
Mimi J. Rosenberg
Internet-Draft Five9
Intended status: Standards Track C. Jennings
Expires: 14 September 2023 S. Nandakumar
 Cisco
 13 March 2023

More Instant Messaging Interop (MIMI) Transport Protocol
draft-rosenberg-mimi-protocol-00

Abstract

 This document specifies the More Instant Messaging Interop (mimi)
 Transport Protocol (MTP)- a protocol for inter-provider persistent
 group chat. MIMI utilizes Messaging Layer Security (MLS) for end-to-
 end encryption of content. The MIMI Transport Protocol plays the
 role of the Delivery Service (DS) defined by the MLS protocol. MTP
 is meant to represent the minimal protocol required to enable
 provider to provider federation for messaging exchange using MLS. It
 is not suitable for client to provider communications. MTP is based
 on a pull architecture, wherein message delivery from provider A to
 provider B is accomplished by having provider B pull messages from
 provider A. This provides better scalability and reliability and is
 amenable to implementation in modern cloud software architectures,
 while also reducing spam risk. MTP serves as a transfer protocol for
 opaque message content, the format of which is specified in a
 separate document. MTP is also designed to prevent spam, and does so
 by introducing a layer of authorization for the establishment of
 connections and addition to group chats.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 September 2023.

Rosenberg, et al. Expires 14 September 2023 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft MIMI Protocol March 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction . 3
2. Definitions . 6
3. Identity . 7
4. Reference Architecture 8
5. 1-1 Chats . 10
6. MIMI URI Syntax . 11
7. Connections . 12
7.1. Group-Chat Independent Connection 12
7.2. Group Chat Dependent Connection 18
7.3. Guest Connections . 21
7.4. Mobile Centric UI . 22

8. REST APIs . 23
8.1. Authentication and Authorization 24
8.2. General Request Guidelines 24
8.3. Connection Information 25
8.4. Connection Acceptance or Rejection 26
8.5. Join Request . 27
8.6. Leave Request . 28
8.7. Guest Addition . 29
8.8. Add Message . 29
8.9. Retrieve Membership 30
8.10. Retrieve Group Chat Information 31
8.11. Set Group Property 32
8.12. Commit . 33

9. Synchronization . 33
10. Security Considerations 35
10.1. Spam Prevention . 35
10.1.1. Consent Based Protection 35
10.1.2. Leave the Group 36
10.1.3. Malicious Sender Traceability 37
10.1.4. Provider Authorization 37

10.2. Malicious Providers Manipulating other Users 37

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Rosenberg, et al. Expires 14 September 2023 [Page 2]

Internet-Draft MIMI Protocol March 2023

11. IANA Considerations . 38
11.1. URI Scheme Registration 38
11.2. Well-Known URI Registration 38
11.3. MIMI Property Registry 38

12. Normative References . 39
 Authors' Addresses . 40

1. Introduction

 The MIMI Transport Protocol (MTP) specifies inter-provider persistent
 group chat. It assumes the existence of chat providers, each of
 which provides both client applications (often mobile apps) along
 with a service backend. Many of these providers allow multiple
 simultaneous active clients per user. Examples of chat providers as
 of time of writing include WhatsApp, iMessage, Facebook Messenger,
 Signal and Telegram in the consumer space; and Slack, Microsoft
 Teams, Wire and Element in the enterprise space. MTP further assumes
 that the foundational unit of communications within each provider is
 a group chat. A group chat is a virtual place wherein a set of users
 can share content, including text messages, images, videos, and so
 on. A group chat has a membership, which represents a set of users
 who are permitted to participate in the group chat. These group
 chats are persistent, in that, a user that is a member of a group
 chat can see past history of the group chat. Furthermore, a user can
 send and receive messages into the group chat independently of
 whether other users in the group chat are currently logged into their
 client application. This persistent group chat model is different
 from the session-based real-time chat provided by protocols such as
 SIMPLE [RFC6914] and XMPP [RFC6120] [RFC6121].

 For any given group chat, a single provider is said to be the owning
 provider for that group chat. The owning provider is the source of
 truth for the properties (including membership) and message content
 of that group chat. If the owning provider decides, for example, to
 close a group chat, it will no longer be possible for participants to
 post to it, no matter what provider those participants belong to.
 Typically, if a user is a customer of provider A, and creates a new
 group chat, provider A ends up being the owner of that group chat.

https://datatracker.ietf.org/doc/html/rfc6914
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc6121

Rosenberg, et al. Expires 14 September 2023 [Page 3]

Internet-Draft MIMI Protocol March 2023

 Mimi enables a group chat to have participants that exist in multiple
 providers. There will typically be participants in a group chat in
 the owning provider, but this is not a strict requirement of the mimi
 protocol. A participant in a group chat that doesnt reside in the
 same provider as the owning provider, is called a guest participant.
 Their provider, is called a guest provider. The roles of owning
 provider, guest participant and guest provider are scoped per group
 chat. Meaning, in one group chat, a particular provider might be the
 owning provider. But, for a different group chat, they would be a
 guest provider.

 MTP provides several functions. First, it enables a user in one
 provider to establish a connection with a user in another provider.
 A connection is the baseline unit of authorization in MTP. It
 represents authorization from the inviting user, towards the invited
 user, for the inviting user to add the invited user to one or more
 group chats in the inviting user's provider. A connection is
 fundamentally asymmetric. The connection establishment processes
 allows the owning provider to obtain this authorization, and to also
 discovery the identity by which the invited user is known in its
 provider. MTP supports two distinct flavors of connection
 establishment - one where the connection is created separately from
 usage of that connection to add the user to a group chat, and a
 second in which the connection is concurrent with the addition of
 that user to a group chat.

