
Internet Engineering Task Force MIDCOM WG
Internet Draft J. Rosenberg
 dynamicsoft
 J. Weinberger
 dynamicsoft
 C. Huitema
 Microsoft
 R. Mahy
 Cisco
draft-rosenberg-midcom-stun-01.txt
March 1, 2002
Expires: September 2002

STUN - Simple Traversal of UDP Through NATs

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 To view the list Internet-Draft Shadow Directories, see
http://www.ietf.org/shadow.html.

Abstract

 Simple Traversal of UDP Through NATs (STUN) is a lightweight protocol
 that allows applications to discover the presence and types of
 Network Address Translators (NATs) and firewalls between them and the
 public Internet. It also provides the ability for applications to
 determine the public IP addresses allocated to them by the NAT. STUN
 works with nearly all existing NATs, and does not require any special
 behavior from them. As a result, it allows a wide variety of
 applications to work through existing NAT infrastructure. The STUN

J. Rosenberg et. al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-rosenberg-midcom-stun-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft stun March 1, 2002

 protocol is very simple, being almost identical to echo.

J. Rosenberg et. al. [Page 2]

Internet Draft stun March 1, 2002

 Table of Contents

1 Introduction .. 4
2 Terminology ... 5
3 Definitions ... 5
4 NAT Variations 5
5 Overview of Operation 6
6 Message Overview 9
7 Server Behavior 10
8 Client Behavior 12
8.1 Discovery ... 12
8.2 Formulating the Request 14
8.3 Authenticating the Response 14
9 Use Cases ... 15
9.1 Discovery Process 15
9.2 Binding Lifetime Discovery 16
9.3 Binding Acquisition 17
10 Protocol Details 18
10.1 Message Header 18
10.2 Message Attributes 18
10.2.1 MAPPED-ADDRESS 19
10.2.2 RESPONSE-ADDRESS 20
10.2.3 CHANGED-ADDRESS 20
10.2.4 FLAGS ... 20
10.2.5 SOURCE-ADDRESS 21
10.2.6 CMS-SIGNED-DATA 21
10.2.7 COOKIE .. 21
11 Security Considerations 22
12 IANA Considerations 23
13 IAB Considerations 23
13.1 Problem Definition 23
13.2 Exit Strategy 23
13.3 Brittleness Introduced by STUN 24
13.4 Requirements for a Long Term Solution 25
13.5 Issues with Existing NAPT Boxes 26
13.6 In Closing .. 27
14 Acknowledgements 27
15 Authors Addresses 27
16 Normative References 28
17 Informative References 28

J. Rosenberg et. al. [Page 3]

Internet Draft stun March 1, 2002

1 Introduction

 Network Address Translators (NATs), while providing many benefits,
 also come with many drawbacks. The most troublesome of those
 drawbacks is the fact that they break many existing IP applications,
 and make it difficult to deploy new ones. Guidlines have been
 developed [4] that describe how to build "NAT friendly" protocols,
 but many protocols simply cannot be constructed according to those
 guidelines. Examples of such protocols include almost all peer-to-
 peer protocols, such as multimedia communications, file sharing and
 games.

 To combat that problem, Application Layer Gateways (ALGs) have been
 embedded in NATs. ALGs perform the application layer functions
 required for a particular protocol to traverse a NAT. Typically, this
 involves rewriting messages to contain translated addresses, rather
 than the ones inserted by the sender of the protocol message. ALGs
 have serious limitations, including scalability, reliability, and
 speed of deploying new applications. To resolve these problems, the
 Middlebox Communciations (MIDCOM) protocol is being developed [5].
 MIDCOM allows an application entity, such as an end client or network
 server of some sort (like a SIP proxy [6]) to control a NAT (or
 firewall), in order to obtain NAT bindings and open or close
 pinholes. In this way, NATs and applications can be separated once
 more, eliminating the need for embedding ALGs in NATs, and resolving
 the limitations imposed by current architectures.

 Unfortunately, MIDCOM requires upgrades to existing NAT and
 firewalls, in addition to application components. Complete upgrades
 of these NAT and firewall products will take a long time, potentially
 years. This is due, in part, to the fact that the deployers of NAT
 and firewalls are not the same people who are deploying and using
 applications. As a result, the incentive to upgrade these devices
 will be low in many cases. Consider, for example, an airport Internet
 lounge that provides access with a NAT. A user connecting to the
 natted network may wish to use a peer-to-peer service, but cannot,
 because the NAT doesn't support it. Since the administrators of the
 lounge are not the ones providing the service, they are not motivated
 to upgrade their NAT equipment to support it, using either an ALG, or
 MIDCOM.

 Another problem is that the MIDCOM protocol requires that the agent
 controlling the middleboxes know the identity of those middleboxes,
 and have a relationship with them which permits control. In many
 configurations, this will not be possible. For example, many cable
 access providers use NAT in front of their entire access network.
 This NAT could be in addition to a residential NAT purchased and
 operated by the end user. The end user will probably not have a

J. Rosenberg et. al. [Page 4]

Internet Draft stun March 1, 2002

 control relationship with the NAT in the cable access network, and
 may not even know of its existence.

 Many existing proprietary protocols, such as those for online games
 (such as the games described in RFC 3027 [7]) and Voice over IP, have
 developed tricks that allow them to operate through NATs without
 changing those NATs. This draft is an attempt to take some of those
 ideas, and codify them into an interoperable protocol that can meet
 the needs of many applications.

 The protocol described here, Simple Traversal of UDP Through NAT
 (STUN), provides is an extremely simple protocol that allows entities
 behind a NAT to first discover the presence of a NAT and the type of
 NAT, and then to learn the addresses bindings allocated by the NAT.
 STUN requires no changes to NATs, and works with an arbitrary number
 of NATs in tandem between the application entity and the public
 Internet.

2 Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [1] and
 indicate requirement levels for compliant STUN implementations.

3 Definitions

 STUN Client: A STUN client (also just referred to as a client)
 is an entity that generates STUN requests. A STUN client
 can execute on an end system, such as a users PC, or can
 run in a network element, such as a server.

