]

Internet Draft presence March 2, 2001

 is selected and stored.

 SUBSCRIBE refreshes are handled identically to initial subscriptions
 as above.

 If a subscription is received with an Expires of zero, the SIP to
 CPIM gateway generates an unsubscribe message into the the CPIM
 system. The watcher parameter is copied from the From field of the
 SUBSCRIBE. The target parameter is copied from the Request URI field
 of the SUBSCRIBE. The transID is copied from the tag in the To field
 of the SUBSCRIBE request.

 The response to an unsubscribe is either success or failure. In the
 case of success, a 202 response is constructed in the same fashion as
 above for a success response to a CPIM subscriber. All subscription
 state is removed. In the case of failure, a 603 response is
 constructed in the same fashion as above, and then subscription state
 is removed, if present.

7.2 CPIM to SIP

 CPIM to SIP conversion occurs when a CPIM subscription request
 arrives on the CPIM side of the gateway. This scenario is shown in
 Figure 2.

 The CPIM subscription request is converted into a SIP SUBSCRIBE
 request. To do that, the first step is to determine if the subscribe
 is for an existing subscription. That is done by taking the target in
 the CPIM subscription request, and matching it against targets for
 existing subscriptions. If there are none, it is a new subscription,
 otherwise, its a refresh.

 If its a new subscription, the gateway generates a SIP SUBSCRIBE
 request in the following manner:

 o The From field in the request is set to the watcher field in
 the CPIM subscription request

 o The To field in the request is set to the target field in the
 CPIM subscription request

 o The Expires header in the SUBSCRIBE request is set to the
 duration field in the CPIM subscription request

 o The tag in the From field is set to the transID in the CPIM
 subscription request.

Rosenberg et al. [Page 14]

Internet Draft presence March 2, 2001

 +-------------+
 | |
 | CPIM to SIP |
 | Conversion |
 | |
 SIP SUBSCRIBE | | CPIM subscription request
 <--------------> | | <--------------->
 | |
 | |
 | |
 | |
 | |
 | |
 +-------------+

 Figure 2: CPIM to SIP Conversion

 This SUBSCRIBE message is then sent.

 If the subscription is a refresh, a SUBSCRIBE request is generated in
 the same way. However, there will also be a tag in the To field,
 copied from the subscription state in the gateway, and a Route
 header, obtained from the subscription state in the gateway.

 When a response to the SUBSCRIBE is received, a response is sent to
 the CPIM system. The duration parameter in this response is copied
 from the Expires header in the SUBSCRIBE response (a conversion from
 an absolute time to delta time may be needed). The transID in the
 response is copied from the tag in the From field of the response. If
 the response was 202, the status is set to indeterminate. If the
 response was any other 200 class response, the status is set to
 sucess. For any other final response, the status is set to failure.

 If the response was a 200 class response, subscription state is

Rosenberg et al. [Page 15]

Internet Draft presence March 2, 2001

 established. This state contains the tag from the To field in the
 SUBSCRIBE response, and the Route header set computed from the
 Record-Routes and Contact headers in the 200 class response. The
 subscription is indexed by the presentity identification (the To
 field of the SUBSCRIBE that was generated).

 If an unsubscribe request is received from the CPIM side, the gateway
 checks if the subscription exists. If it does, a SUBSCRIBE is
 generated as described above. However, the Expires header is set to
 zero. If the subscription does not exist, the gateway generates a
 failure response and sends it to the CPIM system. When the response
 to the SUBSCRIBE request arrives, it is converted to a CPIM response
 as described above for the initial SUBSCRIBE response. In all cases,
 any subscription state in the gateway is destroyed.

 When a NOTIFY is received from the SIP system, a CPIM notification
 request is sent. This notification is constructed as follows:

 o The CPIM watcher is set to the URI in the To field of the
 NOTIFY.

 o The CPIM target is set to the URI in the From field of the
 NOTIFY.

 o The transID is computed using the same mechanism as for the
 SUBSCRIBE in Section 7.1

 o The presence component of the notification is extracted from
 the body of the SIP NOTIFY request.