 Connection establishment makes use of an out of band communications
 from the inviting user, to the invited user, using a new URI - the
 mimi URI - that is conveyed out of band. This out of band
 communications can be via email or text, or even by written or verbal
 communications. This process is key to ensuring that mimi doesnt
 become a vehicle for spam and unwanted communications. Because the
 out of band communications is user to user, not provider to provider,
 it takes advantage of address books already in place and anti-spam
 tools already present in the global SMS and email networks. The out
 of band communications would also include personalized content
 crafted by the inviting user to help convey context, to help the
 invited user decide on whether to accept the connection. The MIMI
 URI, defined in this specification, contains a short lived connection
 ID. The MIMI URI is used by the guest provider to obtain the context
 of the connection request - the identity of the inviting user, and
 optionally the name of the group chat to which they have been
 invited. With this context, the invited user can decide to accept
 the connection or not. This acceptance is communicated back to the
 owning provider.

Rosenberg, et al. Expires 14 September 2023 [Page 4]

Internet-Draft MIMI Protocol March 2023

 The second main function of MTP is to allow, for a given group chat,
 the set of guest providers to synchronize the state of the group chat
 with the owning provider, and to add messages into the group chat.
 In this regards, MTP is strictly a provider to provider protocol. We
 use the words provider to provider, and not server to server, because
 it is anticipated that MTP between a pair of providers would
 typically run across a multiplicity of servers utilized by each
 respective provider in order to achieve scale. Enabling this is an
 explicit design goal of MTP.

 MTP is fundamentally an asymmetric protocol. For any given group
 chat, transmission of a message from one provider to another provider
 depends on their roles - owning or guest. Sending a message from a
 guest provider to an owning provider is accomplished using a RESTful
 style POST operation using HTTP. In this direction, the guest
 participant - and thus the provider acting on their behalf - is
 adding a message into the group chat. That operation must be
 authorized by the owning provider, and assuming it is allowed, the
 message is accepted. In the reverse direction, when a message is to
 be sent from the owning provider to a guest provider, the message is
 already part of the group chat, and the message delivery is performed
 using a synchronization technique that utilizes an HTTP long poll.

 MTP protocol operations for the purposes of content delivery always
 take place from the guest provider, towards the owning provider. In
 other words, the guest provider always acts as an HTTP client. There
 is no way for the owning provider to send messages to any other
 provider - guest providers must explicitly retrieve them, and
 retrieve them for specific, named group chats. This part of the
 protocol design is also meant to ensure that mimi does not become a
 vector for spam. It is simply impossible for messages to be pushed
 into a guest provider using MTP. The guest provider has to ask for
 them, and to ask for them using a specific group chat. The only way
 a guest provider can even know to ask for messages in a group chat,
 is because one of its users learned a group chat ID via a mimi URI
 and asked their provider to retrieve messages for that group. This
 technique also means that, the default failsafe for mimi is non-
 delivery of messages. Meaning, if the guest user or their provider
 decide to no longer participate in a group chat, messages will not be
 delivered to the guest provider. It takes active effort on behalf of
 the guest provider to pull messages.

 MTP makes use of Messaging Layer Security (MLS) for end-to-end (e2e)
 encryption of message content [I-D.ietf-mls-protocol]
 [I-D.ietf-mls-architecture]. In that regards, MTP plays the role of
 the Delivery Service (DS) as defined in that specification. It
 includes the needed primitives for retrieving key packages,
 transmitting proposal and commit messages, delivery of welcome

Rosenberg, et al. Expires 14 September 2023 [Page 5]

Internet-Draft MIMI Protocol March 2023

 messages, and sequencing of commits. MLS is an end-to-end protocol
 which occurs between client applications. Consequently, the MIMI
 protocol assumes that providers merely collect those messages from
 clients and send them across via MIMI when needed, and transmit them
 to clients when delivered by MIMI. MTP provides additional security
 measures ontop of MLS. Specifically, it authorizes provider access
 to a group chat.

 Note that MTP does not offer directory services of any kind, and does
 not allowing an owning provider to determine whether an invited user
 - as identified by an email address or phone number - is a user of
 any particular provider. This decision is an explicit one, in order
 to avoid the significant privacy considerations that would arise from
 a central directory. In a similar way, mimi does not provide any
 form of interprovider search. The mimi invitation process assumes
 that the inviting user has a unique identifer for the invited user,
 obtained out of bands of the protocol.

2. Definitions

 Provider: A provider is an entity which is capable of providing
 persistent group chat capabilities to a set of users that have signed
 up to their service. A provider offers its users both a client
 application and a backend cloud service that powers its client
 application. A provider is also capable of authenticating its users.

 Group Chat: A group chat is a named resource that has properties,
 most notably the membership of the group, and has a sequence of
 messages.

 Owning Provider: For a given group chat, the owning provider is the
 provider which acts as the source of truth for the membership,
 messages, and policy. A request to post a message or change a
 property must be processed at the owning provider. [TODO: the owning
 provider is not the DS/AS. Both providers and the client play part
 of those abstract roles]. In MLS terminology, the owning provider
 acts as the DS and AS for a particular group chat.

 Participant: A user of a group chat.

 Guest Provider: For a given group chat, a participant can be a user
 of the owning provider, or they can be part of a different provider.
 A provider associated with a user that is not a user of the owning
 provider, is called a guest provider.

Rosenberg, et al. Expires 14 September 2023 [Page 6]

Internet-Draft MIMI Protocol March 2023

 Connection: A unit of authorization between a user in a guest
 provider (the invited user) and one in an owning provider (calling
 the inviting user), which grants permission for the inviting user to
 add the invited user to one or more group chats.

 Inviting User: A user that seeks to create a connection with a user
 in a different provider, or add a user in a different provider to a
 group chat.

 Invited User: A user that has received a request for a connection, or
 has received a request to be added to a group chat.

3. Identity

 Identity is central to the operation of mimi. The mimi identity
 model is shown in the figure below.