 STUN Server: A STUN Server (also just referred to as a server)
 is an entity that receives STUN requests, and sends STUN
 responses. STUN servers are generally attached to the
 public Internet. STUN servers are stateless.

4 NAT Variations

 It is assumed that the reader is familiar with NATs. It has been
 observed that NAT treatment of UDP is variable amongst
 implementations. The four treatments observed in implementations are:

 Full Cone: A full cone NAT is one where all requests from the
 same internal IP address and port are mapped to the same
 external IP address and port. Furthermore, any external
 host can send a packet to the internal host, by sending a
 packet to the mapped external address.

https://datatracker.ietf.org/doc/html/rfc3027
https://datatracker.ietf.org/doc/html/rfc2119

J. Rosenberg et. al. [Page 5]

Internet Draft stun March 1, 2002

 Restricted Cone: A restricted cone NAT is one where all requests
 from the same internal IP address and port are mapped to
 the same external IP address and port. Unlike a full cone
 NAT, an external host (with IP address X) can send a packet
 to the internal host only if the internal host had
 previously sent a packet to IP address X.

 Port Restricted Cone: A port restricted cone NAT is like a
 restricted cone NAT, but the restriction includes port
 numbers. Specifically, an external host can send a packet,
 with source IP address X and source port P, to the internal
 host only if the internal host had previously sent a packet
 to IP address X and port P.

 Symmetric: A symmetric NAT is one where all requests from the
 same internal IP address and port, to a specific
 destination IP address and port, are mapped to the same
 external IP address and port. If the same host sends a
 packet with the same source address and port, but to a
 different destination, a different mapping is used.
 Furthermore, only the external host that receives a packet
 can send a UDP packet back to the internal host.

 Determining the type of NAT is important in many cases. Depending on
 what the application wants to do, the particular behavior may need to
 be taken into account.

5 Overview of Operation

 This section is descriptive only. Normative behavior is described in
 Sections 7 and 8.

 The typical STUN configuration is shown in Figure 1. A STUN client is
 connected to private network 1. This network connects to private
 network 2 through NAT 1. Private network 2 connects to the public
 Internet through NAT 2. On the public Internet is a STUN server.

 STUN is a simple client-server protocol. Its operation is trivial. A
 client sends a request to a server. The server examines the source IP
 address and port of the request, and copies them into a response that
 is sent back to the client. There are some parameters in the request
 that allow the client to ask that the response be sent elsewhere, or
 that the server send the response from a different address and port.
 There are also security capabilities that allow the server to sign
 the response. Thats it.

 The trick is using this simple protocol to discover the presence of

J. Rosenberg et. al. [Page 6]

Internet Draft stun March 1, 2002

 /-----\
 // STUN \\
 | Server |
 \\ //
 \-----/

 +--------------+ Public Internet
 | NAT 2 |.......................
 +--------------+

 +--------------+ Private NET 2
 | NAT 1 |.......................
 +--------------+

 /-----\
 // STUN \\
 | Client |
 \\ // Private NET 1
 \-----/

 Figure 1: STUN Configuration

 nats, and to learn and use the bindings they allocate.

 The STUN client is typically embedded in an application which needs
 to obtain a public IP address and port that can be used to receive
 data. For example, it might need to obtain an IP address and port to
 receive RTP [8] traffic. When the application starts, the STUN client
 within the application sends a STUN request to its STUN server. STUN
 servers are discovered through DNS SRV records [2], and is generally
 assumed that the client is configured with the domain to use to find
 the STUN server. Generally, this will be the domain of the provider
 of the service the application is using (such a provider is incented
 to deploy STUN servers in order to allow its customers to use its

J. Rosenberg et. al. [Page 7]

Internet Draft stun March 1, 2002

 application through NAT).

 The STUN request is used to discover the presence of a NAT, and to
 discover the public IP address and port mappings generated by the
 NAT. Requests are sent to the STUN server using UDP. When a request
 arrives at the STUN server, it may have passed through one or more
 NATs between the STUN client and the STUN server. As a result, the
 source address of the request received by the server will be the
 mapped address created by the nat closest to the server. The STUN
 server copies that source IP address and port into a STUN response,
 and sends it back to the source IP address and port of the STUN
 request. For all of the NAT types above, this response will arrive at
 the STUN client.

 When the STUN client receives the STUN response, it compares the IP
 address and port in the packet with the local IP address and port it
 bound to when the request was sent. If these do not match, the STUN
 client is behind one or more NATs. In the case of a full-cone NAT,
 the IP address and port in the body of the STUN response are public,
 and can be used by any host on the public Internet to send packets to
 the application that sent the STUN request. An application need only
 listen on the IP address and port from which the STUN request was
 sent, and send the IP address and port learned in the STUN response
 to hosts that wish to communicate with it.

 Of course, the host may not be behind a full-cone NAT. Indeed, it
 doesn't yet know what type of NAT it is behind. To determine that,
 the client uses additional STUN requests. The exact procedure is
 flexible, but would generally work as follows. The client would send
 a second STUN request, this time to a different STUN server, but from
 the same source IP address and port. If the IP address and port in
 the response are different from those in the first response, the
 client knows it is behind a symmetric NAT. To determine if its behind
 a full-cone NAT, the client can send a STUN request with flags that
 tell the STUN server to send a response from a different IP address
 and port than the request was received on. In other words, if the
 client sent a request to IP address/port A/B using a source IP
 address/port of X/Y, the STUN server would send the response to X/Y
 using source IP address/port C/D. If the client receives this
 response, it knows it is behind a full cone NAT.

 STUN also allows the client to ask the server to send the response
 from the same IP address the request was received on, but with a
 different port. This can be used to detect whether the client is
 behind a port restricted cone nat or just a restricted cone nat.

 It should be noted that the configuration in Figure 1 is not the only
 permissible configuration. The STUN server can be located anywhere,

J. Rosenberg et. al. [Page 8]

Internet Draft stun March 1, 2002

 including within another client. The only requirement is that the
 STUN server is reachable at a public IP address.

