
MIDCOM J. Rosenberg
Internet-Draft dynamicsoft
Expires: August 16, 2004 R. Mahy
 Cisco Systems
 C. Huitema
 Microsoft
 February 16, 2004

Traversal Using Relay NAT (TURN)
draft-rosenberg-midcom-turn-04

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 16, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 Traversal Using Relay NAT (TURN) is a protocol that allows for an
 element behind a NAT or firewall to receive incoming data over TCP or
 UDP connections. It is most useful for elements behind symmetric NATs
 or firewalls that wish to be on the receiving end of a connection to
 a single peer. TURN does not allow for users to run servers on well
 known ports if they are behind a nat; it supports the connection of a
 user behind a nat to only a single peer. In that regard, its role is
 to provide the same security functions provided by symmetric NATs and
 firewalls, but to ``turn'' the tables so that the element on the

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Rosenberg, et al. Expires August 16, 2004 [Page 1]

Internet-Draft TURN February 2004

 inside can be on the receiving end, rather than the sending end, of a
 connection that is requested by the client.

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Definitions . 6
4. Applicability Statement 7
5. Overview of Operation 8
6. Message Overview . 10
7. Server Behavior . 11
7.1 Shared Secret Request 11
7.2 Allocate Request . 13
7.2.1 Overview . 13
7.2.2 Initial Requests . 13
7.2.3 Requests for Pre-Allocated Ports 17
7.2.4 Subsequent Requests . 18
7.3 Send Request . 19
7.4 Receiving Packets and Connections 20
7.5 Lifetime Expiration . 22
8. Client Behavior . 23
8.1 Discovery . 23
8.2 Obtaining a One Time Password 23
8.3 Allocating a Binding . 24
8.4 Processing Allocate Responses 25
8.5 Allocating a Pre-Allocated Binding 26
8.6 Refreshing a Binding . 27
8.7 Sending Data . 27
8.8 Tearing Down a Binding 28
8.9 Receiving and Sending Data 28
9. Protocol Details . 30
9.1 Message Types . 30
9.2 Message Attributes . 30
9.2.1 TRANSPORT-PREFERENCES 30
9.2.2 LIFETIME . 31
9.2.3 ALTERNATE-SERVER . 31
9.2.4 MAGIC-COOKIE . 31
9.2.5 BANDWIDTH . 32
9.2.6 DESTINATION-ADDRESS . 32
9.2.7 SOURCE-ADDRESS . 32
9.2.8 DATA . 32
9.3 Response Codes . 32
10. Security Considerations 34
11. IAB Considerations . 36
11.1 Problem Definition . 36
11.2 Exit Strategy . 36
11.3 Brittleness Introduced by TURN 37

Rosenberg, et al. Expires August 16, 2004 [Page 2]

Internet-Draft TURN February 2004

11.4 Requirements for a Long Term Solution 38
11.5 Issues with Existing NAPT Boxes 38
12. Examples . 39

 Normative References . 40
 Informative References 41
 Authors' Addresses . 41
 Intellectual Property and Copyright Statements 43

Rosenberg, et al. Expires August 16, 2004 [Page 3]

Internet-Draft TURN February 2004

1. Introduction

 Network Address Translators (NATs), while providing many benefits,
 also come with many drawbacks. The most troublesome of those
 drawbacks is the fact that they break many existing IP applications,
 and make it difficult to deploy new ones. Guidelines [9] have been
 developed that describe how to build "NAT friendly" protocols, but
 many protocols simply cannot be constructed according to those
 guidelines. Examples of such protocols include multimedia
 applications and file sharing.

 Simple Traversal of UDP Through NAT (STUN) [1] provides one means for
 an application to traverse a NAT. STUN allows a client to obtain a
 transport address (and IP address and port) which may be useful for
 receiving packets from a peer. However, addresses obtained by STUN
 may not be usable by all peers. Those addresses work depending on the
 topological conditions of the network. Therefore, STUN by itself
 cannot provide a complete solution for NAT traversal.

 A complete solution requires a means by which a client can obtain a
 transport address from which it can receive media from any peer which
 can send packets to the public Internet. This can only be
 accomplished by relaying data though a server that resides on the
 public Internet. This specification describes Traversal Using Relay
 NAT (TURN), a protocol that allows a client to obtain IP addresses
 and ports from such a relay.

 Although TURN will almost always provide connectivity to a client, it
 comes at high cost to the provider of the TURN server. It is
 therefore desirable to use TURN as a last resort only, preferring
 other mechanisms (such as STUN or direct connectivity) when possible.
 To accomplish that, the Interactive Connectivity Establishment (ICE)
 [13] methodology can be used to discover the optimal means of
 connectivity.

Rosenberg, et al. Expires August 16, 2004 [Page 4]

Internet-Draft TURN February 2004

2. Terminology

 In this document, the key words MUST, MUST NOT, REQUIRED, SHALL,
 SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to
 be interpreted as described in RFC 2119 [2] and indicate requirement
 levels for compliant TURN implementations.

Rosenberg, et al. Expires August 16, 2004 [Page 5]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft TURN February 2004

3. Definitions

 TURN Client: A TURN client (also just referred to as a client) is
 an entity that generates TURN requests. A TURN client can be an
 end system, such as a Session Initiation Protocol (SIP) [6] User
 Agent, or can be a network element, such as a Back-to-Back User
 Agent (B2BUA) SIP server. The TURN protocol will provide the STUN
 client with IP addresses that route to it from the public
 Internet.

 TURN Server: A TURN Server (also just referred to as a server) is
 an entity that receives TURN requests, and sends TURN responses.
 The server is capable of acting as a data relay, receiving data on
 the address it provides to clients, and forwarding them to the
 clients.

 Transport Address: An IP address and port.

Rosenberg, et al. Expires August 16, 2004 [Page 6]

Internet-Draft TURN February 2004

4. Applicability Statement

 TURN is useful for applications that require a client to place a
 transport address into a protocol message, with the expectation that
 the client will be able to receive packets from a single host that
 will send to this address. Examples of such protocols include SIP,
 which makes use of the Session Description Protocol (SDP) [7]. SDP
 carries and IP address on which the client will receive media packets
 from its peer. Another example of a protocol meeting this criteria is
 the Real Time Streaming Protocol (RTSP) [8].

 When a client is behind a NAT, transport addresses obtained from the
 local operating system will not be publically routable, and
 therefore, not useful in these protocols. TURN allows a client to
 obtain a transport address, from a server on the public Internet,
 which can be used in protocols meeting the above criteria. However,
 the transport addresses obtained from TURN servers are not generally
 useful for receiving data from anywhere. They are only useful for
 communicating with a single peer. Once a host sends packets to that
 transport address, it is ``locked down'', meaning that the client
 cannot cause packets to be sent to that host through the relay. The
 client will still receive packets sent from different peers to that
 transport address, but these are wrapped in TURN protocol headers,
 reducing their efficiency. This is done purposefully, so as to
 prevent TURN from being used to run servers (such as a web server or
 DNS server) on a client behind a NAT. In this way, enterprises which
 deploy NATs and firewalls to prevent users from running servers, can
 be confident that TURN will not cause any violations in their
 enterprise security policies.

Rosenberg, et al. Expires August 16, 2004 [Page 7]

Internet-Draft TURN February 2004

5. Overview of Operation

 The typical TURN configuration is shown in Figure 1. A TURN client is
 connected to private network 1. This network connects to private
 network 2 through NAT 1. Private network 2 connects to the public
 Internet through NAT 2. On the public Internet is a TURN server.

 /-----\
 // TURN \\
 | Server |
 \\ //
 \-----/

 +--------------+ Public Internet
 | NAT 2 |.......................
 +--------------+

 +--------------+ Private NET 2
 | NAT 1 |.......................
 +--------------+

 /-----\
 // TURN \\
 | Client |
 \\ // Private NET 1
 \-----/

 Figure 1

 TURN is a simple client-server protocol. It is identical in syntax
 and general operation to STUN, in order to facilitate a joint
 implementation of both. TURN defines a request message, called
 Allocate, which asks for a public IP address and port. TURN can run
 over UDP and TCP, as it allows for a client to request address/port
 pairs for receiving both UDP and TCP.