 +----------------------+
 +------------+1 n | Routable Addresses |
 | Human User |------| (e.g., +17325551212, |
 +------------+ | joe@example.com) |
 1 | +----------------------+
 |
 n |
 +-----------------+
 ------| Participant ID | --|
 | +-----------------+ |
 | |
 | |
 Provider Name |
 (e.g. provider.com) |
 |----------
 |
 +-----------++----------------------++-------------------+
 | Handle || Email || E.164 |
 |(e.g. @joe)||(e.g. joe@example.com)||(e.g. +17325551212)|
 +-----------++----------------------++-------------------+

 The center of this identity model is a human user (though nothing in
 mimi requires that it be a human per se). A given human user has a
 set of routable addresses which can be used to reach them through
 communications channels outside of group chat. Specifically, they
 include phone numbers and email addresses over which texts and emails
 can respectively be received. These routable addresses exist outside
 of the mimi protocol, but are used to deliver a mimi invitation,
 which is discussed below.

Rosenberg, et al. Expires 14 September 2023 [Page 7]

Internet-Draft MIMI Protocol March 2023

 Within mimi, we have participants, each of which has a unique ID. A
 participant ID is composed of two parts. The first is the provider
 name. In mimi, this MUST be a valid DNS name that identifies the
 provider. Furthermore, the provider entity MUST be the owner of that
 DNS name, and MUST be capable of obtaining TLS certificates usable
 with HTTPS for this domain name. The second is the user ID. The
 user ID takes one of three forms. First, it can be an E.164 number.
 Secondly, it can be an email address. Thirdly, it can be a handle.
 When it is a handle, it is unique only within the context of the
 provider. A phone number or email address is globally unique.

 The partipant ID can be written by taking the provider name, followed
 by a colon, and then the userID. The following are some examples of
 valid participant IDs:

 provider.com:joe@example.com
 foo.com:+1732551212
 twitter.com:@joe

 TODO: add formal ABNF

 It is extremely important to note that the domain portion of the
 email address need not (and most often, will not) match the provider
 name. As a real world example, the provider could be Facebook
 Messenger, whose provider name is messenger.com. A user within this
 provider could be Joe Smith, and they have a user ID of
 joe.smith@gmail.com. In this case, their email is provided by Gmail
 (gmail.com), but Google/Gmail is not their messaging provider.

 Of course, a given human user may have accounts in multiple
 providers, and perhaps even have multiple accounts within the same
 provider. Each of these would correspond to a unique participant ID,
 and thus be viewed as unique participants within the mimi protocol.

4. Reference Architecture

 The figure below is the reference architecture for mimi operations.

Rosenberg, et al. Expires 14 September 2023 [Page 8]

Internet-Draft MIMI Protocol March 2023

 +------------+ mimi rest +------------+
Owning	<-----------	Guest
Provider		Provider
	mimi sync	
	<-----------	
 +------------+ +------------+
 | |
 | |
 | |
 | |
 +--------+ +--------+
 | User A | | User B |
 +--------+ +--------+
 ^ |
 | V
 +---------------------------------------+
 | Out of Band Comms |
 | Email, SMS, etc. |
 +---------------------------------------+

 MTP operations are defined within the context of a particular group
 chat, or a particular connection. For different group chats or
 connections, the roles may change. In other words, a particular
 provider might act as owning provider for some group chats and
 connections, and guest provider for others. The owning provider for
 a group chat is the one that acts as the source of truth for a group
 chat, and acts as the MLS DS for that group chat. The guest provider
 is the provider for a user that is a guest member of the group chat.
 In this picture, user A is a participant in the group chat, and is a
 user of the owning provider. User B is a participant of the group
 chat, but is a user of the guest provider. There is a connection
 between user A and user B, and for this connection, user A's provider
 is the owning provider, and user B's provider is the guest provider.
 For purposes of establishing connections, MTP assumes the usage of an
 out of band conveyance technique.

 The mimi protocol has two distinct components, which are referred to
 as mimi rest and mimi sync. The mimi rest component are a sequence
 of REST APIs which are implemented by the Owning provider, and
 consumed by the guest provider. The mimi rest component of the
 protocol includes RESTful resources for retrieving membership,
 retrieving properties (such as group name), and adding messages into
 a group chat. It also provides REST endpoints to support MLS
 operations - specifically, publishing a KeyPackage, retrieving
 KeyPackages, and sending commit messages which increment the epoch.
 The second part of the protocol is used to enable real-time
 synchronization. The guest provider opens an HTTP long poll
 onnection to the owning provider, and subscribes to a set of group

Rosenberg, et al. Expires 14 September 2023 [Page 9]

Internet-Draft MIMI Protocol March 2023

 chats and connections. This subscription specifies the start
 timestamp for the subscription. The owning provider will authorize
 and accept the subscription, and then deliver past and future
 messages. Through this synchronization protocol, the guest provider
 receives actual messages (text, images, emails, threads, reactions
 and so on) that have been posted into the group chat. When
 subscribing to a connection, it receives group addition requests,
 which must be authorized by the invited user. It will also receive
 MLS Proposal, Commit, and Welcome messages, and change notifications
 of group membership and group properties.

 The out of band communications modality facilitates the operation of
 creating a connection. From a mimi perspective, the owning provider
 generates a mimi URI for the connection, which is then delivered to
 the inviting user. The inviting user delivers this URI through an
 out-of-band technique, not specified. The invited user passes this
 to the guest provider, which then acts on it. The guest provider can
 then utilize the URI to invoke mimi REST APIs on the owning provider.

5. 1-1 Chats

 The atomic unit of communication in MIMI is a group chat, which is a
 conversation between 1 or more participants. Mimi imposes no
 restrictions on the number of group chats that can exist with
 identical membership. A group chat is identified by a UUID, not the
 identities of its participants.

 This introduces some complications in the handling of 1-1
 communications, for two reasons. First, many modern messaging
 systems only show the user a single chat space associated with the
 target, and do not permit any other users to be added to that 1-1
 chat. A second consideration is a complication unique to mimi.
 Consider two users in different providers. Which provider would act
 as the owning provider for the 1-1 chat?

 Mimi chooses to solve this problem outside of the protocol itself,
 through the following recommendations.

 Firstly, a user has symmetrical group chats - where both have the
 same pair of users, but differ only in their owning provider, each
 provider SHOULD merge the contents of these chats when rendering them
 to the user. This hides the fact that the content may in fact be
 split across two different group chats under the hood.