 The gateway generates a 200 response to the SIP NOTIFY and sends it
 as well.

 TODO: some call flow diagrams with the parameters

8 Firewall and NAT Traversal

 It is anticipated that presence services will be used by clients and
 presentities that are connected to proxy servers on the other side of
 firewalls and NATs. Fortunately, since the SIP presence messages do
 not establish independent media streams, as INVITE does, firewall and
 NAT traversal is much simpler than described in [9] and [10].

 Generally, data traverses NATs and firewalls when it is sent over TCP
 or TLS connections established by devices inside the firewall/NAT to
 devices outside of it. As a result, it is RECOMMENDED that SIP for
 presence entities maintain persistent TCP or TLS connections to their
 next hop peers. This includes connections opened to send a SUBSCRIBE,

Rosenberg et al. [Page 16]

Internet Draft presence March 2, 2001

 NOTIFY, and most importantly, REGISTER. By keeping the latter
 connection open, it can be used by the SIP proxy to send messages
 from outside the firewall/NAT back to the client. It is also
 recommended that the client include a Contact cookie as described in
 [10] in their registration, so that the proxy can map the presentity
 URI to that connection.

 Furthermore, entities on either side of a firewall or NAT should
 record-route in order to ensure that the initial connection
 established for the subscription is used for the notifications as
 well.

9 Security considerations

 There are numerous security considerations for presence. Many are
 outlined above; this section considers them issue by issue.

9.1 Privacy

 Privacy encompasses many aspects of a presence system:

 o Subscribers may not want to reveal the fact that they have
 subscribed to certain users

 o Users may not want to reveal that they have accepted
 subscriptions from certain users

 o Notifications (and fetch results) may contain sensitive data
 which should not be revealed to anyone but the subscriber

 Privacy is provided through a combination of hop by hop encryption
 and end to end encryption. The hop by hop mechanisms provide scalable
 privacy services, disable attacks involving traffic analysis, and
 hide all aspects of presence messages. However, they operate based on
 transitivity of trust, and they cause message content to be revealed
 to proxies. The end-to-end mechanisms do not require transitivity of
 trust, and reveal information only to the desired recipient. However,
 end-to-end encryption cannot hide all information, and is susceptible
 to traffic analysis. Strong end to end authentication and encryption
 also requires that both participants have public keys, which is not
 generally the case. Thus, both mechanisms combined are needed for
 complete privacy services.

 SIP allows any hop by hop encryption scheme. It is RECOMMENDED that
 between network servers (proxies to proxies, proxies to redirect
 servers), transport mode ESP [11] is used to encrypt the entire
 message. Between a UAC and its local proxy, TLS [12] is RECOMMENDED.
 Similarly, TLS SHOULD be used between a presence server and the PUA.

Rosenberg et al. [Page 17]

Internet Draft presence March 2, 2001

 The presence server can determine whether TLS is supported by the
 receiving client based on the transport parameter in the Contact
 header of its registration. If that registration contains the token
 "tls" as transport, it implies that the PUA supports TLS.

 Furthermore, we allow for the Contact header in the SUBSCRIBE request
 to contain TLS as a transport. The Contact header is used to route
 subsequent messages between a pair of entities. It defines the
 address and transport used to communicate with the user agent. Even
 though TLS might be used between the subscriber and its local proxy,
 placing this parameter in the Contact header means that TLS can also
 be used end to end for generation of notifications after the initial
 SUBSCRIBE message has been successfully routed. This would provide
 end to end privacy and authentication services with low proxy
 overheads.

 SIP encryption MAY be used end to end for the transmission of both
 SUBSCRIBE and NOTIFY requests. SIP supports PGP based encryption,
 which does not require the establishment of a session key for
 encryption of messages within a given subscription (basically, a new
 session key is established for each message as part of the PGP
 encryption). Work has recently begun on the application of S/MIME
 [13] for SIP.

