
Workgroup: Mimi

Internet-Draft:

draft-rosenberg-mimi-arch-options-00

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: J. Rosenberg

Five9

C. Jennings

Cisco

Architecture Options for More Messaging Interop (MIMI)

Abstract

This document outlines architecture options for managing the state

of chats in MIMI.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Architectural Options

3. Recommendations

4. Normative References

Authors' Addresses

1. Introduction

The More Instant Messaging Interoperability (MIMI) working group

will specify the minimal set of mechanisms required to make modern

Internet messaging applications interoperable. Over time, messaging

applications have achieved widespread use, their feature sets have

broadened, and their adoption of end-to-end encryption (E2EE) has

grown, but the lack of interoperability between these services

continues to create a suboptimal user experience. The standards

produced by the MIMI working group will allow for E2EE messaging

applications for both consumer and enterprise to interoperate

without undermining the security guarantees that they provide.

There are a variety of options on how MIMI can work in a federated

model. This draft outlines the options and suggests which one to

move forward with.

2. Architectural Options

There are numerous architectural models for building inter-provider

messaging. One model, implemented in protocols like SIMPLE [RFC6914]

and XMPP [RFC6120], consider messaging as a problem of message

transport, sending messages from one user to another user. There is

no notion of message storage, though in XMPP this can be added

through Multi-User Chat (MUC).

Most modern messaging services implement message persistence, and

thus introduce the idea of chats as a stateful resource that live

within the messaging provider. A chat resource can be either a 1-1

chat, or a group chat. The state of a chat resource includes the

membership in the chat group along, the history of member additions/

removals, along with the history of messages posted to it. In that

way, 1-1 and group chats are essentially identical. Clients can

query the state of their chats at any time to catch up, and they can

receive notifications when there are new chats. Sending a message is

primarily a transaction between the client and their provider; the

provider acknowledges the message, stores it, acknowledges the

receipt of the message towards the client, and then begins to

replicate the data into databases as needed, while also notifying

recipients of the new message.

¶

¶

¶

¶

When considering the expansion of this model to inter-provider

communications, there are two ways it can work. In one approach, a

particular chat resource lives within a single provider - the one

where the chat resource was created. Other users, who may be

supported by other providers, connect directly to this single

provider to receive information about the state of that particular

chat session. In this architecture, the state of a chat resource is

not replicated between providers at all - it lives in a single

place. Architecturally, it looks like this:

A group chat, chat A, was created by user A, who is a user of

provider 1. This chat and its state lives exclusively within

provider 1. User B, utilizes provider 2, and user C, a user of

provider 3, are members of the group chat A. Through the MIMI

protocols, users B and C are able to establish connections to

provider 1 in order to retrieve and send messages. We refer to this

model as the "guest model", since in essence, users B and C become

"guest users" or provider 1. A drawback of this model is that there

is no easy way for a user to know the full set of chats - across

multiple providers - in which they should retrieve messages. This

model is, in essence, similar to the multi-headed chat clients of

old, like Pidgin.

A variation of this model is shown below. In this variation, the

group chat still lives within provider 1, but users B and C connect

to their respective providers to post mesasges, retrieve messages,

and get notifications. Providers 2 and 3 do not store contents of

the chat - they act as proxies for the purpose of authentication and

trust. They also would retain knowledge of the set of chats in which

their users are members, including ones like chat A which live

within other providers. Let us call this the "proxied guest" model.

¶

-------------- -------------- --------------

| Provider 1 | | Provider 2 | | Provider 3 |

| | | | | |

| Chat A | | | | |

-------------- -------------- --------------

 |

 |

 |---------------------------------------

 | | |

 User A@1 User B@2 User C@3

¶

¶

¶

The final model - and the one that is used by this messaging format,

is shown below:

In this model, the chat resource - its full state - lives within

each provider. However, one provider acts as the source of truth.

Through the mimi protocols and message formats, the state of this

chat is synchronized to the other providers. All write operations

happen against the chat resource in provider 1, and the new messages

are then delivered to the other providers. For example, if user B

posts a message to the group chat, user B sends that message to

their provider, provider 2. Provider 2 will deliver this to provider

1. However, provider 2 will not update the state of the chat.

Provider 2 may store this new message to ensure delivery to provider

1, but it is not considered as "posted" into the chat yet. Once

delivered to provider 1, only then is the message considered posted.