 Secondly, if the chat provider distinguishes, within its UI, 1-1 vs.
 group chats, and the user creates a 1-1 chat with a user in a
 different provider, the inviting provider should treat this group
 chat as a 1-1 chat, and not permit its user to add additional

Rosenberg, et al. Expires 14 September 2023 [Page 10]

Internet-Draft MIMI Protocol March 2023

 parties. This does not prevent the other provider (or its user) from
 adding participants however, and thus there is some risk that this
 might happen. [OPEN ISSUE: we can solve this, by adding another
 property to the group chat to indicate that this meant to be a 1-1
 chat. That could then be honored by the other side such that they
 are not able to add users to it].

6. MIMI URI Syntax

 This specification defines a new URI, called the mimi URI. A mimi
 URI is a URL as defined by [RFC2396]. This specification officially
 registers the mimi URL using the registration procedures defined in
 [RFC2717]. The syntax of the mimi URI is as follows, using ABNF
 [RFC5234]:

 MIMI-URI = "mimi" ":" "//" provider [":" port]
 "/" connectionId
 port = 1*5DIGIT
 provider = host
 connectionId = UUID

 An example of a valid MIMI URI is:

 mimi://provider.com/2afae6d3-0b55-4c2d-9dae-3f199d51f83f

 The first portion of the mimi URI is the scheme, which MUST be
 "mimi". What follows is a colon and double slash, present because
 the MIMI URI is a URL. What follows is a subset of valid authorities
 as defined by RFC2396. Specifically, it MUST be a valid host. This
 is followed by an optional port number. Though the MIMI URI doesnt
 refer to a distinct protocol - it makes use of HTTP - when the port
 is present, it means that the HTTP request generated for this
 connection MUST utilize the port number specificed. This is followed
 by a path separator "/" and then a connectionId. The connectionId
 MUST be formatted as a UUID. This specification does not require a
 specific technique for generating UUID, by they MUST be cryptorandom.
 The cryptograndomness is one dimension of the overall security
 offered by the mimi protocol. In particular, it prevents malicious
 guest users and malicious guest providers from trying to forge
 connection requests.

 The MIMI URI is formally registered with IANA using the registration
 in section {#iana}.

https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2717
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc2396

Rosenberg, et al. Expires 14 September 2023 [Page 11]

Internet-Draft MIMI Protocol March 2023

7. Connections

 This section specifies the connection process defined for MTP. MTP
 supports two distinct variations on the connection process - group-
 chat dependent, or group-chat independent.

 In the group-chat independent process, the inviting user first
 creates the connection to the invited user by specifying their
 userID. This triggers an out-of-band authorization process, and may
 take some time for the invited user to accept. Once they accept, the
 inviting user is notified. At that point, the inviting user can add
 the invited user to group chats. These subequent additions may be
 subject to authorized by the invited user as well. Those
 authorizations do not make use of any out-of-band communications.

 In the group-chat dependent process, the inviting user goes to a
 group chat, and adds the invited user by specifying their userID.
 This then triggers the out-of-band process, which may take some time
 for the invited user to accept. Once they accept, they are added to
 the group chat. Any any point in the future, the inviting user can
 add the invited user to other group chats. Those new additions may
 be subject to authorization by the invited user as well. Those
 authorizations do not make use of any out-of-band communications.

7.1. Group-Chat Independent Connection

 The group-chat independent connection process flows as follows:

Rosenberg, et al. Expires 14 September 2023 [Page 12]

Internet-Draft MIMI Protocol March 2023

 +-----+ +-+ +-+ +---+ +---+
 |Alice| |A| |B| |Bob| |OOB|
 +-----+ +-+ +-+ +---+ +---+
 | | |store KeyPackages | |
 | | |<-----------------| |
 | | | | |
 |Connect | | | |
 |bob@example.com | | | |
 |--------------->| | | |
 | | | | |
 | mimi URI | | | |
 |<---------------| | | |
 | | | | |
 | | mimi URI | |
 |-->|
 | | | | |
 | | | | mimi URI |
 | | | |<-------------|
 | | | | |
 | | | mimi URI | |
 | | |<-----------------| |
 | | | | |
 | |Fetch context | | |
 | |cxnID | | |
 | |<-------------| | |
 | | | | |
 | | context | | |
 | |------------->| | |
 | | | | |
 | | | context | |
 | | |----------------->| |
 | | | | |
 | | | Authorize | |
 | | |<-----------------| |
 | | | | |
 | | Authorize | | |
 | | cxnID | | |
 | |<-------------| | |
 | | | | |
 | | success | | |
 | |------------->| | |
 | | | | |
 | Cxn Approved | | | |
 |<---------------| | | |
 | | | | |

 Continuing:

Rosenberg, et al. Expires 14 September 2023 [Page 13]

Internet-Draft MIMI Protocol March 2023

 | | subscribe | | |
 | | cxnID | | |
 | |<-------------| | |
 | | | | |
 | | success | | |
 | |------------->| | |
 | | | | |
 | add Bob | | | |
 | chat ID | | | |
 | groupName | | | |
 |--------------->| | | |
 | | | | |
 | | notify | | |
 | | chatID | | |
 | | groupName | | |
 | |------------->| | |
 | | | | |
 | | | ask permission | |
 | | | groupName | |
 | | |----------------->| |
 | | | | |
 | | | grant | |
 | | |<-----------------| |
 | | | | |
 | |join request | | |
 | |chatID | | |
 | |cxnID | | |
 | |KeyPackages | | |
 | |<-------------| | |
 | | | | |
 | | success | | |
 | |------------->| | |
 | | | | |
 | JoinRequest | | | |
 | KeyPackages | | | |
 |<---------------| | | |
 | | | | |
 | | subscribe | | |
 | | groupID | | |
 | |<-------------| | |
 | | | | |
 | | success | | |
 | |------------->| | |
 | | | | |
 | Welcome | | | |
 | Commit | | | |
 |--------------->| | | |
 | | | | |

Rosenberg, et al. Expires 14 September 2023 [Page 14]

Internet-Draft MIMI Protocol March 2023

 | | notify | | |
 | | Welcome | | |
 | |------------->| | |
 | | | | |
 | | | Welcome | |
 | | |----------------->| |

 When Bob first logs into a client, which causes him to upload
 KeyPackages to his provider B for usage in the connection process
 which follows. Each client used by Bob will trigger an upload of
 KeyPackages. It is a matter of local policy on how many KeyPackages
 Bob provides. KeyPackage exhaustion attacks are mitigated by MTP,
 this is discussed below.