9.2 Message integrity and authenticity

 It is important for the message recipient to ensure that the message
 contents are actually what was sent by the originator, and that the
 recipient of the message be able to determine who the originator
 really is. This applies to both requests and responses of SUBSCRIBE
 and NOTIFY. This is supported in SIP through end to end
 authentication and message integrity. SIP provides PGP based
 authentication and integrity (both challenge-response and public key
 signatures), and http basic and digest authentication. HTTP Basic is
 NOT RECOMMENDED.

9.3 Outbound authentication

 When local proxies are used for transmission of outbound messages,
 proxy authentication is RECOMMENDED. This is useful to verify the
 identity of the originator, and prevent spoofing and spamming at the
 originating network.

9.4 Replay prevention

 To prevent the replay of old subscriptions and notifications, all
 signed SUBSCRIBE and NOTIFY requests and responses MUST contain a
 Date header covered by the message signature. Any message with a date

Rosenberg et al. [Page 18]

Internet Draft presence March 2, 2001

 older than several minutes in the past, or more than several minutes
 into the future, SHOULD be discarded.

 Furthermore, all signed SUBSCRIBE and NOTIFY requests MUST contain a
 Call-ID and CSeq header covered by the message signature. A user
 agent or presence server MAY store a list of Call-ID values, and for
 each, the higest CSeq seen within that Call-ID. Any message that
 arrives for a Call-ID that exists, whose CSeq is lower than the
 highest seen so far, is discarded.

 Finally, challenge-response authentication (http digest or PGP) MAY
 be used to prevent replay attacks.

9.5 Denial of service attacks

 Denial of service attacks are a critical problem for an open, inter-
 domain, presence protocol. Here, we discuss several possible attacks,
 and the steps we have taken to prevent them.

9.5.1 Smurf attacks through false contacts

 Unfortunately, presence is a good candidate for smurfing attacks
 because of its amplification properties. A single SUBSCRIBE message
 could generate a nearly unending stream of notifications, so long as
 a suitably dynamic source of presence data can be found. Thus, a
 simple way to launch an attack is to send subscriptions to a large
 number of users, and in the Contact header (which is where
 notifications are sent), place the address of the target.

 The only reliable way to prevent these attacks is through
 authentication and authorization. End users will hopefully not accept
 subscriptions from random unrecognized users. Also, the presence
 client software could be programmed to warn the user when the Contact
 header in a SUBSCRIBE is from a domain which does not match that of
 the From field (which identifies the subscriber).

 Also, note that as described in [3], if a NOTIFY is not acknowledged
 or was not wanted, the subscription that generated it is removed.
 This eliminates the amplification properties of providing false
 Contact addresses.

10 Example message flows

 The following subsections exhibit example message flows, to further
 clarify behavior of the protocol.

10.1 Client to Client Subscription with Presentity State Changes

Rosenberg et al. [Page 19]

Internet Draft presence March 2, 2001

 This call flow illustrates subscriptions and notifications that do
 not involve a presence server.

 The watcher subscribes to the presentity, and the subscription is
 accepted, resulting in a 202 Accepted response. The presentity
 subsequently changes state (is on the phone), resulting in a new
 notification. The flow finishes with the watcher canceling the
 subscription.

 Watcher Presentity
 ------- -----------
 | F1 SUBSCRIBE |
 | ----------------------------->|
 | F2 202 Accepted |
 |<------------------------------|
 | F3 NOTIFY |
 |<------------------------------|
 | F4 200 OK |
 |------------------------------>|
 | F5 NOTIFY |
 |<------------------------------|
 | F6 200 OK |
 |------------------------------>|
 | F7 SUBSCRIBE (unsub) |
 |------------------------------>|
 | F8 202 Accepted |
 |<------------------------------|

 Message Details

 F1 SUBSCRIBE watcher -> presentity

 SUBSCRIBE sip:presentity@pres.example.com SIP/2.0
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:presentity@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Expires: 600
 Accept: application/xpidf+xml
 Event: presence
 Contact: sip:user@watcherhost.example.com

Rosenberg et al. [Page 20]