6 Message Overview

 STUN messages are TLV (type-length-value) encoded using big endian
 (network ordered) binary. All STUN messages start with a STUN header,
 followed by a series of STUN attributes. The STUN header contains a
 STUN message type, transaction ID, and length. The message type can
 be request or response. The transaction ID is used to correlate
 requests and responses. The length indicates the total length of the
 STUN message. This allows STUN to run over TCP. Usage over TCP is
 needed in order to fetch certificates from the server.

 Several STUN attributes are defined. The first is a MAPPED-ADDRESS
 attribute, which is an IP address and port. It is always placed in
 the response, and it indicates the source IP address and port the
 server saw in the request. There is also a RESPONSE-ADDRESS
 attribute, which is also an IP address and port. The RESPONSE-ADDRESS
 attribute can be present in the request, and indicates where the
 response is to be sent. Its optional, and when not present, the
 response is sent to the source IP address and port of the request.

 The third attribute is the FLAGS attribute, and it contains boolean
 flags to control behavior. Three flags are defined: "discard",
 "change IP" and "change port". The FLAG attribute is allowed only in
 the request. The discard attribute tells the server to not send a
 reply. The change IP and change port attributes are useful for
 determining whether the client is behind a restricted cone nat or
 restricted port cone nat. They instruct the server to send the
 responses from a different source IP address and port. The FLAGS
 attribute is optional in the request.

 The fourth attribute is the CHANGED-ADDRESS attribute. It is present
 in all responses. It informs the client of the source IP address and
 port that would be used if the client requested the "change IP" and
 "change port" behavior.

 The fifth attribute is the SOURCE-ADDRESS attribute. It is only
 present in responses. It indicates the source IP address and port
 where the response was sent from. It is useful for detecting twice
 NAT configurations.

 The final two attributes provide security features. The SMS-SIGNED-
 DATA attribute allows the server to provide a signature over its
 response. This is useful for preventing several address-stealing
 attacks that would otherwise be possible. See Section 11 for details
 on the types of attacks possible. The COOKIE attribute enables a

J. Rosenberg et. al. [Page 9]

Internet Draft stun March 1, 2002

 four-way handshake between the client and the server for preventing
 distributed denial-of-service attacks. When the server receives a
 request without this cookie, or with an invalid one, it generates a
 response that contains the cookie attribute. The client then retries
 the request, including the cookie attribute. If the server receives a
 request with a valid cookie attribute, it continues to process the
 request.

7 Server Behavior

 If the request contains the flag attribute, and the discard flag is
 true, the server MUST discard the request.

 The server MUST generate a single response when a request is received
 (assuming the request is not discarded). The response MUST contain
 the same transaction ID contained in the request. The length in the
 message header MUST contain the total length of the message in bytes,
 excluding the header. The response MUST have a message type of
 "Response".

 The server MUST add a MAPPED-ADDRESS attribute to the response. The
 IP address component of this attribute MUST be set to the source IP
 address observed in the request. The port component of this attribute
 MUST be set to the source port observed in the query request.

 If the request arrived over TCP, the response MUST be sent on the
 same connection the request was received on. The server MAY close the
 connection after sending the response, but SHOULD instead wait for
 the client to close the connection.

 If the request arrived over UDP, the procedures for sending the
 response are as follows.

 If the RESPONSE-ADDRESS attribute was absent from the Query request,
 the destination address and port of the response MUST be the same as
 the source address and port of the request. Otherwise, the
 destination address and port of the response MUST be the value of the
 IP address and port in the RESPONSE-ADDRESS attribute.

 The source address and port of the response are computed as follows.
 If the "change port" FLAG was set in the request, and the "change IP"
 flag was not set, the source port of the response MUST NOT be the
 same as the destination port of the query request, and the source
 address of the response MUST be the same as the destination address
 of the request. If the "change IP" FLAG was set in the request, and
 the "change port" flag was not set, the source IP address of the
 response MUST NOT be the same as the destination IP address of the
 query request, and the source port of the response MUST be the same

J. Rosenberg et. al. [Page 10]

Internet Draft stun March 1, 2002

 as the destination port of the request. When both flags are set, both
 the source port and source address MUST be different. Furthermore,
 the source port MUST be the same as if the the "change port" flag
 alone was present in the request, and the source address MUST be the
 same as if the "change IP" flag alone was present in the request. The
 result is that if the source port differs from the received port, it
 is the same independently of whether the source IP address is
 different from the received IP address. Exactly how this is
 implemented is a local decision.

 The server MUST add a SOURCE-ADDRESS attribute to the response,
 containing the address and port used to send the response.

 The server MUST add a CHANGED-ADDRESS attribute to the response. This
 contains the source IP address and port that would be used if the
 client requested the "change IP" and "change port" capabilities of
 the server. This address MUST be invariant across requests with the
 same source IP address and port for a duration of 10 minutes. In
 other words, if the client sends a request from a particular socket,
 and the response contains a specific CHANGED-ADDRESS, subsequent
 requests from the same socket should return the same CHANGED-ADDRESS.

 One potential way to implement the change-IP feature is for the
 server to generate its own request, and send it to another server,
 running on a different host. That request is the same as the request
 received by the first server, except that a RESPONSE-ADDRESS
 attribute has been added, containing the source address and port of
 the original request. If the server receives a request with a
 RESPONSE-ADDRESS attribute, it must send the response to the address
 and port in that attribute. The second server will therefore send the
 response back to the original client. Since the response is sent by a
 different server, the IP address and port are different. This is
 shown in Figure 2.

 The server can optionally sign the response, in order to provide
 additional security capabilities. The signature SHOULD NOT be present
 if the request did not contain a valid COOKIE attribute. Valid, in
 this case, means that the COOKIE was equal to a value previously
 handed out by the server to the same client. See subsequent
 paragraphs for more details. To sign the response, the server adds a
 CMS-SIGNED-DATA attribute as the last attribute in the response. If
 the response is sent over UDP (which it will, if the request came
 over UDP), the SignedData object MUST NOT contain any certificates.
 This is because the certificates would likely overflow the MTU,
 causing IP level fragmentation. This will not function in the
 presence of NAT. If the request arrived over TCP, the response MUST
 contain certificates. The server SHOULD sign the response using a
 site certificate whose domain matches the domain of the server, as

J. Rosenberg et. al. [Page 11]

Internet Draft stun March 1, 2002

 listed in DNS. However, an end user certificate MAY be used instead.