 The connection process starts when Alice decides to create a
 connection to Bob. She requests to her provider to establish the
 connection, and provides an identifier for Bob. This identifier can
 be an email address, phone number or handle at a provider. The
 provider generates a connectionId, which MUST be unique in space and
 time. The provider MUST store this ID for a mimimum of 24 hours.
 The provider MUST store, associated with that ID, the identity of the
 user requesting the connection - userID and display name (Alice Doe,
 alice@gmail.com in this example), the identity of the user being
 invited (bob@example.com in this example), and the time at which the
 connection was requested. It then returns a MIMI URI to Alice's
 client, and instructs her to communicate this MIMI URI to Bob through
 some out of band means.

 Alice then sends the MIMI URI to Bob, through email, text or other
 means. This communication is directly from Alice to Bob, and does
 not utilize their respective providers chat services. In the case of
 texting for example, the SMS would be sent from Alice's mobile number
 to Bob's mobile number. In the case of email, it would be sent using
 one of Alice's email addresses from whatever email provider she uses,
 and be delivered to Bob's inbox. If Bob has Alice is his address
 book, or has received prior emails or texts from Alice, this will
 help him confirm that the connection request is truly from Alice.
 Typically, Alice would include additional information to help Bob
 decide whether to accept the request or not. For example, "Hi Bob -
 lets chat together, you can use whatever chat client you want - click
 here to accept. I want to discuss the new MIMI working group content
 with you.".

Rosenberg, et al. Expires 14 September 2023 [Page 15]

Internet-Draft MIMI Protocol March 2023

 When Bob clicks on this link, it launches his preferred MIMI-enabled
 client, and the connection ID is passed to his client application.
 His client application would pass that to his provider. To gain more
 information about this connection request, Bob's provider utilizes
 MTP, and initiates a GET request to the owning provider, using the
 provider name extracted from the MIMI URI. Provider B specifically
 invokes the following REST API call:

 GET https://{provider-name}/.well-known/mimi/
 connections/{connectionId}

 This request will contain an HTTP Authorization header field,
 containing a bearer token obtained out of bands from MTP. This is
 described further below. Using this bearer token, provider B will
 know that this is provider A, and can authorize the request.

 Once the GET request is authorized, Alice's provider A looks up the
 connection ID and retrieves Alice's name, Bob's userID and the time
 of the invitation. This information is passed back to provider B.
 Provider B MUST verify that the userID provided for Bob matches an
 identity by which Bob is known in the system. This is to prevent
 against copy-paste attacks, wherein the MIMI URI or connection ID is
 forwarded to a different user. Note that, there is no cryptographic
 verification of Bob's userID here. This component of the
 authorization process depends on mutual trust between the owning and
 guest providers.

 This context for the connection ID can then be shown to Bob in his
 client UI. He might see something like, "Alice Doe (alice@gmail.com)
 wants to add you to one or more group chats she's hosting on her
 provider. Do you want to allow that?". If Bob approves, he informs
 his provider. The guest provider MUST obtain explicit permission
 from the end user before accepting the connection request. Note
 that, this requirement is not enforced through e2e cryptographic
 means, and depends on a well-behaved guest provider. Once Bob's
 provider has obtained this permission, it MUST inform the owning
 provider as follows:

 POST https://{provider-name}/.well-known/mimi/
 connections/{connectionId}?accept

 The connection request can also be rejected, as specified in the REST
 API details below. The response to this HTTP POST will be a JSON
 object, described below, which includes a connection ID resource that
 lives on the owning provider, along with a URI for it. This URI
 allows the guest provider to create a subscription to the connection.
 This subscription, accomplished via a long poll, allows the guest
 provider to request a stream of events for the connection. The

Rosenberg, et al. Expires 14 September 2023 [Page 16]

Internet-Draft MIMI Protocol March 2023

 events include actions by the inviting user in the owning provider -
 Alice here - to add Bob to group chats. Should Alice decide to de-
 authorize the connection, this would also be delivered as an event
 over the subscription.

 Alice's provider will also inform her that Bob has accepted the
 connection. This may only get delivered next time Alice logs in, as
 she may be offline when Bob approved the connection.

 At some point in the future, Alice does log in, sees that the
 connection was approved, and now is capable of adding Bob to a group
 chat, which she does. To allow Bob to make a useful decision on
 whether to join this group - the name of the group, which will not be
 e2e encrypted with MLS - can be provided by Alice to her provider
 along with the request to add Bob (alternatively, the provider may
 already have it through some other means). Her provider, provider A,
 then requests permission from Bob to be added to the group chat.
 This is done by adding an event to the connection, which is a "group
 chat addition request". This event will get delivered via an event
 over the subscription to the connection to provider B. It always
 includes the groupID. Had Alice, or her provider, had access to the
 group name, this would be included as well. Details on the syntax of
 this event are described below. With this event in hand, provider B
 - based on its policies - can either request Bob's permission for
 that specific group, or take Bob's prior authorization as blanket
 approval for addition to all groups. This is a matter of local
 policy at provider B. In this example flow, provider B does request
 permission, and passes the groupName to Bob to make a decision. For
 example, he may see something like, "Alice wants to add you to the
 group 'MIMI Discussion'. Do you want to be added"?