 A TURN client first discovers the address of a TURN server. This can
 be preconfigured, or it can be discovered using SRV records [3] This
 will allow for different TURN servers for UDP and TCP. Once a TURN
 server is discovered, the client sends a TURN Allocate request to the
 TURN server. TURN provides a mechanism for mutual authentication and
 integrity checks for both requests and responses, based on a shared
 secret. Assuming the request is authenticated and has not been
 tampered with, the TURN server remembers the source transport address
 that the request came from (call this SA), and returns a public

Rosenberg, et al. Expires August 16, 2004 [Page 8]

Internet-Draft TURN February 2004

 transport address, PA, in the TURN response. The TURN server is
 responsible for guaranteeing that packets sent to PA route to the
 TURN server. The TURN server then waits for data on PA. When data is
 received (either a UDP packet or a TCP connection request), the TURN
 server accepts the connection (in the case of TCP), and then stores
 the remote address and port where the data came from (RA). The data
 just received, if any, are then forwarded to SA. The TURN server then
 acts as a relay. Any data received from SA are forwarded to RA. Any
 data sent from RA to PA are sent to SA. If some other host sends
 packets to PA, those packets are forwarded to PA as well, but they
 are sent as a TURN message from the server to the client. This
 affords some protection against denial of service attacks that would
 otherwise be possible. TURN also allows a client to send packets
 through the TURN server before lockdown has occurred, by using the
 SEND command.

 For TCP, the TURN server does not need to examine the data received;
 it merely forwards all data between the socket pairs it has
 associated together. In the case of UDP, the TURN server looks for a
 magic cookie in the first 128 bytes of each UDP packet. If present,
 it indicates that the packet is a TURN control packet, used for
 keepalives and teardown of the binding. In the case of TCP, if either
 side closes a connection, the TURN server closes the other
 connection. For both UDP and TCP, the TURN server can also time out a
 connection in the event data is not received after some configured
 time out period. This period is sent to the client in the TURN
 response to the Allocate request.

 TURN also allows a client to request an odd or even port when one is
 allocated, and for it to pre-allocate the next higher port. This is
 useful for securing consecutive ports for usage with the Real Time
 Transport Protocol (RTP) [5].

Rosenberg, et al. Expires August 16, 2004 [Page 9]

Internet-Draft TURN February 2004

6. Message Overview

 TURN messages are identical to STUN messages in their syntax. TURN
 defines several new messages - the Allocate Request, the Allocate
 Response, the Allocate Error Response, the Send Request, the Send
 Response, the Send Error Response and the Data Indication. TURN also
 uses the Shared Secret Request, Shared Secret Response, and Shared
 Secret Error Response defined by STUN. TURN makes use of some of the
 STUN attributes (MAPPED-ADDRESS, USERNAME, MESSAGE-INTEGRITY,
 ERROR-CODE, and UNKNOWN-ATTRIBUTES) and also defines several of its
 own. Specifically, TURN adds TRANSPORT-PREFERENCES attribute, which
 allows a client to request an odd or even port, and to pre-allocate
 the next higher port. It defines the LIFETIME attribute, which allows
 the TURN server to tell the client when the binding will be released.
 It defines the MAGIC-COOKIE attribute, which allows the TURN client
 to find TURN messages in a stream of UDP packets. It defines the
 BANDWIDTH attribute, which allows a client to inform the server of
 the expected bandwidth usage on the connection. Finally, it defines
 the ALTERNATE-SERVER attribute, which allows the server to redirect
 the TURN client to connect to an alternate server.

Rosenberg, et al. Expires August 16, 2004 [Page 10]

Internet-Draft TURN February 2004

7. Server Behavior

 The server behavior depends on whether the request is a Shared Secret
 Request or an Allocate Request.

7.1 Shared Secret Request

 Unlike a STUN server, a TURN server provides resources to clients
 that connect to it. Therefore, only authorized clients can gain
 access to a TURN server. This requires that TURN requests be
 authenticated. TURN assumes the existence of a long-lived shared
 secret between the client and the TURN server in order to achieve
 this authentication. The client uses this long-lived shared secret to
 authenticate itself in a Shared Secret Request, sent over TLS. The
 Shared Secret Response provides the client with a one-time username
 and password. This one-time credential is then used by the server to
 authenticate an Allocate Request. The usage of a separate long lived
 and one-time credentials prevents dictionary attacks, whereby an
 observer of a message and its HMAC could guess the password by an
 offline dictionary search.

 When a TURN server receives a Shared Secret Request, it first
 executes the processing described in the first three paragraphs of

Section 8.2 of STUN. This processing will ensure that the Shared
 Secret Request is received over TLS.

 Assuming it was, the server checks the Shared Secret Request for a
 MESSAGE-INTEGRITY attribute. If not present, the server generates a
 Shared Secret Error Response with an ERROR-CODE attribute with
 response code 401. That response MUST include a NONCE attribute,
 containing a nonce that the server wishes the client to reflect back
 in a subsequent Shared Secret Request (and therefore include the
 message integrity computation). The response MUST include a REALM
 attribute, containing a realm from which the username and password
 are scoped [4].

 If the MESSAGE-INTEGRITY attribute was present, the server checks for
 the existence of the REALM attribute. If the attribute is not
 present, the server MUST generate a Shared Secret Error Response.
 That response MUST include an ERROR-CODE attribute with response code
 434. That response MUST include a NONCE and a REALM attribute.

 If the REALM attribute was present, the server checks for the
 existence of the NONCE attribute. If the NONCE attribute is not
 present, the server MUST generate a Shared Secret Error Response.
 That response MUST include an ERROR-CODE attribute with response code
 435. That response MUST include a NONCE attribute and a REALM
 attribute.

Rosenberg, et al. Expires August 16, 2004 [Page 11]

Internet-Draft TURN February 2004

 If the NONCE attribute was present, the server checks for the
 existence of the USERNAME attribute. If it was not present, the
 server MUST generate a Shared Secret Error Response. The Shared
 Secret Error Response MUST include an ERROR-CODE attribute with
 response code 432. It MUST include a NONCE attribute and a REALM
 attribute.

 If the USERNAME is present, the server computes the HMAC over the
 request as described in Section 11.2.8 of STUN. The key is computed
 as MD5(unq(USERNAME-value) ":" unq(REALM-value) ":" passwd), where
 the password is the password associated with the username and realm
 provided in the request. If the server does not have a record for
 that username within that realm, the server generates a Shared Secret
 Error Response. That response MUST include an ERROR-CODE attribute
 with response code 436. That response MUST include a NONCE attribute
 and a REALM attribute.

 This format for the key was chosen so as to enable a common
 authentication database for SIP and for TURN, as it is expected
 that credentials are usually stored in their hashed forms.

 If the computed HMAC differs from the one from the MESSAGE-INTEGRITY
 attribute in the request, the server MUST generate a Shared Secret
 Error Response with an ERROR-CODE attribute with response code 431.
 This response MUST include a NONCE attribute and a REALM attribute.

 If the computed HMAC doesn't differ from the one in the request, but
 the nonce is stale, the server MUST generate a Shared Secret Error
 Response. That response MUST include an ERROR-CODE attribute with
 response code 430. That response MUST include a NONCE attribute and a
 REALM attribute.

 In all cases, the Shared Secret Error Response is sent over the TLS
 connection on which the Shared Secret Request was received.

 The server proceeds to authorize the client. The means for
 authorization are outside the scope of this specification. It is
 anticipated that TURN servers will be run by providers that also
 provide an application service, such as SIP or RTSP. In that case, a
 user would be authorized to use TURN if they are authorized to use
 the application service.

 The server then generates a Shared Secret Response as in Section 8.2
 of STUN. This response will contain a USERNAME and PASSWORD, which
 are used by the client as a short-term shared secret in subsequent
 Allocate requests. Note that STUN specifies that the server has to
 invalidate this username and password after 30 minutes. This is not
 the case in TURN. In TURN, the server MUST store the allocated

Rosenberg, et al. Expires August 16, 2004 [Page 12]

Internet-Draft TURN February 2004

 username and password for a duration of at least 30 minutes. Once an
 Allocate request has been authenticated using that username and
 password, if the result was an Allocate Error Response, the username
 and password are discarded. If the result was an Allocate Response,
 resulting in the creation of a new binding, the username and password
 become associated with that binding. They can only be used to
 authenticate Allocate requests sent from the same source transport
 address in order to refresh or de-allocate that binding. Once the
 binding is deleted, the username and password are discarded.

 This policy avoids replay attacks, whereby a recorded Allocate
 request is replayed in order to obtain a binding without proper
 authentication. It also ensures that existing bindings can be
 refreshed without needed to continuously obtain one-time passwords
 from the TURN server.

7.2 Allocate Request

7.2.1 Overview

 Allocate requests are used to obtain an IP address and port that the
 client can use to receive UDP and TCP packets from any host on the
 network, even when the client is behind a symmetric NAT. To do this,
 a TURN server allocates a local transport address, and passes it to
 the client in an Allocate Response. When the server receives packets
 on this allocated address, it acts as a relay, and forwards them
 towards the source of the Allocate request. The server remembers the
 source transport address where that packet came from, and "locks
 down". This means that packets sent from the client to the TURN
 server are forwarded to that address.