 If there was no COOKIE in the request, or the COOKIE was invalid, the
 response MAY contain a COOKIE attribute. This attribute is a 128 bit
 opaque value, created by the server. It SHOULD be constructed in such
 a way so that it can be reconstructed by the server based on a
 subsequent request from the same client within a brief time interval.
 It is RECOMMENDED that it be computed as a cryptographic hash of the
 source IP address and port, in addition to a time stamp rounded to
 the nearest 5 seconds. When the client receives the response, if it
 wishes to authenticate the information it just received, it will
 create a new request, identical to the previous, except with a
 different transaction identifier, and this COOKIE reflected back. The
 server then recomputes the COOKIE, using the same algorithm it used
 to construct it previously, and verifies that this is the same value
 in the request. If the values are the same, the COOKIE in the request
 is valid. The purpose of this cookie exchange is to prevent
 distributed denial of service attacks that would force a server to
 perform expensive public key signatures. Instead, the server only
 provides the signature in responses that come from valid clients;
 valid, in this case, means the client meant to send the request,
 instead of being manipulated into doing so through a dDoS attack.

 The server SHOULD NOT retransmit the response. Reliability is
 achieved by having the client periodically resend the request, each
 of which triggers a response from the server.

8 Client Behavior

 The behavior of the client is very simple. Its main task is to
 discover the STUN server, formulate the request, handle request
 reliability, and authenticate the response.

8.1 Discovery

 Generally, the client will be configured with a domain name of the
 provider of the STUN servers. This domain name is resolved to an IP
 address and port of using the SRV procedures specified in RFC 2782
 [2].

 Specifically, the service name is "stun". The protocol is "udp" or
 "tcp". The procedures of RFC 2782 are followed to determine the
 server to contact. RFC 2782 spells out the details of how a set of
 SRV records are sorted and then tried. However, it only states that
 the client should "try to connect to the (protocol, address,
 service)" without giving any details on what happens in the event of
 failure. Those details are described here for STUN.

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782

J. Rosenberg et. al. [Page 12]

Internet Draft stun March 1, 2002

 +---------+
 +-+ | Query |
 | | | Server |
 | | ------->| 1 |
 | |--- +---------+
 Query | | |
 S:10.0.1.1 ---| | Query |
 -- | | S:14.1.2.2 | Query
 --- (1) |N| | RESPONSE-ADDRESS=
 --- | | |(2) 14.1.2.2
 +------+ -- |A| |
 | | | | |
 |Client| |T| |
 | |<--- | | |
 +------+ ------ | | \/
 ----| | (3) +---------+
 Query | |----- | Query |
 Response | | ------| Server |
 D: 10.0.1.1 | | Query | 2 |
 +-+ Response +---------+
 D:14.1.2.2

 Figure 2: Sending a response from a different address/port

 For STUN requests, failure occurs if there is a transport failure of
 some sort (generally, due to fatal ICMP errors in UDP use or
 connection failures in TCP). Failure also occurs if the the request
 does not solicit a response after 30 seconds. If a failure occurs,
 the client SHOULD create a new request, which is identical to the
 previous, but has a different transaction ID. That request is sent to
 the next element in the list as specified by RFC 2782.

 The default port for STUN requests is [to be assigned by IANA].
 Administrators SHOULD use this port in their SRV records, but MAY use
 others.

 If no SRV records were found, the client performs an A or AAAA record
 lookup of the domain name. The result will be a list of IP addresses,
 each of which can be contacted at the default port.

https://datatracker.ietf.org/doc/html/rfc2782

J. Rosenberg et. al. [Page 13]

Internet Draft stun March 1, 2002

 This would allow a firewall admin to open the STUN port, so
 hosts within the enterprise could access new applications.
 Whether they will or won't do this is a good question.

8.2 Formulating the Request

 A request formulated by the client follows the syntax rules defined
 in Section 10. Any two requests that are not bit-wise identical, or
 not sent to the same server from the same IP address and port, MUST
 carry different transaction IDs. The transaction ID MUST be uniformly
 and randomly chosen between 0 and 2^^32 - 1. The message type of the
 request MUST be "Request".

 The RESPONSE-ADDRESS attribute is optional in the request. It is used
 if the client wishes the response to be sent to a different IP
 address and port. This is useful for determining whether the client
 is behind a firewall, and for applications that have separated
 control and data components. See Section 9.3 for more details. The
 FLAGS attribute is also optional. Whether it is present depends on
 what the application is trying to accomplish. See Section 9 for some
 example uses.

 Once formulated, the client sends the request. Reliability is
 accomplished through client retransmissions. Clients SHOULD
 retransmit the request starting with an interval of 100ms, doubling
 every retransmit until the interval reaches 1.6s. Retranmissions
 continue with intervals of 1.6s until a total of 9 requests have been
 sent, at which time the client SHOULD give up.

 The response will contain the MAPPED-ADDRESS and SOURCE-ADDRESS
 attributes.

8.3 Authenticating the Response

 As discussed in Section 11, there are serious security
 vulnerabilities introduced if the STUN response is not authenticated
 and integrity protected. To combat that problem, STUN provides for
 server signatures using CMS. The procedure for obtaining the
 signature and certificates to validate it are as follows.

 The initial STUN reply will arrive with a COOKIE attribute. The
 client can choose to use the information in the STUN reply,
 validating it in parallel, or can choose to authenticate the
 information before using it. To authenticate the information, the
 client formulates a new STUN request, identical to the initial one
 except for two changes. First, is the usage of a new transaction ID.
 Second, is the addition of the COOKIE attribute, which is copied from
 the previous STUN response into the new request. The response to this

J. Rosenberg et. al. [Page 14]

Internet Draft stun March 1, 2002

 second STUN request will contain a CMS-SIGNED-DATA attribute. This
 attribute is equal to the SignedData object defined in RFC 2630 [3].
 If the other attributes in the response match the first response, and
 the signature is valid, the client can trust that the information has
 not been tampered with, and is authentic. If the certificate used for
 the signature is a site certificate, the client SHOULD validate that
 the domain it used to perform the STUN query is a sub-domain of the
 domain in the site certificate. In other words, if the client queries
 stun.example.com, the client SHOULD validate that the signature was
 certified as coming from example.com.