 Bob informs his provider that he approves the addition to the group.
 His provider, provider B, takes all the previously stored KeyPackages
 from all of Bob's clients, and uses them to send a join REST API call
 to provider A. That is done using the following REST API:

 POST https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants?connect={connectionId}

 This request contains a single URI parameter - the connectionID -
 which is used for authorization purposes. The owning provider MUST
 verify that this connectionID exists and is currently valid, and that
 the particular group chat ID has been authorized for that connection
 (which, in this flow, it is).

 The body of this request will contain a multi-part MIME body, each of
 which contains an MLS KeyPackage. Provider B stores these key
 packages for delivery to Alice's client. It informs provider A of

Rosenberg, et al. Expires 14 September 2023 [Page 17]

Internet-Draft MIMI Protocol March 2023

 the success. The response contains a JSON blob that includes a
 timestamp (used for synchronization). Now, provider B can create a
 subscription to receive events for this group chat. It does so using
 the following long-poll URI:

POST https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/subscriptions?connect={connectionId}&from={timestamp}

 The connectionID is used by the owning provider once again to
 authorize the subcription, using the same logic as for the join
 request. The subscription includes a from URI parameter, which
 indicates the timestamp of the earliest set of events that the
 provider requires. This timestamp MUST be no larger than the value
 returned in the response to the join, to avoid race conditions where
 it misses the Welcome message.

 Provider B delivers these keypackages to Alice next time one of her
 clients comes online [OPEN ISSUE: the provider could also deliver
 them to any other user, not just ALice. Doing that however
 introduces an attack wherein a malicious owning provider can trick
 clients into adding users they didnt intend to. So, this seems like
 a bad idea.] Once Alice gets these KeyPackages, she generates the
 MLS Welcome and Commit messages and sends them to her provider. The
 provider then sends the Welcome message over the long poll
 connection, and this too is delivered to Bob.

7.2. Group Chat Dependent Connection

 The group chat dependent process flows as follows:

 +-----+ +-+ +-+ +---+ +---+
 |Alice| |A| |B| |Bob| |OOB|
 +-----+ +-+ +-+ +---+ +---+
 | | |store KeyPackages | |
 | | |<-----------------| |
 | | | | |
 |Connect | | | |
 |bob@example.com | | | |
 |groupId | | | |
 |groupName | | | |
 |--------------->| | | |
 | | | | |
 | mimi URI | | | |
 |<---------------| | | |
 | | | | |
 | | mimi URI | |
 |-->|
 | | | | |

Rosenberg, et al. Expires 14 September 2023 [Page 18]

Internet-Draft MIMI Protocol March 2023

 | | | | mimi URI |
 | | | |<-------------|
 | | | | |
 | | | mimi URI | |
 | | |<-----------------| |
 | | | | |
 | |Fetch context | | |
 | |cxn token | | |
 | |<-------------| | |
 | | | | |
 | | context | | |
 | |------------->| | |
 | | | | |
 | | | context | |
 | | |----------------->| |
 | | | | |
 | | | Authorize | |
 | | |<-----------------| |
 | | | | |
 | | Authorize | | |
 | | cxn token | | |
 | |<-------------| | |
 | | | | |
 | |success | | |
 | |connection ID | | |
 | |------------->| | |
 | | | | |
 | Cxn Approved | | | |
 |<---------------| | | |
 | | | | |
 | |subscribe | | |
 | |connection ID | | |
 | |<-------------| | |
 | | | | |
 | | success | | |
 | |------------->| | |
 | | | | |
 | |join request | | |
 | |chatID | | |
 | |cxnID | | |
 | |KeyPackages | | |
 | |<-------------| | |
 | | | | |
 | | success | | |
 | |------------->| | |
 | | | | |
 | JoinRequest | | | |
 | KeyPackages | | | |

Rosenberg, et al. Expires 14 September 2023 [Page 19]

Internet-Draft MIMI Protocol March 2023

 |<---------------| | | |
 | | | | |
 | | subscribe | | |
 | | groupID | | |
 | |<-------------| | |
 | | | | |
 | | success | | |
 | |------------->| | |
 | | | | |
 | Welcome | | | |
 | Commit | | | |
 |--------------->| | | |
 | | | | |
 | | notify | | |
 | | Welcome | | |
 | |------------->| | |
 | | | | |
 | | | Welcome | |
 | | |----------------->| |
 +-----+ +-+ +-+ +---+ +---+
 |Alice| |A| |B| |Bob| |OOB|
 +-----+ +-+ +-+ +---+ +---+

 The significant difference from the connection independent flow is
 that this connection request is made coincident with adding the user
 Bob to the group chat. Alice's provider, in this case, offers her
 the ability to go to a group chat she is in, hit the 'add' button,
 and enter a userID for a user in another provider. She does so,
 entering a userID for Bob and passes this to her provider. Alice's
 provider generates a connectionID and MIMI URI as in the use case
 above. However, in this flow, it associates the groupName and
 groupId to the connectionID in addition to the timestamp, Alice's
 display name and userID and Bob's userID.

 This MIMI URI is delivered out of band to Bob. Bob's provider fetches
 the context for the connection ID. As with the other flow, the
 context includes Alice's email address and display name. However, it
 also includes the groupName and groupID. To avoid risks of spamming
 users with content delivered via these connection requests, the
 provider B SHOULD first prompt Bob with just Alice's email address,
 and if Bob confirms, only then prompt Bob with the group name.

Rosenberg, et al. Expires 14 September 2023 [Page 20]

Internet-Draft MIMI Protocol March 2023

 Once Bob authorizes - he is authorizing the connection and the
 addition to the group chat concurrently. His provider, provider B,
 will authorize the connection using the connection ID. It subscribes
 to the connection, as above. In this case, it can immediately turn
 around and request a join to the group. This join is identical to
 the case above, and will include the groupID, connectionID and
 KeyPackages. The remainder of the flow is identical to the use case
 above.