 As a result, the server maintains a set of bindings. These bindings
 are associations between the five-tuple of received Allocate requests
 (source IP address and port, destination IP address and port, and
 protocol), called the allocate five-tuple, and another five tuple,
 called the remote five-tuple.

 The behavior of the server when receiving an Allocate Request depends
 on whether the request is an initial one, or a subsequent one. An
 initial request is one received with a source transport address which
 is not associated with any existing bindings. A subsequent request is
 one received that is associated with an existing binding.

7.2.2 Initial Requests

 A TURN server MUST be prepared to receive Binding Requests over TCP
 and UDP. The port on which to listen is based on the DNS SRV entries
 provided by the server. Typically, this will be XXXX, the default

Rosenberg, et al. Expires August 16, 2004 [Page 13]

Internet-Draft TURN February 2004

 TURN port.

 The server MUST check the Allocate Request for a MESSAGE-INTEGRITY
 attribute. If not present, the server generates a Allocate Error
 Response with an ERROR-CODE attribute with response code 401.

 If the MESSAGE-INTEGRITY attribute was present, the server checks for
 the existence of the USERNAME attribute. If it was not present, the
 server MUST generate a Allocate Error Response. The Allocate Error
 Response MUST include an ERROR-CODE attribute with response code 432.

 If the USERNAME is present, the server computes the HMAC over the
 request as described in Section 11.2.8 of STUN. The key is equal to
 the password associated with the username in the request, where that
 username is a short term username allocated by the TURN server. The
 username MUST be one which has been allocated by the server in a
 Shared Secret Response, but has not yet been used to authenticate an
 Allocate request. If that username is not known by the server, or has
 already been used, the server generates an Allocate Error Response.
 That response MUST include an ERROR-CODE attribute with response code
 430.

 If the computed HMAC differs from the one from the MESSAGE-INTEGRITY
 attribute in the request, the server MUST generate a Allocate Error
 Response with an ERROR-CODE attribute with response code 431.

 Assuming the message integrity check passed, processing continues.
 The server MUST check for any attributes in the request with values
 less than or equal to 0x7fff which it does not understand. If it
 encounters any, the server MUST generate an Allocate Error Response,
 and it MUST include an ERROR-CODE attribute with a 420 response code.

 That response MUST contain an UNKNOWN-ATTRIBUTES attribute listing
 the attributes with values less than or equal to 0x7fff which were
 not understood.

 If the Allocate request arrived over TCP, the Allocate Error Response
 is sent on the connection from which the request arrived. If the
 Allocate request arrived over UDP, the Allocate Error Response is
 sent to the transport address from which the request was received
 (i.e., the source IP address and port), and sent from the transport
 address on which the request was received (i.e., the destination IP
 address and port).

 Assuming the Allocate request was authenticated and was well-formed,
 the server attempts to allocate transport addresses. It first looks
 for the BANDWIDTH attribute for the request. If present, the server
 determines whether or not it has sufficient capacity to handle a

Rosenberg, et al. Expires August 16, 2004 [Page 14]

Internet-Draft TURN February 2004

 binding that will generate the requested bandwidth. If so, the server
 looks for the presence of the TRANSPORT-PREFERENCES attribute in the
 request. If the attribute indicates that an even port is requested,
 the server attempts to allocate a transport address with an even
 port. If the attribute indicates that an odd port is requested, the
 server attempts to allocate a transport address with an odd port. If
 the attribute indicates that there is no preference for port parity,
 or if the TRANSPORT-PREFERENCES attribute was absent, the server
 attempts to allocate a port with either parity. The server MUST NOT
 allocate ports from the well-known port range (0-1023) and MUST NOT
 allocate ports from the user registered port range (1024 through
 49151).

 This aspect of the protocol helps guarantee that users cannot run
 servers (such as a web server, SIP server, or SMTP server) using
 TURN.

 The TRANSPORT-PREFERENCES attribute can also indicate a preference
 for a specific address and port, pre-allocated previously by a prior
 Allocate request. This case is described in Section 7.2.3.

 If a port meeting the constraints (including bandwidth) cannot be
 allocated, the server MUST generate a Allocate Error Response that
 includes an ERROR-CODE attribute with a response code of 300. That
 response MAY include an ALTERNATE-SERVER attribute pointing to an
 alternate server which can be used by the client.

 Assuming a port was allocated according to the preferences (call this
 the base port), the server checks to see if the TRANSPORT-PREFERENCES
 attribute is present, and indicates a desire to pre-allocate the next
 higher port (called the pre-allocated port). If so, the server
 attempts to allocate that port from its local operating system. If it
 cannot be allocated, the server can do one of two things. First, it
 MAY try to allocate a different base port, in the hopes that the next
 higher port is available. If the server believes that there are no
 adjacent ports meeting the parity constraints present in the request,
 the server MAY generate an Allocate Error Response that includes an
 ERROR-CODE attribute with a response code of 300. That response MAY
 include an ALTERNATE-SERVER attribute pointing to an alternate server
 which can be used by the client.

 Once a base port is allocated, the server creates a binding for it.
 This binding is a mapping between two five-tuples - the allocate
 five-tuple and the remote five-tuple. The allocate five-tuple is set
 to the five-tuple of the Allocate Request (that is, the protocol of
 the allocate five-tuple is set to the protocol of the Allocate
 Request (TCP or UDP), the source IP address and port of the allocate
 five-tuple are set to the source IP address and port in the Allocate

Rosenberg, et al. Expires August 16, 2004 [Page 15]

Internet-Draft TURN February 2004

 Request, and the destination IP address and port of the allocate
 five-tuple are set to the destination IP address and port in the
 Allocate Request). The protocol in the remote five-tuple is set to
 the protocol from the Allocate Request. The source IP address of the
 remote five-tuple is set to the interface from which the base port
 was allocated. The source port of the remote five-tuple is set to the
 base port. If the binding was allocated for TCP, the connection on
 which the Allocate request was received is associated with the
 allocate five-tuple in the binding.

 The server MUST remember the one-time username and password used to
 obtain the binding.

 If an address and port was pre-allocated (either at the request or
 the user, or the at the discretion of the server), a binding is also
 created for it. The allocate five-tuple is left empty. The protocol
 in the remote five-tuple is set to the protocol from the Allocate
 Request. The source IP address of the remote five-tuple is set to the
 interface from which the pre-allocated port was allocated. The source
 port of the remote five-tuple is set to the pre-allocated port. The
 identity of the user (defined as the username provided in the Shared
 Secret Request used to obtain the one-time password used in the
 Allocate Request) is associated with this pre-allocated tuple. Only
 that user can perform an allocation for this tuple. Furthermore, a
 timer is set. If no allocation is made against this pre-allocation
 within 5 minutes, the port is released and the binding is deleted.

 If the LIFETIME attribute was present in the request, and the value
 is larger than the maximum duration the server is willing to use for
 the lifetime of the binding, the server MAY lower it to that maximum.
 However, the server MUST NOT increase the duration requested in the
 LIFETIME attribute. If there was no LIFETIME attribute, the server
 may choose a default duration at its discretion. In either cae, the
 resulting duration is added to the current time, and a timer is set
 to fire at or after that time. Section 7.5 discusses behavior when
 the timer fires.

 Once the base port has been obtained from the operating system, the
 pre-allocated port obtained, and the activity timer started for the
 base port binding, the server generates an Allocate Response. The
 Allocate Response MUST contain the same transaction ID contained in
 the Allocate Request. The length in the message header MUST contain
 the total length of the message in bytes, excluding the header. The
 Allocate Response MUST have a message type of "Allocate Response".

 The server MUST add a MAPPED-ADDRESS attribute to the Allocate
 Response. The IP address component of this attribute MUST be set to
 the interface from which the base port was allocated. The port

Rosenberg, et al. Expires August 16, 2004 [Page 16]

Internet-Draft TURN February 2004

 component of this attribute MUST be set to the base port.

 The server MUST add a LIFETIME attribute to the Allocate Response.
 This attribute contains the duration, in seconds, of the activity
 timer associated with this binding.

 The server MUST add a BANDWIDTH attribute to the Allocate Response.
 This MUST be equal to the attribute from the request, if one was
 present. Otherwise, it indicates a per-binding cap that the server is
 placing on the bandwidth usage on each binding. Such caps are needed
 to prevent against denial-of-service attacks (See Section 10.