 However, the CMS-SIGNED-DATA attribute in the second response will
 not contain any certificates. The client may have cached certificates
 from a previous exchange with this server, in which case those
 certificates can be used. If the client does not have a certificate
 chain for the server, the client creates a third STUN request. This
 one is identical to the second, except it contains a new transaction
 ID, and is sent over TCP. The response will contain a CMS-SIGNED-DATA
 attribute, this time, with certificates.

9 Use Cases

 The rules of Sections 7 and 8 describe exactly how a client and
 server interact to send requests and get responses. However, they do
 not dictate how the STUN protocol is used to accomplish useful tasks.
 That is at the discretion of the client. Here, we provide some useful
 scenarios for applying STUN.

9.1 Discovery Process

 In this scenario, a user is running a multimedia application which
 needs to determine which of the following scenarios applies to it:

 o On the open Internet

 o Firewall that blocks UDP

 o Firewall that allows UDP out, and responses have to come back
 to the source of the request (like a symmetric NAT, but no
 translation. We call this symmetric UDP Firewall)

 o Full-cone NAT

 o Symmetric NAT

 o Restricted cone or restricted port cone NAT

 Which of the six scenarios applies can be determined through the flow

https://datatracker.ietf.org/doc/html/rfc2630

J. Rosenberg et. al. [Page 15]

Internet Draft stun March 1, 2002

 chart described in Figure 3.

 The flow makes use of three tests. In test I, the client sends a STUN
 request to a server, without any flags set, and without the
 RESPONSE-ADDRESS attribute. This causes the server to send the
 response back to the address and port that the request came from.
 This response provides the IP address and port for the third party
 address that would be used if the source IP and/or port were changed.
 In test II, the client sends a request with both the "change IP" and
 "change port" flags set. In test III, the client sends a request with
 only the "change port" flag set.

 The client begins by initiating test I. If this test yields no
 response, the client knows right away that it is not capable of UDP
 connectivity. If the test produces a response, the client examines
 the MAPPED-ADDRESS attribute. If this address is the same as the
 local IP address and port of the socket used to send the request, the
 client knows that it is not natted. It executes test II. If a
 response is received, the client knows that it has open access to the
 Internet (or, at least, its behind a firewall that behaves like a
 full-cone NAT, but without the translation). If no response is
 received, the client knows its behind a symmetric UDP firewall.

 In the event that the IP address and port of the socket did not match
 the MAPPED-ADDRESS attribute in the response to test I, the client
 knows that it is behind a NAT. It performs test II. If a response is
 received, the client knows that it is behind a full-cone NAT. If no
 response is received, it performs test I again, but this time, does
 so to the address from the CHANGED-ADDRESS attribute. If the IP
 address returned in the MAPPED-ADDRESS attribute is not the same as
 the one from the first test I, the client knows its behind a
 symmetric NAT. If the address is the same, the client is either
 behind a restricted or port restricted NAT. To make a determination
 about which one it is behind, the client initiates test III. If a
 response is received, its behind a restricted NAT, and if no response
 is received, its behind a port restricted NAT.

 This simple procedure yields substantial information about the
 operating condition of the client application. In the event of
 multiple NATs between the client and the Internet, the type that is
 discovered will be the type of the most restrictive NAT between the
 client and the Internet. The types of NAT, in order of
 restrictiveness, from most to least, are symmetric, port restricted
 cone, restricted cone, and full cone.

9.2 Binding Lifetime Discovery

 STUN can also be used to discover the lifetimes of the bindings

J. Rosenberg et. al. [Page 16]

Internet Draft stun March 1, 2002

 created by the NAT. To do that, the client first sends a simple
 request (no attributes) to server A. The response from A will contain
 the CHANGED-ADDRESS attribute. The client sends another simple
 request to that address (server B). It then starts a timer with a
 value of T seconds. When this timer fires, the client sends a request
 to server A, with the "change IP" and "change port" flags set. If the
 binding is still active, this response should be received through all
 nat types. The client can find the value of the binding lifetime by
 doing a binary search through T, arriving eventually at the value
 where the response is not received for any timer greater than T, but
 is received for any timer less than T.

9.3 Binding Acquisition

 Consider once more the case of a VoIP phone. It used the discovery
 process above when it started up, to discover its environment. Now,
 it wants to make a call. As part of the discovery process, it
 determined that it was behind a full-cone NAT.

 Consider further that this phone consists of two logically separated
 components - a control component that handles signaling, and a media
 component that handles the audio, video, and RTP [8]. Both are behind
 the same NAT. Because of this separation of control and media, we
 wish to minimize the communication required between them. In fact,
 they may not even run on the same host.

 In order to make a voice call, the phone needs to obtain an IP
 address and port that it can place in the call setup message as the
 destination for receiving audio.

 To obtain an address, the control component first sends a STUN
 request to a server. No flags are present, and neither is the
 RESPONSE-ADDRESS field. The response contains a mapped address. The
 control component then formulates a second request. This request
 contains a RESPONSE-ADDRESS, which is set to that mapped address.
 This request is passed to the media component, along with the IP
 address and port of the STUN server. The media component sends the
 request. The request goes to the STUN server, which sends the
 response back to the control component. The control component
 receives this, and now has learned an IP address and port that will
 be routed back to the media component that sent the request.

 The client will be able to receive media from anywhere on this mapped
 address.

 In the case of silence suppression, there may be periods where the
 client receives no media. In this case, the UDP bindings could
 timeout (UDP bindings in nats are typically short). To deal with

J. Rosenberg et. al. [Page 17]

Internet Draft stun March 1, 2002

 this, the application can periodically retransmit the query in order
 to keep the binding fresh.

 It is possible that both participants in the multimedia session are
 behind the same NAT. In that case, both will repeat this procedure
 above, and both will obtain public address bindings. When one sends
 media to the other, the media is routed to the nat, and then turns
 right back around to come back into the enterprise, where it is
 translated to the private address of the recipient. This is not
 particularly efficient, but it does work.