This causes a change in the state of the chat, and thus a

notification of new message is sent to providers 2 and 3. Both of

these providers store the new message and notify their respective

 |--------------------------------------|

 | |

-------------- -------------- --------------

| Provider 1 | | Provider 2 | | Provider 3 |

| |-----| | | |

| Chat A | | | | |

-------------- -------------- --------------

 | | |

 | | |

 | | |

 | | |

 User A@1 User B@2 User C@3

¶

¶

 |--------------------------------------|

 | |

-------------- -------------- --------------

| Provider 1 | | Provider 2 | | Provider 3 |

| |-----| | | |

| Chat A | | Chat A | | Chat A |

| (SoT) | | (replica) | | (replica) |

-------------- -------------- --------------

 | | |

 | | |

 | | |

 | | |

 User A@1 User B@2 User C@3

¶

[I-D.ietf-mls-architecture]

[I-D.ietf-mls-protocol]

[RFC2119]

[RFC3862]

users of the new message. From a user experience perspective,

typical implementations have user B's UI show the new message in the

chat immediately upon sending. Thus, the notification that the

message was posted, acts only as a confirmation to user B.

The astute reader will note there is a fourth model, wherein there

is no single SoT and writes can be made to any instance of the chat

resource. THis is the most complex solution, and due to the

challenges of building such database systems in general - let alone

making them work inter-provider - we do not suggest this approach.

3. Recommendations

The third model - where chat resource state is replicated, but there

is a single source of truth against which all write operations are

performed - seems like the right model.

The guest model incurs a heavy load of long-lived connections on

each provider, and requires the client to maintain a connection to

each provider. This doesnt seem scalable. The proxy guest model

fixes this, but puts the burden of message sync and reliability in

the client hands. The replicated state model addresses that, while

providing the consistency required for the system to work reliably.

4. Normative References

Beurdouche, B., Rescorla, E., Omara, E., Inguva, S.,

Kwon, A., and A. Duric, "The Messaging Layer Security

(MLS) Architecture", Work in Progress, Internet-Draft,

draft-ietf-mls-architecture-09, 19 August 2022, <https://

www.ietf.org/archive/id/draft-ietf-mls-

architecture-09.txt>.

Barnes, R., Beurdouche, B., Robert, R., Millican, J.,

Omara, E., and K. Cohn-Gordon, "The Messaging Layer

Security (MLS) Protocol", Work in Progress, Internet-

Draft, draft-ietf-mls-protocol-16, 11 July 2022,

<https://www.ietf.org/archive/id/draft-ietf-mls-

protocol-16.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Klyne, G. and D. Atkins, "Common Presence and Instant

Messaging (CPIM): Message Format", RFC 3862, DOI

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-mls-architecture-09.txt
https://www.ietf.org/archive/id/draft-ietf-mls-architecture-09.txt
https://www.ietf.org/archive/id/draft-ietf-mls-architecture-09.txt
https://www.ietf.org/archive/id/draft-ietf-mls-protocol-16.txt
https://www.ietf.org/archive/id/draft-ietf-mls-protocol-16.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC6120]

[RFC6914]

10.17487/RFC3862, August 2004, <https://www.rfc-

editor.org/info/rfc3862>.

Saint-Andre, P., "Extensible Messaging and Presence

Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,

March 2011, <https://www.rfc-editor.org/info/rfc6120>.

Rosenberg, J., "SIMPLE Made Simple: An Overview of the

IETF Specifications for Instant Messaging and Presence

Using the Session Initiation Protocol (SIP)", RFC 6914,

DOI 10.17487/RFC6914, April 2013, <https://www.rfc-

editor.org/info/rfc6914>.

Authors' Addresses

Jonathan Rosenberg

Five9

Email: jdrosen@jdrosen.net

Cullen Jennings

Cisco

Email: fluffy@iii.ca

https://www.rfc-editor.org/info/rfc3862
https://www.rfc-editor.org/info/rfc3862
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6914
https://www.rfc-editor.org/info/rfc6914
mailto:jdrosen@jdrosen.net
mailto:fluffy@iii.ca

	Architecture Options for More Messaging Interop (MIMI)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Architectural Options
	3. Recommendations
	4. Normative References
	Authors' Addresses