 The server MUST add, as the final attribute of the request, a
 MESSAGE-INTEGRITY attribute. The key used in the HMAC MUST be the
 same as that used to validate the request.

 The TURN server then sends the response. If the Allocate request was
 received over TCP, the response is sent over that TCP connection.
 Once the response is sent, the TURN server begins acting as a relay
 for that connection (see Section 7.4). If the Allocate request was
 received over UDP, the response is sent to the transport address from
 which the request was received (i.e., the source IP address and
 port), and sent from the transport address on which the request was
 received (i.e., the destination IP address and port).

 Additionally, if the base port was for UDP, the server MUST be
 prepared to receive UDP packets once the TURN response is sent. If
 the base port was for TCP, the server MUST be prepared to receive a
 TCP connection request on that port. Behavior when either occurs is
 described in Section 7.4.

7.2.3 Requests for Pre-Allocated Ports

 The TRANSPORT-PREFERENCES attribute of the Allocate Request can
 indicate a desire to allocate a port that was previously
 pre-allocated by a prior Allocate request. If such an indication is
 present, the server checks that this address and port has been
 pre-allocated by a previous Allocate Request. The only user
 authorized to allocate a pre-allocated address is the same one that
 generated the pre-allocation. Note that the one-time usernames for
 both requests (the pre-allocation and the final allocation) will be
 different. However, both MUST have been obtained through Shared
 Secret Requests authenticated as being sent from the same user.

 If the Allocate request arrives on a different protocol than was used
 to make the pre-allocation, the server MUST send an Allocate Error
 Response. That response MUST contain an ERROR-CODE attribute with a
 response code of 400.

Rosenberg, et al. Expires August 16, 2004 [Page 17]

Internet-Draft TURN February 2004

 Assuming the requested port has been pre-allocated by the same user,
 the server completes the allocation by setting the allocate
 five-tuple for the binding to be equal to that of the Allocate
 request. The server sets the activity timer for this binding, and
 generates an Allocate Response. This response MUST contain a
 MAPPED-ADDRESS attribute which contains the interface from which the
 pre-allocated port was obtained, along with the pre-allocated port.
 The response MUST contain a LIFETIME attribute and a
 MESSAGE-INTEGRITY attribute as well.

7.2.4 Subsequent Requests

 Once a binding has been created, non-TURN packets received from the
 client are generally forwarded to the remote client. However, if the
 binding is UDP, the client can send subsequent Allocate requests to
 the TURN server. To determine which packets are for the TURN server,
 and which need to be relayed, the server looks at the packet. If the
 packet is shorter than 28 bytes, it is not a TURN request. If it is
 longer than 28 bytes, the server checks bytes 25-28. If these bytes
 are equal to the MAGIC-COOKIE, the request is a TURN request.
 Otherwise, it is a data packet, and is to be relayed.

 The server first authenticates the request. This is done as in
Section 7.2.2. The request MUST be authenticated using the same

 one-time username and password used to allocate that binding
 previously. That is, the five-tuple from the Allocate request is
 compared to the allocate five-tuples in existing bindings. The
 matching binding is selected. The one-time username and password
 associated with that binding MUST match the ones used in the request.

 Any TRANSPORT-PREFERENCE attribute in the request is ignored. An
 Allocate Request sent to an existing binding is always a refresh or
 deallocation. The server looks for the LIFETIME attribute in the
 Allocate Request. If not found, it determines the default refresh
 duration, in seconds, for this binding. If the LIFETIME attribute was
 present in the request, and the value is larger than the maximum
 duration the server is willing to extend the lifetime of the binding,
 the server MAY lower it to that maximum. However, the server MUST NOT
 increase the duration requested in the LIFETIME attribute. The
 resulting duration is added to the current time, and the activity
 timer for this binding is reset to fire at or after that time.

Section 7.5 discusses behavior when the timer fires.

 Once the timer is set, the server MUST generate an Allocate Response.
 The Allocate Response MUST contain the same transaction ID contained
 in the Allocate Request. The length in the message header MUST
 contain the total length of the message in bytes, excluding the
 header. The Allocate Response MUST have a message type of "Allocate

Rosenberg, et al. Expires August 16, 2004 [Page 18]

Internet-Draft TURN February 2004

 Response". The response MUST contain a MAGIC-COOKIE as the first
 attribute. It MUST contain a MAPPED-ADDRESS which contains the source
 IP address and port from the remote five-tuple of the binding. It
 MUST contain a LIFETIME attribute which contains the time from now
 until the point at which the binding will be deleted. The final
 attribute MUST be a MESSAGE-INTEGRITY attribute, which MUST use the
 same one-time username and password used to authenticate the request.

 The TURN server then sends the response. If the Allocate request was
 received over TCP, the response is sent over that TCP connection. If
 the Allocate request was received over UDP, the response is sent to
 the transport address from which the request was received (i.e., the
 source IP address and port), and sent from the transport address on
 which the request was received (i.e., the destination IP address and
 port).

7.3 Send Request

 In some networks, enterprise firewall policies prevent users from
 sending packets directly out to the public Internet. A TURN server
 can act as a relay for packets sent by a client in such a network.
 However, the TURN server can only relay packets once the remote
 five-tuple has been fully filled in with an incoming packet, a
 process called "locking down". Many applications will require a user
 to send a packet first in order to trigger such an incoming packet.
 These initial packets must also be relayed. To provide this
 capability, TURN supports the Send Request.

 The Send request asks the TURN server to forward a data packet to a
 specified IP address and port. A Send Request is like any other TURN
 request. A server can disambiguate a Send Request from a data packet
 by looking for the MAGIC-COOKIE attribute, as described in Section

7.2.4.

 Once the server has identified a request as a Send request, the
 server verifies that it has arrived with a source five-tuple
 corresponding to an existing allocation. If there is no matching
 allocation, the server MUST generate a 437 (No Binding) Send Error
 Response. If there is a matching allocation, the server checks if the
 remote 5-tuple for the binding has been filled in (i.e., lock-down
 has occurred). If it has, the server MUST generate a 438 (Sending
 Disallowed) Send Error Response.

 Next, the server authenticates the request. This is done as in
Section 7.2.2. The request MUST be authenticated using the same

 one-time username and password used to allocate that binding
 previously. That is, the five-tuple from the Send request is compared
 to the allocate five-tuples in existing bindings. The matching

Rosenberg, et al. Expires August 16, 2004 [Page 19]

Internet-Draft TURN February 2004

 binding is selected. The one-time username and password associated
 with that binding MUST match the ones used in the request.

 Once the request has been authenticated, the server validates it. The
 request should contain a DESTINATION-ADDRESS attribute and a DATA
 attribute. If it doesn't, the server MUST reject the request with a
 400 (Bad Request) Send Error Response. If the value of the port from
 the DESTINATION-ADDRESS is between 0 and 1023 inclusive, the server
 MUST reject the request with a 439 (Illegal Port) Send Error
 Response.

 Assuming the Send Request has been validated, the server then takes
 the contents of the DATA attribute, and creates a UDP packet whose
 payload equals that content. The server sets the source IP address
 equal to the source IP from the remote five-tuple, and the source
 port equal to the source port from the remote five-tuple. The
 destination address and port are set to the contents of the
 DESTINATION-ADDRESS. The server then sends the UDP packet. Note that
 any retransmissions of this packet which might be needed are not
 handled by the server. It is the clients responsibility to generate
 another Send Request if needed.

 Once the UDP packet is sent, the server generates a Send Response.
 The Send Response MUST have a message type of "Send Response". The
 response MUST contain a MAGIC-COOKIE as the first attribute. If the
 server needs to generate a Send Error Response, that message MUST
 contain a message type of "Send Error Response", and MUST contain a
 MAGIC-COOKIE as the first attribute. It MUST contain an ERROR-CODE
 with the appropriate response code. For UDP, both the Send Response
 and Send Error Response are sent back to the source IP and port where
 the request came from, and sent from the same address and port where
 the request was sent to.

7.4 Receiving Packets and Connections

 If a TURN server receives a TCP connection request on a port it has
 allocated, the server retrieves the binding whose remote five-tuple
 has a source address and source port that match the IP address and
 port to which the connection was made, and whose transport is TCP. If
 the destination IP address and port of the remote five-tuple in the
 binding are already filled in (which means that a connection was
 already made to this tuple), the connection request is rejected.
 Otherwise, it is accepted. If the connection is accepted, the server
 MUST set the destination IP address and port of the remote five-tuple
 to the source IP address and port in the SYN packet. It also
 associates this connection with the remote five-tuple.