7.3. Guest Connections

 Another use case supported by MTP, is that a guest user has already
 been added to a group chat, and that guest user wishes to add someone
 else to the group chat. We call this a guest addition. The flow for
 that works as follows:

 +-----+ +-+ +-+ +---+
 |Alice| |A| |B| |Bob|
 +-----+ +-+ +-+ +---+
 | | |add Charlie |
 | | |<------------|
 | | | |
 | |guest add | |
 | |charlie userID | |
 | |groupID | |
 | |<--------------| |
 | | | |
 | connection | | |
 | request | | |
 | Charlie userID | | |
 | groupID | | |
 |<----------------| | |
 | | | |
 |add Charlie flow | | |
 |---------------->| | |
 +-----+ +-+ +-+ +---+
 |Alice| |A| |B| |Bob|
 +-----+ +-+ +-+ +---+

 In this case, we have a group chat owned by owning provider A. Alice
 is one of the members of the group chat, also in the owning provider.
 Bob is a guest participant, and his provider is provider B. Charlie
 is also a user of provider B. Bob uses his client application and
 adds Charlie to the group chat. His provider would have a directory
 of users in this use case (since Charlie is in the same provider).
 Once Charlie has been selected, provider B then sends a request to
 the owning provider, provider A, to add Charlie to the group. This
 is done using the guest addition REST API:

Rosenberg, et al. Expires 14 September 2023 [Page 21]

Internet-Draft MIMI Protocol March 2023

 POST https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants/{userId}?connect={connectionId}

 In this case, because the userID to be added is different than the
 one bound to the connection, the owning provider knows this is a
 guest addition. There will be no KeyPackages in this POST of course.
 This is treated like a request to the owning provider, for someone in
 the owning provider to create a connection to Bob in order for him to
 be added. The owning provider can send this to all participants in
 the group that are within the owning provider, or just some. One
 might imagine they get a message like "Bob wants to add Charlie to
 this group. To do that, you need to reach out to Charlie and add him
 in. OK?". If the user accepts, this would trigger a connection
 request flow - either group dependent or group independent, based on
 the policy of the provider.

 [OPEN ISSUE: this is definitely clunky - what if Alice doesnt know
 Charlie at all? We could support the ability for Bob to get a MIMI
 URI directly as well. That would allow Bob to communicate to CHarlie
 directly, but now imposes a greater security risk because A must
 trust that Bob isnt going to generate a lot of spam invites. The
 solution here optimizes for spam reduction at the expense of user
 experience.]

7.4. Mobile Centric UI

 This section describes a suggestion user interface implementation for
 mobile apps, and a mobile number centric invitation process. It also
 suggests an enhancement to mobile OS's for formal support for the
 mimi URI.

 In one possible implementation of a UI, a provider may elect to allow
 its users to add other users by entering their mobile phone numbers,
 perhaps by allowing the user to select from an address book. The
 provider would likely check its internal databases to determine
 whether the selected phone number is already a user of the system,
 and if not, offer the user the ability to invite them to join the
 conversation on whatever is their preferred provider. The mobile app
 of the owning provider would then cross-launch the native texting
 application on the mobile phone, and prepopulate a text message along
 the lines of, "Hi! I'd like to chat with you, you can do so using
 your favorite chat app - click here to join me and others: [link]".
 The link in the text message would be the mimi URI created by the
 owning domain.

 Assuming the inviting user already has some kind of SMS chat in
 progress with the invited user, this new message would appear within
 that context. The inviting user can press send, and this is

Rosenberg, et al. Expires 14 September 2023 [Page 22]

Internet-Draft MIMI Protocol March 2023

 delivered via text to the invited user. This provides a form of
 forward routability, so that the invitation is only delivered to a
 user that owns that phone number. The invited user can, at their
 discretion, send additional text messages to provide context.

 This text would be received on the mobile phone of the receiving
 user. Note that it is a new URI scheme - the mimi URI. As of
 writing, both iOS and Android allow applications to register custom
 URI handlers. When an application supports mimi, it would register
 itself as a handler for the mimi URI. Furthermore, it would provide
 a setting in its settings menu, to say whether that particular app is
 the default application for handling inter-app messaging. If a user
 were to have multiple mimi-enabled apps on their phone, it would be
 at the discretion of the user to select only one as their default.
 When an app is unselected as default, it would unregister itself as a
 handler for the mimi URI. When the user clicks on the mimi URI, it
 would cross-launch their selected mobile app and pass it the URI
 parameters. The mobile application would prompt the user with
 something like, "Accept invitation to join chat room?" and if they
 say yes, it would initiate the acceptance procedures defined above.

 If mimi were to be adopted by the mobile OS vendors, an even better
 experience could be provided. The mobile OS vendors would explciitly
 recognize the mimi URI scheme, and allow multiple apps to register as
 handlers. The OS itself would have a setting for the default, which
 is perhaps the first one to register. When the second mobile app
 registers as a handler, the OS could ask the user if they wish to
 switch to that app as the default, or keep it. Similarly, there
 would be a setting in the mobile OS, which allows the user to pick
 their preferred app. This would show a dropdown list of all vendors
 whose apps are currently installed, but have registered themselves as
 handlers for the mimi URI. This is a (relatively) small change in
 functionality and thus not a big change. It is important to note
 that mimi is designed to work without any mobile OS support - it only
 requires implementation within the providers. Mobile OS support
 improves the experience by making management of the default messaging
 app much better.

8. REST APIs

 This section defines the REST endpoints for mimi. All mimi REST
 calls are from the guest provider to the owning provider. As a
 result, mimi only specifies behaviors for these endpoints on the
 owning provider. [TODO: add rest from owning to guest for claiming
 keypackages.]

Rosenberg, et al. Expires 14 September 2023 [Page 23]

Internet-Draft MIMI Protocol March 2023

8.1. Authentication and Authorization

 The owning provider MUST provide a mechanism, outside the scope of
 this specification, for a guest provider to obtain an OAuth access
 token that can be used as a bearer token in all HTTP requests.
 [@cullen: suggestions for additional wording here please]. This
 allows the owning provider to make decisions about which guest
 providers it will permit. Mimi does not require any specific
 authorization policy, and leaves this to the discretion of an owning
 provider, on which guest providers it will enable to connect. [OPEN
 ISSUE: an alternative is mutual TLS. Which do we want, or both?]