Internet Draft presence March 2, 2001

 F2 202 Accepted presentity->watcher

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:presentity@example.com>;tag=88a7s
 Call-ID: 3248543@watcherhost.example.com
 Cseq: 1 SUBSCRIBE
 Event: presence
 Expires: 600
 Contact: sip:presentity@pres.example.com

 F3 NOTIFY Presentity->watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP pres.example.com:5060
 From: Resource <pres:presentity@example.com>;tag=88a7s
 To: User <pres:user@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq: 1 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:presentity@example.com">
 <tuple destination="sip:presentity@example.com" status="open"/>
 </presence>

 F4 200 OK watcher->presentity

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pres.example.com:5060
 From: Resource <pres:presentity@example.com>
 To: User <pres:user@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq: 1 NOTIFY

Rosenberg et al. [Page 21]

Internet Draft presence March 2, 2001

 F5 NOTIFY Presentity->watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP pres.example.com:5060
 From: Resource <pres:presentity@example.com>
 To: User <pres:user@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq: 2 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:presentity@example.com">
 <tuple destination="sip:presentity@example.com" status="closed"/>
 </presence>

 F6 200 OK watcher->presentity

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pres.example.com:5060
 From: Resource <pres:presentity@example.com>
 To: User <pres:user@example.com>
 Call-ID: 3248543@watcherhost.example.com
 CSeq: 2 NOTIFY

 F7 SUBSCRIBE watcher -> presentity

 SUBSCRIBE sip:presentity@pres.example.com SIP/2.0
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:presentity@example.com>
 Call-ID: 3248543@watcherhost.example.com
 Event: presence
 CSeq : 2 SUBSCRIBE
 Expires: 0
 Accept: application/xpidf+xml
 Contact: sip:user@watcherhost.example.com

Rosenberg et al. [Page 22]

Internet Draft presence March 2, 2001

 F8 202 Accepted presentity->watcher

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:presentity@example.com>
 Call-ID: 3248543@watcherhost.example.com
 Event: presence
 Cseq: 2 SUBSCRIBE
 Expires:0

10.2 Presence Server with Client Notifications

 This call flow shows the involvement of a presence server in the
 handling of subscriptions. In this scenario, the client has indicated
 that it will handle subscriptions and thus notifications. The message
 flow shows a change of presence state by the client and a
 cancellation of the subscription by the watcher.

 Presence
 Watcher Server PUA
 | | F1 REGISTER |
 | |<---------------------|
 | | F2 200 OK |
 | |--------------------->|
 | F3 SUBSCRIBE | |
 |--------------------->| |
 | | F4 SUBSCRIBE |
 | |--------------------->|
 | | F5 202 |
 | |<---------------------|
 | F6 202 | |
 |<---------------------| |
 | F7 NOTIFY | |
 |<--+
 | F8 200 OK | |
 |-->|
 | | F9 REGISTER |
 | |<---------------------|
 | | F10 200 OK |
 | |--------------------->|
 | F11 NOTIFY | |

Rosenberg et al. [Page 23]

Internet Draft presence March 2, 2001

 |<--+
 | F12 200 OK | |
 |-->|

 Message Details

 F1 REGISTER PUA->server

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 2818@pua.example.com
 CSeq: 1 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="open"
 Contact: <sip:id@pua.example.com>;methods="SUBSCRIBE"
 Expires: 600

 F2 200 OK server->PUA

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 2818@pua.example.com
 CSeq: 1 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="open"
 Contact: <sip:id@pua.example.com>;methods="SUBSCRIBE"
 Expires: 600

 F3 SUBSCRIBE watcher->server

Rosenberg et al. [Page 24]

Internet Draft presence March 2, 2001

 SUBSCRIBE sip:resource@example.com SIP/2.0
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:resource@example.com>
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Expires: 600
 Event: presence
 Accept: application/xpidf+xml
 Contact: sip:user@watcherhost.example.com