 If a TURN server receives a UDP packet on a port it has allocated,

Rosenberg, et al. Expires August 16, 2004 [Page 20]

Internet-Draft TURN February 2004

 the server retrieves the binding whose remote five-tuple has a source
 address and source port that match the IP address and port to which
 the packet was sent, and whose transport is UDP. If the destination
 IP address and port of the remote five-tuple in the binding are
 already filled in, and do not match the source IP address and port of
 the UDP packet, the server transmits the packet to the client using a
 Data Indication message. This is a TURN message that is not
 retransmitted by the server, and which does not generate a response.
 As a result, like data packets which are forwarded, there is no
 reliability guarantee provided by the TURN server for this
 indication. The Data Indication message MUST contain a DATA attribute
 whose contents are equal to the payload of the UDP packet. The
 message MUST contain a SOURCE-ADDRESS attribute whose content is
 equal to the source IP address and port of the UDP packet received by
 the TURN server. This packet is sent to the client using the allocate
 five-tuple. That is, its destination address is equal to the source
 address from the allocate five-tuple, and its source address is equal
 to the destination address from the allocate five-tuple.

 If the packet was not sent as a Data Indication message, it is
 forwarded. To forward, the packet is sent with a source IP address
 and port equal to the destination IP address and port in the allocate
 five-tuple, and with a destination address and port equal to the
 source IP address and port in the allocate five-tuple. If the
 destination address and port of the remote five-tuple were not filled
 in, they are populated at this time. The server MUST set the
 destination IP address and port of the remote five-tuple to the
 source IP address and port in the UDP packet. Note that, unlike a
 Data Indication message, when the packet is forwarded, the payload of
 the transmitted packet is identical to the one received. No headers
 are added to the packet.

 The process of filling in the destination IP address and port of the
 remote five-tuple is called "locking down". Once done, the client can
 only send and receive packets with the specific peer from which the
 first packet or connection was received.

 If a TURN server receives data on a TCP connection that was opened to
 a port it had allocated, the server MUST forward this data onto the
 connection associated with allocate-tuple in the binding.

 If a TURN server receives data on a TCP connection that is associated
 with an allocate five-tuple, the binding for that tuple is retrieved.
 If the destination IP address and port of that tuple have not been
 filled in yet, the data is discarded. If the destination address and
 port have been filled in, the connection associated with the remote
 five-tuple is obtained, and the data is forwarded on that connection.

Rosenberg, et al. Expires August 16, 2004 [Page 21]

Internet-Draft TURN February 2004

 Note that, because data is forwarded blindly across TCP bindings, TLS
 will successfully operate over a TURN allocated TCP port.

 Similarly, if a TURN server receives a UDP packet on one of its
 public TURN ports, it checks to see if the source IP address and port
 match those of the allocate five-tuples in an existing binding. If
 there is a match, the the UDP packet is not a TURN request (see

Section 7.2.4 for details on how this determination is made), the
 destination IP address and port in the remote five-tuple of the
 binding are checked. If they are not filled in yet, the UDP packet is
 discarded. If they are, the packet is forwarded. It is forwarded
 using the source IP address and port from the remote five-tuple, and
 a destination IP address and port from the remote five-tuple.

 If a TCP connection associated with an allocate five-tuple is closed,
 the connection associated with the corresponding remote five-tuple is
 also closed. At that point, the binding is destroyed. Similarly, if
 the TCP connection associated with a remote five-tuple is closed, the
 connection associated with the corresponding allocate five-tuple is
 closed, and the binding is destroyed.

7.5 Lifetime Expiration

 When the activity timer for a binding fires, the server checks to see
 if there has been any activity on the binding since its creation, or
 since the last firing of the timer, whichever is more recent.
 Activity is defined as connection establishment, or packet
 transmission in either direction. If there has been activity, the
 timer is set to fire once again in M seconds, where M is the value of
 the LIFETIME attribute returned in the most recent Allocate Response
 for this binding.

 If there has been no activity, the server MUST destroy the binding,
 along with its associated one-time password. If the binding was over
 TCP, the server MUST close any connections it is holding to the
 client and to the remote client.

Rosenberg, et al. Expires August 16, 2004 [Page 22]

Internet-Draft TURN February 2004

8. Client Behavior

 Client behavior is broken into several separate steps. First, the
 client obtains a one-time username and password. Secondly, it
 generates initial Allocate Requests, and processes the responses. It
 manages those addresses (refreshing and tearing them down), issues
 Send Requests, and processes TURN indications and data received on
 those addresses.

8.1 Discovery

 Generally, the client will be configured with a domain name of the
 provider of the TURN servers. This domain name is resolved to an IP
 address and port of using the SRV procedures [3]. When sending a
 Shared Secret request, the service name is "turn" and the protocol is
 "tcp". RFC 2782 spells out the details of how a set of SRV records
 are sorted and then tried. However, it only states that the client
 should "try to connect to the (protocol, address, service)" without
 giving any details on what happens in the event of failure. Those
 details are described here for TURN.

 For TURN requests, failure occurs if there is a transport failure of
 some sort (generally, due to fatal ICMP errors in UDP or connection
 failures in TCP). Failure also occurs if the the request does not
 solicit a response after 9.5 seconds. If a failure occurs, the client
 SHOULD create a new request, which is identical to the previous, but
 has a different transaction ID and MESSAGE-INTEGRITY attribute. That
 request is sent to the next element in the list as specified by
 RFC~2782.

8.2 Obtaining a One Time Password

 In order to allocate addresses, a client must obtain a one-time
 username and password from the TURN server. A unique username and
 password are required for each distinct address allocated from the
 server.

 To obtain a one-time username and password, the client generates and
 sends a Shared Secret Request. This is done as described in Section

9.2 of STUN. This request will have no attributes, and therefore,
 based on the processing in Section 7.1, the server will reject it
 with a Shared Secret Error Response with a 401 response code. That
 response will contain a NONCE and a REALM. The client SHOULD generate
 a new Shared Secret Request (with a new transaction ID), which
 contains the NONCE and REALM attributes copied from the 401 response.
 The request MUST include the USERNAME attribute, which contains a
 username supplied by the user for the specified realm. The request
 MUST include a MESSAGE-INTEGRITY attribute as the last attribute. The

https://datatracker.ietf.org/doc/html/rfc2782

Rosenberg, et al. Expires August 16, 2004 [Page 23]

Internet-Draft TURN February 2004

 key for the HMAC is computed as described in Section 7.1.

 If the response (either to the initial request or to the second
 attempt with the credentials) is a Shared Secret Error Response, the
 processing depends on the the value of the response code in the
 ERROR-CODE attribute. If the response code was a 430, the client
 SHOULD generate a new Shared Secret Request, using the username and
 password provided by the user, and the REALM and NONCE provided in
 the 430 response. For a 431 or 436 response code, the client SHOULD
 alert the user. For a 432, 434 and 435 response codes, if the client
 had omitted the USERNAME, REALM or NONCE attributes, respectively,
 from the previous request, it SHOULD retry, this time including the
 USERNAME, NONCE, REALM, and MESSAGE-INTEGRITY attributes. For a 500
 response code, the client MAY wait several seconds and then retry the
 request. For a 600 response code, the client MUST NOT retry the
 request, and SHOULD display the reason phrase to the user. Unknown
 attributes between 400 and 499 are treated like a 400, unknown
 attributes between 500 and 599 are treated like a 500, and unknown
 attributes between 600 and 699 are treated like a 600. Any response
 between 100 and 399 MUST result in the cessation of request
 retransmissions, but otherwise is discarded.

 If a client receives a Shared Secret Response with an attribute whose
 type is greater than 0x7fff, the attribute MUST be ignored. If the
 client receives a Shared Secret Response with an attribute whose type
 is less than or equal to 0x7fff, the response is ignored.

 If the response is a Shared Secret Response, it will contain the
 USERNAME and PASSWORD attributes. The client can use these to
 authenticate an Allocate Request, as described below.

 A client MAY send multiple Shared Secret Requests over the same TLS
 connection, and MAY do so without waiting for responses to previous
 requests. The client SHOULD close its connection when it has
 completed allocating usernames and passwords.

8.3 Allocating a Binding

 When a client wishes to obtain a transport address, it sends an
 Allocate Request to the TURN server. Requests for TCP transport
 addresses MUST be sent over a TCP connection, and requests for UDP
 transport addresses MUST be sent over UDP.

 First, the client obtains a one-time username and password, using the
 mechanisms described in Section 8.2. The client then formulates an
 Allocate Request. The request MUST contain a transaction ID, unique
 for each request, and uniformly and randomly distributed between 0
 and 2**128 - 1. The message type of the request MUST be ``Allocate

Rosenberg, et al. Expires August 16, 2004 [Page 24]

Internet-Draft TURN February 2004

 Request''. The length is set as described in Section 11.1 of STUN.