10 Protocol Details

 This section presents the detailed encoding of a STUN message.

10.1 Message Header

 All STUN messages consist of a 64 bit header:

 +-+
 | STUN Message Type | Message Length |
 +-+
 | Transaction ID |
 +-+

 The Message Types can take on the following values:

 0x0001 : Request
 0x0101 : Response

 The message length is the count, in bytes, of the size of the
 message, not including the 64 bit header.

 The transaction ID is a 32 bit identifier. All responses carry the
 same identifier as the request they correspond to.

10.2 Message Attributes

 After the header are 0 or more attributes. Each attribute is TLV
 encoded, with a 16 bit type, 16 bit length, and variable value:

J. Rosenberg et. al. [Page 18]

Internet Draft stun March 1, 2002

 +-+
 | Type | Length |
 +-+
 | Value
 +-+

 The following types are defined:

 0x0001: MAPPED-ADDRESS
 0x0002: RESPONSE-ADDRESS
 0x0003: FLAGS
 0x0004: SOURCE-ADDRESS
 0x0005: CHANGED-ADDRESS
 0x0006: CMS-SIGNED-DATA
 0x0007: COOKIE

 Future extensions MAY define new attributes. If a stun client or
 server receives a message with an unknown attribute with a type lower
 than or equal to 0x7fff, the message MUST be discarded. If the type
 is greater than 0x7fff, the attribute MUST be ignored. The ordering
 of attributes within a message is not important, and a client or
 server MUST be prepared to receive them in any order. Any attributes
 that are known, but are not supposed to be present in a message
 (MAPPED-ADDRESS in a request, for example) MUST be ignored.

 The length refers to the length of the value element.

10.2.1 MAPPED-ADDRESS

 The MAPPED-ADDRESS attribute indicates the mapped IP address and
 port. It consists of a sixteen bit port, eight bit address family,
 followed by a fixed length value representing the IP address.

 +-+
 | Port | Family |x x x x x x x x|
 +-+
 | Address..
 +-+

 The port is a network byte ordered representation of the mapped port.

J. Rosenberg et. al. [Page 19]

Internet Draft stun March 1, 2002

 The following families are defined:

 0x01: IPv4
 0x02: IPv6

 The family is followed by 8 bits which are ignored, for the purposes
 of aligning the address on 32 bit boundaries.

 For IPv4 addresses, the address is 32 bits. For IPV6, it is 128 bits.

 New address families MAY be defined by extensions. A message with an
 unknown address family is discarded.

10.2.2 RESPONSE-ADDRESS

 The RESPONSE-ADDRESS attribute indicates where the response to a
 request is sent. Its syntax is identical to MAPPED-ADDRESS.

10.2.3 CHANGED-ADDRESS

 The CHANGED-ADDRESS attribute indicates the IP address and port of a
 STUN server where responses will be sent from if the "change IP"
 and/or "change port" flags are set. Its syntax is identical to
 MAPPED-ADDRESS.

10.2.4 FLAGS

 The FLAGS attribute is a series of boolean flags. It is 32 bits long:

 +-+
 |A|B|C| |
 +-+

 Only three flags, A,B,C, are currently defined. The other bits MAY be
 used by extensions to define additional flags. Unknown flags are
 ignored.

 Each flag is a binary one if true, zero otherwise.

 The meaning of the flags is:

 A: This is the "change IP" flag. If true, it requests the server

J. Rosenberg et. al. [Page 20]

Internet Draft stun March 1, 2002

 to send the response with a different IP address than the
 one the request was received on.

 B: This is the "change port" flag. If true, it requests the
 server to send the response with a different port than the
 one the request was received on.

 C: This is the discard flag. If true, the message is discarded.

10.2.5 SOURCE-ADDRESS

 The SOURCE-ADDRESS attribute is present in responses. It indicates
 the source IP address and port that the server is sending the
 response from. Its syntax is identical to that of MAPPED-ADDRESS.

10.2.6 CMS-SIGNED-DATA

 STUN responses can be signed. The signatures are conveyed using the
 Cryptographic Message Syntax (CMS), RFC 2630 [3]. Specifically. the
 CMS-SIGNED-DATA is exactly equal to the CMS SignedData object, using
 detached signatures. When present in a response, the CMS-SIGNED-DATA
 attribute MUST be the last attribute in the response. The contentData
 covered by the signature includes all of the bytes from the start of
 the STUN message, up to, but not including, the CMS-SIGNED-DATA
 attribute.

 When the response is sent over UDP, the response won't contain
 certificates (see Section 7. Responses over TCP will contain
 certificates.

10.2.7 COOKIE

 +-+
 | Cookie word 1 |
 +-+
 | Cookie word 2 |
 +-+
 | Cookie word 3 |
 +-+
 | Cookie word 4 |
 +-+

 The COOKIE attribute is used to prevent distributed denial of service
 attacks on the STUN server. It is a 128 bit value, generated by the
 server, and echoed by the client back to the server.

https://datatracker.ietf.org/doc/html/rfc2630

J. Rosenberg et. al. [Page 21]

Internet Draft stun March 1, 2002

11 Security Considerations

 There are several potential threats in a STUN system worthy of
 consideration.

 STUN can potentially introduce attacks which result in the theft of
 addresses. When a client sends a request, an attacker can guess the
 value of the mapped address used by the nat, and quickly generate its
 own faked response, sending it to that address. This response would
 contain a faked MAPPED-ADDRESS which actually routes to a different
 host. This could enable DoS attacks, by using a victim's address, or
 theft attacks, by using the address of the host run by the attacker.
 This threat is potentially very serious. To combat it, STUN supports
 public key authentication of responses. This allows a client to
 verify that the response was indeed generated by the server to which
 the request was sent.