 F4 SUBSCRIBE server->PUA

 SUBSCRIBE sip:id@pua.example.com SIP/2.0
 Via: SIP/2.0/UDP server.example.com:5060
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:resource@example.com>
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Event: presence
 Expires: 600
 Accept: application/xpidf+xml
 Contact: sip:user@watcherhost.example.com

 F5 202 Accepted PUA->server

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP server.example.com:5060
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Event: presence
 Expires: 600

Rosenberg et al. [Page 25]

Internet Draft presence March 2, 2001

 F6 200 OK server->watcher

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 From: User <pres:user@example.com>
 To: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 SUBSCRIBE
 Event: presence
 Expires: 600

 F7 NOTIFY PUA->watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP pua.example.com:5060
 To: User <pres:user@example.com>
 From: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:resource@example.com">
 <tuple destination="im:resource@example.com" status="open"/>
 </presence>

 F8 200 OK watcher->PUA

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pua.example.com:5060
 To: User <pres:user@example.com>
 From: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 1 NOTIFY

Rosenberg et al. [Page 26]

Internet Draft presence March 2, 2001

 F9 REGISTER PUA->server

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 2818@pua.example.com
 CSeq: 2 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="busy"
 Contact: <sip:id@pua.example.com>;methods="SUBSCRIBE"
 Expires: 600

 F10 200 OK server->PUA

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 2818@pua.example.com
 CSeq: 2 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="busy"
 Contact: <sip:id@pua.example.com>;methods="SUBSCRIBE"
 Expires: 600

 F11 NOTIFY PUA->watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP pua.example.com:5060
 To: User <pres:user@example.com>
 From: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 2 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

Rosenberg et al. [Page 27]

Internet Draft presence March 2, 2001

 <?xml version="1.0"?>
 <presence entityInfo="pres:resource@example.com">
 <tuple destination="im:resource@example.com" status="busy"/>
 </presence>

 F12 200 OK watcher->PUA

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pua.example.com:5060
 To: User <pres:user@example.com>
 From: Resource <pres:resource@example.com>;tag=ffd2
 Call-ID: 32485@watcherhost.example.com
 CSeq : 2 NOTIFY

10.3 Presence Server Notifications

 This message flow illustrates how the presence server can be the
 responsible for sending notifications for a presentity. The presence
 server will do this if the presentity has not sent a registration
 indicating an interest in handling subscriptions. This flow assumes
 that the watcher has previously been authorized to subscribe to this
 resource at the server.

 Watcher Server PUA
 | F1 SUBSCRIBE | |
 |------------------>| |
 | F2 202 Accepted | |
 |<------------------| |
 | F3 NOTIFY | |
 |<------------------| |
 | F4 200 OK | |
 |------------------>| |
 | | F5 REGISTER |
 | |<-------------------|
 | | F6 200 OK |
 | |------------------->|

Rosenberg et al. [Page 28]

Internet Draft presence March 2, 2001

 | F7 NOTIFY | |
 |<------------------| |
 | F8 200 OK | |
 |------------------>| |

 Message Details

 F1 SUBSCRIBE watcher->server

 SUBSCRIBE sip:resource@example.com SIP/2.0
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 To: <pres:resource@example.com>
 From: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 1 SUBSCRIBE
 Event: presence
 Accept: application/xpidf+xml
 Contact: <sip:user@watcherhost.example.com>
 Expires: 600

 F2 202 OK server->watcher

 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP watcherhost.example.com:5060
 To: <pres:resource@example.com>;tag=ffd2
 From: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 1 SUBSCRIBE
 Event: presence
 Expires: 600
 Contact: sip:example.com

 F3 NOTIFY server-> watcher

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP server.example.com:5060

Rosenberg et al. [Page 29]

Internet Draft presence March 2, 2001

 From: <pres:resource@example.com>;tag=ffd2
 To: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 Event: presence
 CSeq: 1 NOTIFY
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:resource@example.com">
 <tuple destination="im:resource@example.com" status="open"/>
 </presence>

 F4 200 OK

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP server.example.com:5060
 From: <pres:resource@example.com>;tag=ffd2
 To: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 1 NOTIFY