 The Allocate request MUST contain the MAGIC-COOKIE attribute as the
 first attribute. If the client wishes to allocate an odd or even
 port, it can do so by including the TRANSPORT-PREFERENCES attribute
 in the request. That attribute can also be used by the client if it
 wishes to pre-allocate the port one higher.

 The client SHOULD include a BANDWIDTH attribute, which indicates the
 maximum bandwidth that will be used with this binding. If the maximum
 is unknown, the attribute is not included in the request.

 The client MAY request a particular lifetime for the binding by
 including it in the LIFETIME attribute in the request. If the no data
 is sent or received on the binding before expiration of the lifetime,
 the binding will be deleted by the client.

 The client MUST include a USERNAME attribute, containing a username
 obtained from a previous Shared Secret Response. The request MUST
 include a MESSAGE-INTEGRITY attribute as the last attribute. The key
 is equal to the password obtained from the PASSWORD attribute of the
 Shared Secret Response. The Allocate Request MUST be sent to the same
 IP address and port as the Shared Secret Request. This is because one
 time passwords are expected to be host-specific. Rules for
 retransmissions for Allocate Requests sent over UDP are identical to
 those for STUN Binding Requests. Allocate Requests sent over TCP are
 not retransmitted. Transaction timeouts are identical to those for
 STUN Binding Requests, independent of the transport protocol.

8.4 Processing Allocate Responses

 If the response is an Allocate Error Response, the client checks the
 response code from the ERROR-CODE attribute of the response. For a
 400 response code, the client SHOULD display the reason phrase to the
 user. For a 420 response code, the client SHOULD retry the request,
 this time omitting any attributes listed in the UNKNOWN-ATTRIBUTES
 attribute of the response. For a 430 response code, the client SHOULD
 obtain a new one-time username and password, and retry the Allocate
 Request with a new transaction. For 401 and 432 response codes, if
 the client had omitted the USERNAME or MESSAGE-INTEGRITY attribute as
 indicated by the error, it SHOULD try again with those attributes. A
 new one-time username and password is needed in that case. For a 431
 response code, the client SHOULD alert the user, and MAY try the
 request again after obtaining a new username and password. For a 300
 response code, the client SHOULD attempt a new TURN transaction to
 the server indicated in the ALTERNATE-SERVER attribute. For a 500
 response code, the client MAY wait several seconds and then retry the
 request with a new username and password. For a 600 response code,

Rosenberg, et al. Expires August 16, 2004 [Page 25]

Internet-Draft TURN February 2004

 the client MUST NOT retry the request, and SHOULD display the reason
 phrase to the user. Unknown attributes between 400 and 499 are
 treated like a 400, unknown attributes between 500 and 599 are
 treated like a 500, and unknown attributes between 600 and 699 are
 treated like a 600. Unknown attributes between 300 and 399 are
 treated like 300. Any response between 100 and 299 MUST result in the
 cessation of any request retransmissions, but otherwise is discarded.

 If a client receives a response with an attribute whose type is
 greater than 0x7fff, the attribute MUST be ignored. If the client
 receives a response with an attribute whose type is less than or
 equal to 0x7fff, any request retransmissions MUST cease, but the
 entire response is otherwise ignored.

 If the response is an Allocate Response, the client MUST check the
 response for a MESSAGE-INTEGRITY attribute. If not present, the
 client MUST discard the response. If present, the client computes the
 HMAC over the response. The key MUST be same as used to compute the
 MESSAGE-INTEGRITY attribute in the request. If the computed HMAC
 differs from the one in the response, the client MUST discard the
 response, and SHOULD alert the user about a possible attack. If the
 computed HMAC matches the one from the response, processing
 continues.

 The MAPPED-ADDRESS in the Binding Response can be used by the client
 for receiving packets. The server will expire the binding after
 LIFETIME seconds have passed with no activity. The server will allow
 the user to send and receive no more than the amount of data
 indicated in the BANDWIDTH attribute.

8.5 Allocating a Pre-Allocated Binding

 If the initial Allocate Request included TRANSPORT-PREFERENCES that
 indicated a desire to pre-allocate the port one-higher, the client
 MAY allocate that port at a later time. It MUST do so within 4
 minutes of receiving the Allocate Response, or the pre-allocated port
 will expire.

 To allocate the port, the client generates an Allocate Request as
 described in Section 8.3. A new username and password MUST be used
 for this allocation. The request MUST contain a TRANSPORT-PREFERENCES
 attribute. It MUST indicate an explicit interface and port, whose
 value is one higher than the port number returned in the prior
 Allocate Response.

 Processing of the responses is identical to Section 8.4. However, the
 client SHOULD explicitly check that received packets are TURN
 responses, as opposed to data packets, using the techniques described

Rosenberg, et al. Expires August 16, 2004 [Page 26]

Internet-Draft TURN February 2004

 in Section 7.2.4.

8.6 Refreshing a Binding

 If there has been no activity on a UDP binding for a period of time
 equalling 3/4 of the lifetime of the binding (as conveyed in the
 LIFETIME attribute of the Allocate Response), the client SHOULD
 refresh the binding with another Allocate Request if it wishes to
 keep it. Note that only UDP bindings can be refreshed. For TCP,
 application-specific keepalives are needed.

 To perform a refresh, the client generates an Allocate Request as
 described in Section 8.3. However, the one-time username and password
 used MUST be the same as those used in the successful Allocate
 Request for that binding. The client will need to look for the TURN
 response amongst the data packets using the MAGIC-COOKIE, as
 described in Section 7.2.4. Processing of that response is as defined
 in Section 8.4. If the response was an Allocate Response, and the
 MAPPED-ADDRESS contains the same transport address as previously
 obtained, the binding has been refreshed. The LIFETIME attribute
 indicates the amount of additional time the binding will live without
 activity. If, however, the response was an Allocate Error Response
 with an ERROR-CODE indicating a 430 response, it means that the
 binding has expired at the server. The client MAY use the procedures
 in Section 8.3 to obtain a new binding (this will require a new
 one-time username and password. Other response codes do not imply
 that the binding has been expired, just that the refresh has failed.

8.7 Sending Data

 Before lockdown has occured, a client MAY send data using a binding
 it has allocated from the TURN server. To do that, it formulates a
 Send Request. This request MUST contain a transaction ID, unique for
 each request, and uniformly and randomly distributed between 0 and
 2**128 - 1. The message type of the request MUST be "Send Request".
 The length is set as described in Section 11.1 of STUN.

 The Send request MUST contain the MAGIC-COOKIE attribute as the first
 attribute. The client MUST include a USERNAME attribute, containing
 the same username used in the Allocate request for this binding. The
 request MUST include a MESSAGE-INTEGRITY attribute as the last
 attribute. The key is equal to the password used for the Allocate
 request for this binding. The Send Request MUST be sent to the same
 IP address and port as the Allocate Request, and MUST be sent from
 the same source IP and port used to send the Allocate request for the
 binding. Rules for retransmissions for Send Requests sent over UDP
 are identical to those for STUN Binding Requests. There is currently
 no support for Send Requests over TCP. Transaction timeouts are

Rosenberg, et al. Expires August 16, 2004 [Page 27]

Internet-Draft TURN February 2004

 identical to those for STUN Binding Requests, independent of the
 transport protocol.

 The Send Request MUST contain a DESTINATION-ADDRESS attribute, which
 contains the IP address and port that the data is being sent to. A
 client MUST NOT specify a port below 1024, as the server will reject
 such requests. This prevents TURN from being used as a relay to
 launch DoS attacks against well-known services. The Send Request MUST
 contain a DATA attribute, whose contents are the data to transmit.

 If the server successfully sends the data, the client will receive a
 Send Response. Note that, as with responses to Allocate refreshes,
 the client will need to pick the Send Response (or Send Error
 Response) out of the packet stream by searching for the MAGIC-COOKIE
 in each received UDP packet. If the response is a Send Error
 Response, it is processed as described in the first two paragraphs of

Section 8.4. If the response code is 438, the client is forbidden
 from using the Send Request, since lockdown has occurred. The client
 can relay data to the peer by sending the data without a TURN message
 wrapper. [[OPEN ISSUE: is there a need for the client to be told what
 the locked-down address is?]]

8.8 Tearing Down a Binding

 If a client no longer needs a binding, it SHOULD tear it down. For
 TCP, this is done by closing the connection. For UDP, this is done by
 performing a refresh, as described in Section 8.6, but with a
 LIFETIME attribute indicating a time of 0.