 Interestingly, there is little need for strong authentication of
 requests. STUN servers are stateless. Their processing is not user
 specific. The server is hardly more than an echo server. As a result,
 client authentication provides no value. However, a request from a
 client can result in expensive public key operations at the server,
 for the purposes of signing the request. This makes a STUN server
 potentially subject to denial-of-service attacks. To prevent against
 such threats, STUN provides a simple cookie mechanism. The server
 will not sign any responses until it has successfully passed a cookie
 to the client and received it back in a subsequent request. This
 cookie mechanism is similar to the techniques used to prevent the TCP
 SYN attack.

 Compromise of a STUN server can lead to discovery of open ports.
 Knowledge of an open port creates an opportunity for DoS attacks on
 those ports (or DDoS attacks if the traversed NAT is a full cone
 NAT). Discovering open ports is already fairly trivial using port
 probing, so this does not represent a major threat.

 STUN servers constitute a reflector type of server, and can therefore
 be used as launching grounds for distributed DoS attacks [9]. The
 problem is amplified by the existence of the RESPONSE-ADDRESS
 attribute, which can render ingress filtering useless in prevention
 of attacks. Interestingly, the MAPPED-ADDRESS in the response
 provides a form of traceback in order to counter such attacks. An
 attacker would need to spoof their source address in order to avoid
 the traceback mechanism.

 STUN has the important property that compromise of the STUN servers
 cannot cause security breaches of a firewall when the client is
 within an enterprise. The only thing that a compromised server can do

J. Rosenberg et. al. [Page 22]

Internet Draft stun March 1, 2002

 is return false addresses, resulting in the inability of the client
 to receive any data at all. However, the attacker cannot send packets
 to arbitrary servers within the enterprise, if the firewall prohibits
 such communication.

12 IANA Considerations

 There are no IANA considerations associated with this specification.

13 IAB Considerations

 The IAB has studied the problem of "Unilateral Self Address Fixing",
 which is the general process by which a client attempts to determine
 its address in another realm on the other side of a NAT through a
 collaborative protocol reflection mechanism [10]. STUN is an example
 of a protocol that performs this type of function. The IAB has
 mandated that any protocols developed for this purpose document a
 specific set of considerations. This section meets those
 requirements.

13.1 Problem Definition

 From [10], any UNSAF proposal must provide:

 Precise definition of a specific, limited-scope problem
 that is to be solved with the UNSAF proposal. A short term
 fix should not be generalized to solve other problems; this
 is why "short term fixes usually aren't".

 The specific problems being solved by STUN are:

 o Provide a means for a client to detect the presence of one or
 more NATs between it and a server run by a service provider on
 the public Internet. The purpose of such detection is to
 determine additional steps that might be necessary in order to
 receive service from that particular provider.

 o Provide a means for a client to obtain an address on the
 public Internet from a non-symmetric NAT, for the express
 purpose of receiving incoming UDP traffic from another host
 targeted to that address.

 STUN does not address TCP, either incoming or outgoing, and does not
 address outgoing UDP communications.

13.2 Exit Strategy

J. Rosenberg et. al. [Page 23]

Internet Draft stun March 1, 2002

 From [10], any UNSAF proposal must provide:

 Description of an exit strategy/transition plan. The better
 short term fixes are the ones that will naturally see less
 and less use as the appropriate technology is deployed.

 STUN comes with its own built in exit strategy. This strategy is the
 detection operation that is performed as a precursor to the actual
 UNSAF address-fixing operation. This discovery operation, documented
 in Section 9.1, attempts to discover the existence of, and type of,
 any NATS between the client and the service provider network. Whilst
 the detection of the specific type of NAT may be brittle, the
 discovery of the existence of NAT is itself quite robust. As NATs are
 phased out through the deployment of IPv6, the discovery operation
 will return immediately with the result that there is no NAT, and no
 further operations are required. Indeed, the discovery operation
 itself can be used to help motivate deployment of IPv6; if a user
 detects a NAT between themselves and the public Internet, they can
 call up their access provider and complain about it.

 STUN can also help facilitate the introduction of midcom. As midcom-
 capable NATs are deployed, applications will, instead of using STUN
 (which also resides at the application layer), first allocate an
 address binding using midcom. However, it is a well-known limitation
 of midcom that it only works when the agent knows the middleboxes
 through which its traffic will flow. Once bindings have been
 allocated from those middleboxes, a STUN detection procedure can
 validate that there are no additional middleboxes on the path from
 the public Internet to the client. If this is the case, the
 application can continue operation using the address bindings
 allocated from midcom. If it is not the case, STUN provides a
 mechanism for self-address fixing through the remaining midcom-
 unaware middlboxes. Thus, STUN provides a way to help transition to
 full midcom-aware networks.

13.3 Brittleness Introduced by STUN

 From [10], any UNSAF proposal must provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data
 at multiple network layers create more dependencies,
 increase debugging challenges, and make it harder to
 transition.

 STUN introduces brittleness into the system in several ways:

J. Rosenberg et. al. [Page 24]

Internet Draft stun March 1, 2002

 o The discovery process assumes a certain classification of
 devices based on their treatment of UDP. Their could be other
 types of NATs that are deployed that would not fit into one of
 these molds. Therefore, future NATs may not be properly
 detected by STUN. STUN clients (but not servers) would need to
 change to accomodate that.

 o The binding acquisition usage of STUN does not work for all
 NAT types. It will work for any application for full cone NATs
 only. For restricted cone and port restricted cone NAT, it
 will work for some applications dependening on the
 application. Application specific processing will generally be
 needed. For symmetric NATs, the binding acquisition will not
 yield a usable address. The tight dependency on the specific
 type of NAT makes the protocol brittle.

 o STUN assumes that the server exists on the public Internet. If
 the server is located in another private address realm, the
 user may or may not be able to use its discovered address to
 communicate with other users. There is no way to detect such a
 condition.

 o The bindings allocated from the NAT need to be continuously
 refreshed. Since the timeouts for these bindings is very
 implementation specific, the refresh interval cannot easily be
 determined. When the binding is not being actively used to
 receive traffic, but rather just wait for it, the binding
 refresh will needlessly consume network bandwidth.

 o The use of the STUN server as an additional network element
 introduces another point of potential security attack. These
 attacks are largely prevented by the security measures
 provided by STUN, but not entirely.

 o The use of STUN to discover address bindings will result in an
 increase in latency for applications. For example, a Voice
 over IP application will see an increase of call setup delays
 equal to at least one RTT to the stun server.