 F5 REGISTER

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 110@pua.example.com
 CSeq: 2 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ;description="Away from keyboard"
 Expires: 600

Rosenberg et al. [Page 30]

Internet Draft presence March 2, 2001

 F6 200 OK

 Via: SIP/2.0/UDP pua.example.com:5060
 To: <sip:resource@example.com>
 From: <sip:resource@example.com>
 Call-ID: 110@pua.example.com
 CSeq: 2 REGISTER
 Contact: <sip:id@pua.example.com>;methods="MESSAGE"
 ; description="Away from keyboard"
 ; expires=600

 F7 NOTIFY

 NOTIFY sip:user@watcherhost.example.com SIP/2.0
 Via: SIP/2.0/UDP server.example.com:5060
 From: <pres:resource@example.com>;tag=ffd2
 To: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 2 NOTIFY
 Event: presence
 Content-Type: application/xpidf+xml
 Content-Length: 120

 <?xml version="1.0"?>
 <presence entityInfo="pres:resource@example.com">
 <tuple destination="im:resource@example.com" status="Away from
keyboard"/>
 </presence>

 F8 200 OK

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP server.example.com:5060
 From: <sip:resource@example.com>;tag=ffd2
 To: <pres:user@example.com>
 Call-ID: 2010@watcherhost.example.com
 CSeq: 2 NOTIFY

Rosenberg et al. [Page 31]

Internet Draft presence March 2, 2001

11 Open Issues

 The following is the list of known open issues:

 o This draft recommends that the To and From field are populated
 with presence URLs rather than sip URLs. Is that reasonable?
 Will this lead to incompatibilities in proxies? Is there any
 issues with CPIM if the SIP URL format is used? This depends
 on what components of a message are signed in CPIM.

 o Rate limitations on NOTIFY: do we want that? How do we pick a
 value? 5 seconds is arbitrary.

 o Merging of presence data from multiple PA has been removed. Is
 that OK?

 o Placing IM URLs in the Contact header of a REGISTER: is that
 OK? What does it mean?

 o The process of migrating subscriptions from a presence server
 to PUA is not likely to work in the case where subscription
 refreshes use tags and Route headers. So, we have a choice.
 Either migration is disallowed, and we keep with leg oriented
 subscriptions, or migration is allowed, and there is no tags
 or Route's associated with subscriptions.

 o Converting SIP URLs back to pres URLs.

 o The SIP to CPIM and CPIM to SIP gateways are not stateless,
 because of the need to maintain Route, Call-ID, CSeq, and
 other parameters. Perhaps we can ask CPIM to define a token
 value which is sent in a CPIM request and returned in a CPIM
 response. Would that help?

 o Need to specify how to take Contacts from REGISTER and build a
 presence document. One obvious thing is that the contact
 addresses don't go in there directly; you probably want to put
 the address of record, otherwise calls might not go through
 the proxy.

12 Changes from -00

 The document has been completely rewritten, to reflect the change
 from a sales pitch and educational document, to a more formal
 protocol specification. It has also been changed to align with the
 SIP event architecture and with CPIM. The specific protocol changes
 resulting from this rewrite are:

Rosenberg et al. [Page 32]

Internet Draft presence March 2, 2001

 o The Event header must now be used in the SUBSCRIBE and NOTIFY
 requests.

 o The SUBSCRIBE message can only have a single Contact header.
 -00 allowed for more than one.

 o The From and To headers can contain presence URIs.

 o The Request-URI can contain a presence URI.

 o Subscriptions are responded to with a 202 if they are pending
 or accepted.

 o Presence documents are not returned in the body of the
 SUBSCRIBE response. Rather, they are sent in a separate
 NOTIFY. This more cleanly separates subscription and
 notification, and is mandated by alignment with CPIM.

 o Authentication is now mandatory at the PA. Authorization is
 now mandatory at the PA.

 o Fake NOTIFY is sent for pending or rejected subscriptions.

 o A rate limit on notifications was introduced.

 o Merging of presence data has been removed.

 o The subscriber rejects notifications received with tags that
 don't match those in the 202 response to the SUBSCRIBE. This
 means that only one PA will hold subscription state for a
 particular subscriber for a particular presentity.

 o IM URLs allowed in Contacts in register

 o CPIM mappings defined.

 o Persistent connections recommended for firewall traversal.