8.9 Receiving and Sending Data

 Once a binding has been allocated by an Allocate Response, the client
 MUST be prepared to receive data from the socket on which the
 Allocate Request was sent. For UDP, the client MUST be prepared to
 disambiguate TURN messages from data for the lifetime of the binding.
 This disambiguation is done using the MAGIC-COOKIE, as described in

Section 7.2.4.

 Once data has been received, the client MAY send data to its peer by
 sending data on that same socket. Sending data on the socket before
 data is received will cause the data to be discarded by the server.

 The client may receive a Data Indication message from the TURN
 server. The client does not generate any kind of response to this
 message. Its receipt implies that a packet from a second peer has
 been received after lock-down. This specification does not define any
 particular treatment to data received in such an indication. However,
 in many cases, it can be a sign of a potential denial-of-service

Rosenberg, et al. Expires August 16, 2004 [Page 28]

Internet-Draft TURN February 2004

 attack against the client. If the client believes that it should not
 be receiving data from any other source, it SHOULD terminate the
 binding.

Rosenberg, et al. Expires August 16, 2004 [Page 29]

Internet-Draft TURN February 2004

9. Protocol Details

 This section presents the detailed encoding of the message types,
 attributes, and response codes which are new to TURN. The general
 message structure of TURN is identical to STUN [1].

9.1 Message Types

 TURN defines three new Message Types:

 0x0003 : Allocate Request
 0x0103 : Allocate Response
 0x0113 : Allocate Error Response
 0x0004 : Send Request
 0x0104 : Send Response
 0x0114 : Send Error Response
 0x0115 : Data Indication

9.2 Message Attributes

 TURN defines the following message attributes:

 0x000c: TRANSPORT-PREFERENCES
 0x000d: LIFETIME
 0x000e: ALTERNATE-SERVER
 0x000f: MAGIC-COOKIE
 0x0010: BANDWIDTH
 0x0011: DESTINATION-ADDRESS
 0x0012: SOURCE-ADDRESS
 0x0013: DATA

9.2.1 TRANSPORT-PREFERENCES

 The TRANSPORT-PREFERENCES attribute indicates preferences for the
 ports allocated by the TURN server. It is either 32 or 96 bits long,
 depending on the value of the Typ bits. These bits indicate the
 preferences for the allocated port:

 0b00: no preferences
 0b01: odd port parity
 0b10: even port parity
 0b11: allocate a pre-allocated port

Rosenberg, et al. Expires August 16, 2004 [Page 30]

Internet-Draft TURN February 2004

 When the Typ bits are 0b11, the following 64 bits encode the
 pre-allocated transport address. They are in the same format used for
 MAPPED-ADDRESS.

 The P bit indicates a desire for pre-allocating the port one-higher.
 If 1, it means pre-allocation is desired. This bit MUST NOT be set to
 1 if the Typ bits are 0b11. That is, pre-allocation cannot be done
 again when allocating a previously pre-allocated port.

 +-+
 | 0 |P|Typ|
 +-+
 |x x x x x x x x| Family | Port |
 +-+
 | Address |
 +-+

9.2.2 LIFETIME

 The lifetime attribute represents the duration for which the server
 will maintain a binding in the absence of data traffic either from or
 to the client. It is a 32 bit value representing the number of
 seconds remaining until expiration.

 +-+
 | Lifetime |
 +-+

9.2.3 ALTERNATE-SERVER

 The alternate server represents an alternate IP address and port for
 a different TURN server to try. It is encoded in the same way as
 MAPPED-ADDRESS.

9.2.4 MAGIC-COOKIE

 The MAGIC-COOKIE is used by TURN clients and servers to disambiguate
 TURN traffic from data traffic. Its value ix 0x72c64bc6.

 +-+
 |0|1|1|1|0|0|1|0|1|1|0|0|0|1|1|0|0|1|0|0|1|0|1|1|1|1|0|0|0|1|1|0|
 +-+

Rosenberg, et al. Expires August 16, 2004 [Page 31]

Internet-Draft TURN February 2004

9.2.5 BANDWIDTH

 The bandwidth attribute represents the peak bandwidth, measured in
 kbits per second, that the client expects to use on the binding. The
 value represents the sum in the receive and send directions.
 [[Editors note: Need to define leaky bucket parameters for this.]]

 +-+
 | Bandwidth |
 +-+

9.2.6 DESTINATION-ADDRESS

 The DESTINATION-ADDRESS is present in Send Requests. It specifies the
 address and port where the data is to be sent. It is encoded in the
 same way as MAPPED-ADDRESS.

9.2.7 SOURCE-ADDRESS

 The SOURCE-ADDRESS is present in Data Indications. It specifies the
 address and port from which a packet was received. It is encoded in
 the same way as MAPPED-ADDRESS.

9.2.8 DATA

 The DATA attribute is present in Send Requests and Data Indications.
 It contains raw payload data that is to be sent (in the case of a
 Send Request) or was received (in the case of a Data Indication).

9.3 Response Codes

 TURN defines the following new response codes:

 300 (Try Alternate): The client should contact an alternate server
 for this request.

 434 (Missing Realm): The REALM attribute was not present in the
 request.

 435 (Missing Nonce): The NONCE attribute was not present in the
 request.

 436 (Unknown Username): The USERNAME supplied in the Shared Secret
 Request is not known in the given REALM.

 437 (No Binding): A Send Request was received by the server, but

Rosenberg, et al. Expires August 16, 2004 [Page 32]

Internet-Draft TURN February 2004

 there is no binding in place for the source 5-tuple.

 438 (Sending Disallowed): A Send Request was received by the
 server, but lock-down has already occurred, and sending is
 disallowed.

 439 (Illegal Port): A Send Request was received by the server, but
 lock-down has already occurred, and sending is disallowed.

Rosenberg, et al. Expires August 16, 2004 [Page 33]

Internet-Draft TURN February 2004

10. Security Considerations

 TURN servers allocate bandwidth and port resources to clients.
 Therefore, a TURN server requires authentication and authorization of
 TURN requests. This authentication is provided by a client digest
 over TLS, which results in the generation of a one-time password that
 is used in a single subsequent Allocate Request. This mechanism
 protects against eavesdropping attacks and man-in-the-middle attacks.
 The usage of one-time passwords ensures that the Allocate Requests,
 which do not run over TLS, are not susceptible to offline dictionary
 attacks that can be used to guess the long lived shared secret
 between the client and the server.

 Because TURN servers allocate resources, they can be susceptible to
 denial-of-service attacks. All Allocate Requests are authenticated,
 so that an unknown attacker cannot launch an attack. An authenticated
 attacker can generate multiple Allocate Requests, but each requires a
 new one-time username and password. It is RECOMMENDED that servers
 implement a cap on the number of one-time passwords that are
 allocated to any specific user at a time (around 5 or 10 should be
 sufficient). This will prevent floods of Allocate requests from a
 single user, in an attempt to use up the resources of the system. A
 single malicious user could generate a single Allocate Request,
 obtain a binding, and then flood the server with data over this
 binding, in an attempt to deny others service. However, this attack
 requires the attacker themselves to receive the data being sent at
 the server. To ameliorate these kinds of attacks, servers SHOULD
 implement a bandwidth cap on each binding (conveyed to the client in
 the BANDWIDTH attribute of the Allocate Response), and discard
 packets beyond the threshold.

 A client will use the transport address learned from the
 MAPPED-ADDRESS attribute of the Binding Response to tell other users
 how to reach them. Therefore, a client needs to be certain that this
 address is valid, and will actually route to them. Such validation
 occurs through the TLS and HMAC-based authentication and integrity
 checks provided in TURN. They can guarantee the authenticity and
 integrity of the mapped addressses. Note that TURN is not susceptible
 to the attacks described in Section 12.2.3, 12.2.4, 12.2.5 or 12.2.6
 of STUN. These attacks are based on the fact that a STUN server
 mirrors the source IP address, which cannot be authenticated. TURN
 does not use the source address of the Binding Request, and
 therefore, those attacks do not apply.

 Confidentiality of the transport addresses learned through TURN does
 not appear to be that important, and therefore, this capability is
 not provided.

Rosenberg, et al. Expires August 16, 2004 [Page 34]

Internet-Draft TURN February 2004

 TURN servers are useful even for users not behind a NAT. They can
 provide a way for truly anonymous communications. A user can cause a
 call to have its media routed through a TURN server, so that the
 user's IP addresses are never revealed.

 TCP transport addresses allocated by TURN will properly work with TLS
 and SSL. However, any addresses allocated by TURN will not operate
 properly with IPSec Authentication Header (AH) [10] in transport
 mode. IPSec ESP [11] and any tunnel-mode ESP or AH should still
 operate.