13.4 Requirements for a Long Term Solution

 From [10], any UNSAF proposal must provide:

 Identify requirements for longer term, sound technical
 solutions -- contribute to the process of finding the right
 longer term solution.

J. Rosenberg et. al. [Page 25]

Internet Draft stun March 1, 2002

 Our experience with STUN has led to the following requirements for a
 long term solution to the NAT problem:

 Requests for bindings and control of other resources in a NAT
 need to be explicit. Much of the brittleness in STUN
 derives from its guessing at the parameters of the NAT,
 rather than telling the NAT what parameters to use.

 Control needs to be "in-band". There are far too many scenarios
 in which the client will not know about the location of
 middleboxes ahead of time. Instead, control of such boxes
 needs to occur in band, traveling along the same path as
 the data will itself travel. This guarantees that the right
 set of middleboxes are controlled. This is only true for
 first-party controls; third-party controls are best handled
 using the midcom framework.

 Control needs to be limited. Users will need to communicate
 through NATs which are outside of their administrative
 control. In order for providers to be willing to deploy
 NATs which can be controlled by users in different domains,
 the scope of such controls needs to be extremely limited -
 typically, allocating a binding to reach the address where
 the control packets are coming from.

 Simplicity is Paramount. The control protocol will need to be
 implement in very simple clients. The servers will need to
 support extremely high loads. The protocol will need to be
 extremely robust, being the precursor to a host of
 application protocols. As such, simplicity is key.

13.5 Issues with Existing NAPT Boxes

 From [10], any UNSAF proposal must provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 Several of the practical issues with STUN involve future proofing -
 breaking the protocol when new NAT types get deployed. Fortunately,
 this is not an issue at the current time, since most of the deployed
 NATs are of the types assumed by STUN. The primary usage STUN has
 found is in the area of VoIP, to facilitate allocation of addresses
 for receiving RTP [8] traffic. In that application, the periodic
 keepalives are provided by the RTP traffic itself. However, several
 practical problems arise for RTP. First, RTP assumes that RTCP
 traffic is on a port one higher than the RTP traffic. This pairing

J. Rosenberg et. al. [Page 26]

Internet Draft stun March 1, 2002

 property cannot be guaranteed through NATs that are not directly
 controllable. As a result, RTCP traffic may not be properly received.
 Protocol extensions to SDP have been proposed which mitigate this by
 allowing the client to signal a different port for RTCP [11].
 However, there will be interoperability problems for some time.

 For VoIP, silence suppression can cause a gap in the transmission of
 RTP packets. This could result in the loss of a binding in the middle
 of a call, if that silence period exceeds the binding timeout. This
 can be mitigated by sending occassional silence packets to keep the
 binding alive. However, the result is additional brittleness; proper
 operation depends on the the silence suppression algorithm in use,
 the usage of a comfort noise codec, the duration of the silence
 period, and the binding lifetime in the NAT.

13.6 In Closing

 The problems with STUN are not design flaws in STUN. The problems in
 STUN have to do with the lack of standardized behaviors and controls
 in NATs. The result of this lack of standardization has been a
 proliferation of devices whose behavior is highly predictable,
 extremely variable, and uncontrollable. STUN does the best it can in
 such a hostile environment. Ultimately, the solution is to make the
 environment less hostile, and to introduce controls and standardized
 behaviors into NAT. However, until such time as that happens, STUN
 provides a good short term solution given the terrible conditions
 under which it is forced to operate.

14 Acknowledgements

 The authors would like to thank Cullen Jennings for his comments, and
 Baruch Sterman and Alan Hawrylyshen for initial implementations.

15 Authors Addresses

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Joel Weinberger
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor

J. Rosenberg et. al. [Page 27]

Internet Draft stun March 1, 2002

 East Hanover, NJ 07936
 email: jweinberger@dynamicsoft.com

 Christian Huitema
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399
 email: huitema@microsoft.com

 Rohan Mahy
 Cisco Systems
 170 West Tasman Dr, MS: SJC-21/3
 Phone: +1 408 526 8570
 Email: rohan@cisco.com

16 Normative References

 [1] S. Bradner, "Key words for use in RFCs to indicate requirement
 levels," Request for Comments 2119, Internet Engineering Task Force,
 Mar. 1997.

 [2] A. Gulbrandsen, P. Vixie, and L. Esibov, "A DNS RR for specifying
 the location of services (DNS SRV)," Request for Comments 2782,
 Internet Engineering Task Force, Feb. 2000.

 [3] R. Housley, "Cryptographic message syntax," Request for Comments
 2630, Internet Engineering Task Force, June 1999.

17 Informative References

 [4] D. Senie, "Network address translator (nat)-friendly application
 design guidelines," Request for Comments 3235, Internet Engineering
 Task Force, Jan. 2002.

 [5] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan,
 "Middlebox communication architecture and framework," Internet Draft,
 Internet Engineering Task Force, Nov. 2001. Work in progress.

 [6] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Request for Comments 2543, Internet
 Engineering Task Force, Mar. 1999.

 [7] M. Holdrege and P. Srisuresh, "Protocol complications with the IP
 network address translator," Request for Comments 3027, Internet
 Engineering Task Force, Jan. 2001.

J. Rosenberg et. al. [Page 28]

Internet Draft stun March 1, 2002

 [8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: a
 transport protocol for real-time applications," Request for Comments
 1889, Internet Engineering Task Force, Jan. 1996.

 [9] V. Paxson, "An analysis of using reflectors for distributed
 denial of service attacks," ACM Computer Communication Review , Vol.
 31, July 2001.

 [10] L. Daigle, "IAB considerations for UNilateral self-address
 fixing (UNSAF)," Internet Draft, Internet Engineering Task Force,
 Feb. 2002. Work in progress.

 [11] C. Huitema, "RTCP attribute in SDP," Internet Draft, Internet
 Engineering Task Force, Feb. 2002. Work in progress.

 Full Copyright Statement

 Copyright (c) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

J. Rosenberg et. al. [Page 29]