 Obtaining Authorization

 When a subscription arrives at a PA, the subscription needs to be
 authorized by the presentity. In some cases, the presentity may have
 provided authorization ahead of time. However, in many cases, the
 subscriber is not pre-authorized. In that case, the PA needs to query
 the presentity for authorization.

 In order to do this, we define an implicit subscription at the PA.
 This subscription is for a virtual presentity, which is the "set of

Rosenberg et al. [Page 33]

Internet Draft presence March 2, 2001

 subscriptions for presentity X", and the subscriber to that virtual
 presentity is X itself. Whenever a subscription is received for X,
 the virtual presentity changes state to reflect the new subscription
 for X. This state changes for subscriptions that are approved and for
 ones that are pending. As a result of this, when a subscription
 arrives for which authorization is needed, the state of the virtual
 presentity changes to indicate a pending subscription. The entire
 state of the virtual presentity is then sent to the subscriber (the
 presentity itself). This way, the user behind that presentity can see
 that there are pending subscriptions. It can then use some non-SIP
 means to install policy in the server regarding this new user. This
 policy is then used to either accept or reject the subscription.

 A call flow for this is shown in Figure 3.

 In the case where the presentity is not online, the problem is also
 straightforward. When the user logs into their presence client, it
 can fetch the state of the virtual presentity for X, check for
 pending subscriptions, and for each of them, upload a new policy
 which indicates the appropriate action to take.

 A data format to represent the state of these virtual presentities
 can be found in [14].

A Acknowledgements

 We would like to thank the following people for their support and
 comments on this draft:

 Rick Workman Nortel
 Adam Roach Ericsson
 Sean Olson Ericsson
 Billy Biggs University of Waterloo
 Stuart Barkley UUNet
 Mauricio Arango SUN
 Richard Shockey Shockey Consulting LLC
 Jorgen Bjorkner Hotsip
 Henry Sinnreich MCI Worldcom
 Ronald Akers Motorola

B Authors Addresses

 Jonathan Rosenberg

Rosenberg et al. [Page 34]

Internet Draft presence March 2, 2001

 | SUBSCRIBE X | |
 | -------------------> | |
 | | |
 | 202 Accepted | |
 | <------------------- | NOTIFY X-subscriptions|
 | |---------------------->|
 | | |
 | | 200 OK |
 | |<----------------------|
 | | |
 | | |
 | | HTTP POST w/ policy |
 | |<----------------------|
 | | |
 | | 200 OK |
 | |---------------------->|
 | | |
 | | |
 | | |

 Figure 3: Sequence diagram for online authorization

Rosenberg et al. [Page 35]

Internet Draft presence March 2, 2001

 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Dean Willis
 dynamicsoft
 5100 Tennyson Parkway
 Suite 1200
 Plano, Texas 75024
 email: dwillis@dynamicsoft.com

 Robert Sparks
 dynamicsoft
 5100 Tennyson Parkway
 Suite 1200
 Plano, Texas 75024
 email: rsparks@dynamicsoft.com

 Ben Campbell
 5100 Tennyson Parkway
 Suite 1200
 Plano, Texas 75024
 email: bcampbell@dynamicsoft.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

 Jonathan Lennox
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: lennox@cs.columbia.edu

 Christian Huitema
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399
 email: huitema@microsoft.com

 Bernard Aboba
 Microsoft Corporation

Rosenberg et al. [Page 36]

Internet Draft presence March 2, 2001

 One Microsoft Way
 Redmond, WA 98052-6399
 email: bernarda@microsoft.com

 David Gurle
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399
 email: dgurle@microsoft.com

 David Oran
 Cisco Systems
 170 West Tasman Dr.
 San Jose, CA 95134
 email: oran@cisco.com

C Bibliography

 [1] M. Day, J. Rosenberg, and H. Sugano, "A model for presence and
 instant messaging," Request for Comments 2778, Internet Engineering
 Task Force, Feb. 2000.