 Once a binding is locked down by the receipt of a packet, a client is
 prohibited from using the binding to send packets anywhere else. If
 an eavesdropper had observed a packet containing a TURN allocated
 address, it can transmit a packet to this address in an attempt to
 cause lock-down. This will prohibit a legitimate user from
 communicating with the client on that address. This particular attack
 is most easily prevented by ensuring that confidentiality is provided
 in any protocols that are used to transport a TURN binding. However,
 in a variant of this attack, a malicious client may flood a TURN
 server with UDP packets over a wide port range, in an attempt to
 cause lock-down on any bindings which were just allocated. This
 attack cannot be prevent with confidentiality mechanisms within other
 protocols. Fortunately, this attack is expensive to launch. Because
 the server provides no positive indications of lock-down, an attacker
 will need to be flooding continously without any indication of
 success. Furthermore, the rate of packets sent to any particular port
 needs to be very high - on the order of one every second or so -
 since there is a limited window of opportunity for locking down
 before a legitimate client sends a packet to the binding and causes
 lock-down. This attack can also be detected by clients. They will
 still receive the legitimate packets through the TURN Data
 Indications. In many cases, a client will be able to disambiguate the
 legitimate ones from those from the attacker. If it determines an
 attack is in progress, it can terminate the binding and retry.

Rosenberg, et al. Expires August 16, 2004 [Page 35]

Internet-Draft TURN February 2004

11. IAB Considerations

 The IAB has studied the problem of ``Unilateral Self Address
 Fixing'', which is the general process by which a client attempts to
 determine its address in another realm on the other side of a NAT
 through a collaborative protocol reflection mechanism RFC 3424 [12].
 TURN is an example of a protocol that performs this type of function.
 The IAB has mandated that any protocols developed for this purpose
 document a specific set of considerations. This section meets those
 requirements.

11.1 Problem Definition

 From RFC 3424 [12], any UNSAF proposal must provide:

 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short term fix should not
 be generalized to solve other problems; this is why "short term
 fixes usually aren't".

 The specific problem being solved by TURN is for a client, which may
 be located behind a NAT of any type, to obtain an IP address and port
 on the public Internet, useful for applications that require a client
 to place a transport address into a protocol message, with the
 expectation that the client will be able to receive packets from a
 single host that will send to this address. Both UDP and TCP are
 addressed. It is also possible to send packets so that the recipient
 sees a source address equal to the allocated address. TURN, by
 design, does not allow a client to run a server (such as a web or
 SMTP server) using a TURN address. TURN is useful even when NAT is
 not present, to provide anonymity services.

11.2 Exit Strategy

 From [12], any UNSAF proposal must provide:

 Description of an exit strategy/transition plan. The better short
 term fixes are the ones that will naturally see less and less use
 as the appropriate technology is deployed.

 It is expected that TURN will be useful indefinitely, to provide
 anonymity services. When used to facilitate NAT traversal, TURN does
 not iself provide an exit strategy. That is provided by the
 Interactive Connectivity Establishment (ICE) [13] mechanism. ICE
 allows two cooperating clients to interactively determine the best
 addresses to use when communicating. ICE uses TURN-allocated
 addresses as a last resort, only when no other means of connectivity
 exists. As a result, as NATs phase out, and as IPv6 is deployed, ICE

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Rosenberg, et al. Expires August 16, 2004 [Page 36]

Internet-Draft TURN February 2004

 will increasingly use other addresses (host local addresses).
 Therefore, clients will allocate TURN addresses, but not use them,
 and therefore, de-allocate them. Servers will see a decrease in
 usage. Once a provider sees that its TURN servers are not being used
 at all (that is, no media flows through them), they can simply remove
 them. ICE will operate without TURN-allocated addresses.

11.3 Brittleness Introduced by TURN

 From [12], any UNSAF proposal must provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 TURN introduces brittleness in a few ways. First, it adds another
 server element to any system, which adds another point of failure.
 TURN requires clients to demultiplex TURN packets and data based on
 hunting for a MAGIC-COOKIE in the TURN messages. It is possible (with
 extremely small probabilities) that this cookie could appear within a
 data stream, resulting in mis-classification. That might introduce
 errors into the data stream (they would appear as lost packets), and
 also result in loss of a binding. TURN relies on any NAT bindings
 existing for the duration of the bindings held by the TURN server.
 Neither the client nor the TURN server have a way of reliably
 determining this lifetime (STUN can provide a means, but it is
 heuristic in nature and not reliable). Therefore, if there is no
 activity on an address learned from TURN for some period, the address
 might become useless spontaneously.

 TURN will result in potentially significant increases in packet
 latencies, and also increases in packet loss probabilities. That is
 because it introduces an intermediary on the path of a packet from
 point A to B, whose location is determined by application-layer
 processing, not underlying routing topologies. Therefore, a packet
 sent from one user on a LAN to another on the same LAN may do a trip
 around the world before arriving. When combined with ICE, some of the
 most problematic cases are avoided (such as this example) by avoiding
 the usage of TURN addresses. However, when used, this problem will
 exist.

 Note that TURN does not suffer from many of the points of brittleness
 introduced by STUN. TURN will work with all existing NAT types known
 at the time of writing, and for the forseeable future. TURN does not
 introduce any topological constraints. TURN does not rely on any
 heuristics for NAT type classification.

Rosenberg, et al. Expires August 16, 2004 [Page 37]

Internet-Draft TURN February 2004

11.4 Requirements for a Long Term Solution

 From [12]}, any UNSAF proposal must provide:

 Identify requirements for longer term, sound technical solutions
 -- contribute to the process of finding the right longer term
 solution.

 Our experience with TURN continues to validate our belief in the
 requirements outlined in Section 14.4 of STUN.

11.5 Issues with Existing NAPT Boxes

 From [12], any UNSAF proposal must provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 A number of NAT boxes are now being deployed into the market which
 try and provide "generic" ALG functionality. These generic ALGs hunt
 for IP addresses, either in text or binary form within a packet, and
 rewrite them if they match a binding. This will interfere with proper
 operation of any UNSAF mechanism, including TURN. However, if a NAT
 tries to modify a MAPPED-ADDRESS in a TURN Allocate Response, this
 will be detected by the client as an attack.

Rosenberg, et al. Expires August 16, 2004 [Page 38]

Internet-Draft TURN February 2004

12. Examples

 TODO.

Rosenberg, et al. Expires August 16, 2004 [Page 39]

Internet-Draft TURN February 2004

Normative References

 [1] Rosenberg, J., Weinberger, J., Huitema, C. and R. Mahy, "STUN -
 Simple Traversal of User Datagram Protocol (UDP) Through Network
 Address Translators (NATs)", RFC 3489, March 2003.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [4] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A. and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2617

Rosenberg, et al. Expires August 16, 2004 [Page 40]

Internet-Draft TURN February 2004

Informative References

 [5] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", RFC

3550, July 2003.

 [6] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [7] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [8] Schulzrinne, H., Rao, A. and R. Lanphier, "Real Time Streaming
 Protocol (RTSP)", RFC 2326, April 1998.

 [9] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, January 2002.

 [10] Kent, S. and R. Atkinson, "IP Authentication Header", RFC 2402,
 November 1998.

 [11] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998.

 [12] Daigle, L. and IAB, "IAB Considerations for UNilateral
 Self-Address Fixing (UNSAF) Across Network Address
 Translation", RFC 3424, November 2002.

 [13] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
 Methodology for Nettwork Address Translator (NAT) Traversal
 for the Session Initiation Protocol (SIP)",

draft-rosenberg-sipping-ice-01 (work in progress), July 2003.

Authors' Addresses

 Jonathan Rosenberg
 dynamicsoft
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@dynamicsoft.com
 URI: http://www.jdrosen.net

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc2326
https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/draft-rosenberg-sipping-ice-01
http://www.jdrosen.net

Rosenberg, et al. Expires August 16, 2004 [Page 41]

Internet-Draft TURN February 2004

 Rohan Mahy
 Cisco Systems
 101 Cooper St
 Santa Cruz, CA 95060
 US

 EMail: rohan@cisco.com

 Christian Huitema
 Microsoft
 One Microsoft Way
 Redmond, WA 98052-6399
 US

 EMail: huitema@microsoft.com

Rosenberg, et al. Expires August 16, 2004 [Page 42]

Internet-Draft TURN February 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Rosenberg, et al. Expires August 16, 2004 [Page 43]

Internet-Draft TURN February 2004

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg, et al. Expires August 16, 2004 [Page 44]