 [2] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Request for Comments 2543, Internet
 Engineering Task Force, Mar. 1999.

 [3] A. Roach, "Event notification in SIP," Internet Draft, Internet
 Engineering Task Force, Oct. 2000. Work in progress.

 [4] D. Crocker et al. , "A common profile for instant messaging
 (CPIM)," Internet Draft, Internet Engineering Task Force, Nov. 2000.
 Work in progress.

 [5] P. Calhoun, A. Rubens, H. Akhtar, and E. Guttman, "DIAMETER base
 protocol," Internet Draft, Internet Engineering Task Force, Sept.
 2000. Work in progress.

 [6] C. Rigney, S. Willens, A. Rubens, and W. Simpson, "Remote
 authentication dial in user service (RADIUS)," Request for Comments
 2865, Internet Engineering Task Force, June 2000.

 [7] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan, and A.
 Sastry, "The COPS (common open policy service) protocol," Request for
 Comments 2748, Internet Engineering Task Force, Jan. 2000.

Rosenberg et al. [Page 37]

Internet Draft presence March 2, 2001

 [8] H. Schulzrinne and J. Rosenberg, "SIP caller preferences and
 callee capabilities," Internet Draft, Internet Engineering Task
 Force, July 2000. Work in progress.

 [9] J. Rosenberg, D. Drew, and H. Schulzrinne, "Getting SIP through
 firewalls and NATs," Internet Draft, Internet Engineering Task Force,
 Feb. 2000. Work in progress.

 [10] J. Rosenberg and H. Schulzrinne, "SIP traversal through
 enterprise and residential NATs and firewalls," Internet Draft,
 Internet Engineering Task Force, Nov. 2000. Work in progress.

 [11] S. Kent and R. Atkinson, "IP encapsulating security payload
 (ESP)," Request for Comments 2406, Internet Engineering Task Force,
 Nov. 1998.

 [12] T. Dierks and C. Allen, "The TLS protocol version 1.0," Request
 for Comments 2246, Internet Engineering Task Force, Jan. 1999.

 [13] B. Ramsdell and Ed, "S/MIME version 3 message specification,"
 Request for Comments 2633, Internet Engineering Task Force, June
 1999.

 [14] J. Rosenberg et al. , "An XML based format for watcher
 information," Internet Draft, Internet Engineering Task Force, June
 2000. Work in progress.

 Table of Contents

1 Introduction .. 1
2 Definitions ... 2
3 Overview of Operation 3
4 Naming .. 4
5 Presence Event Package 5
5.1 Package Name .. 5
5.2 SUBSCRIBE bodies 5
5.3 Expiration .. 5
5.4 NOTIFY Bodies 6
5.5 Processing Requirements at the PA 6
5.6 Generation of Notifications 7
5.7 Rate Limitations on NOTIFY 8
5.8 Refresh Behavior 9

Rosenberg et al. [Page 38]

Internet Draft presence March 2, 2001

6 Publication ... 9
6.1 Migrating the PA Function 10
7 Mapping to CPIM 11
7.1 SIP to CPIM ... 11
7.2 CPIM to SIP ... 14
8 Firewall and NAT Traversal 16
9 Security considerations 17
9.1 Privacy ... 17
9.2 Message integrity and authenticity 18
9.3 Outbound authentication 18
9.4 Replay prevention 18
9.5 Denial of service attacks 19
9.5.1 Smurf attacks through false contacts 19
10 Example message flows 19

 10.1 Client to Client Subscription with Presentity
 State Changes .. 19

10.2 Presence Server with Client Notifications 23
10.3 Presence Server Notifications 28
11 Open Issues ... 32
12 Changes from -00 32
A Acknowledgements 34
B Authors Addresses 34
C Bibliography .. 37

Rosenberg et al. [Page 39]