8.2. General Request Guidelines

 All mimi REST API operations MUST occur over HTTPS. All requests
 MUST include an Authorization header field containing the access
 token obtained by the provider out of band. All URI endpoints exist
 within the .well-known path, in order to avoid any possible namespace
 collisions with existing HTTP URIs hosted on the provider [RFC5785].
 This specification registers a new well-known URI, "mimi".

 REST endpoints which return collections of resources support
 pagination. Pagination makes use of a page cursor technique.
 Paginated results do not guarantee that an item appears in only one
 page - the client must be prepared for duplication. A client can
 request an upper bound on elements per page with an optional
 pageLimit URI query parameter. For any paginated results, the server
 MUST include a pageLimit URI parameter in the response body, whose
 value is equal to or less than any pageLimit specified in the request
 URI. Each response will contain a "next" URI that includes a link to
 the next page, if present. That request will contain a "pageCursor"
 value, which is a string generated by the server and opaque to the
 client. This can be used by the server to support pagination and
 contain whatever content it likes. THe server MUST NOT send a
 pageCursor longer than 1023 characters.

 The body of any response that provides pagination looks like this:

 {
 "items": [
 ...
],
 "paging": {
 "next": "{uri}&pageCursor={pageCursor}",
 "limit": {pageLimit}
 }
 }

https://datatracker.ietf.org/doc/html/rfc5785

Rosenberg, et al. Expires 14 September 2023 [Page 24]

Internet-Draft MIMI Protocol March 2023

 Where the items property contains the array of items, and a paging
 property contains the information need for pagination.

 Where {variable} is substituted with the value of that variable.

8.3. Connection Information

 This REST endpoint allows a guest provider to obtain the meta-data
 associated with a connection. This is used to render the information
 to its user, to allow the user to make a decision on whether to
 accept the connection. The syntax for this endpoint is:

 GET https://{provider-name}/.well-known/mimi/
 connections/{connectionId}

 The owning provider MUST authorize that this is a valid guest
 provider. The owning provider MUST validate that the connection ID
 is valid. Owning providers MUST maintain a minimum validity period
 of 24 hours for connection IDs in the PENDING state. Once
 authorized, the server returns the following payload in the 200 OK
 response, which represents the state of the connection resource:

 {
 "id" : "{connectionId}",
 "uri" : "https://{provider-name}/.well-known/mimi/
 connections/{connectionID}",

 "createdAt" : "{timestamp}"
 "state" : "{state}",

 "source" : {
 "userID" : "{userId}",
 "provider" : "{provider-name}"
 },

 "target" : {
 "userId" : "{userId}"
 "provider" : "{provider-name}"
 },

 "groupChat" : {
 "id" : "{groupChatId}",
 "uri" : "https://{provider-name}/.well-known/mimi/
 group-chats/{groupChatId}/"
 }
 }

Rosenberg, et al. Expires 14 September 2023 [Page 25]

Internet-Draft MIMI Protocol March 2023

 The id, uri, createdAt, source and target properties are mandatory.
 The source property refers to the user that is requesting the
 connection, and will be a user of the owning provider. The target
 represents the user whose connection is requested. Initially, the
 provider for this user is unknown. Consequently, only the userID
 property of the target will be present. The state property indicates
 the state of the connection, and is either PENDING or ACTIVE. When
 first created, its state is PENDING. Once confirmed, its state moves
 to ACTIVE. In the ACTIVE state, the provider-name for the target
 MUST be present.

 The groupChat property is present only when the connection was
 requested in the context of a specific group chat. [OPEN ISSUE:
 should this be a list, so as more group chats are authorized this
 grows?]. In the case of a group chat independent connection request,
 it would be absent.

8.4. Connection Acceptance or Rejection

 This REST endpoint allows a guest provider to accept a connection
 request on behalf of one of its users. The syntax for this endpoint
 is:

 POST https://{provider-name}/.well-known/mimi/
 connections/{connectionID}

 The request can take either take the "accept" URI parameter, which
 indicates acceptance, or the "reject" URI parameter, which indicates
 rejection. Only one of the two can be present; a request with both
 is rejected with a 400.

 The owning provider MUST authorize that this is a valid guest
 provider. The owning provider MUST validate that the connection ID
 is valid. Owning providers MUST maintain a minimum validity period
 of 24 hours for connection IDs in the PENDING state.

 If the prior state of the connection was either PENDING or ACTIVE,
 and the accept parameter was present, the new state is ACTIVE. If
 the reject parameter is present, this is equivalent to deletion of
 the connection and the resource would no longer exist [OPEN ISSUE:
 Should we just do DELETE instead of a reject URI param]

 If the guest provider has accepted the connection, the response is a
 200 OK containing a JSON payload in the same syntax as above.
 However, in this case, the STATE would be active and the target will
 include the provider-name. The owning provider knows the guest
 provider name, as a consequence of the authentication process used to
 authenticate the guest provider.

Rosenberg, et al. Expires 14 September 2023 [Page 26]

Internet-Draft MIMI Protocol March 2023

8.5. Join Request

 This REST endpoint allows a guest provider to request that their user
 join a group chat. This is always in response to a prior request
 from a user in the owning provider to add them, followed by an
 authorization decision by the invited user to proceed with the
 addition. The syntax for this endpoint is:

 POST https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants?connect={connectionId}

 From an MLS perspective, the user is not yet joined to the group -
 this method is delivering the key packages to the inviting user, so
 the inviting user in the owning provider can complete the addition of
 this user to the group.

 The only valid method against this endpoint is POST, which performs
 the join request operation by creating this participant in the group.

 The request has a single mandatory URI parameter, "connect", which
 contains the connectionID associated with this join request.

 The server MUST validate that the groupChatId is valid, and
 represents an active group chat. The server MUST validate that the
 connectionID in the connect parameter is valid, and represents a
 valid connection whose state is ACTIVE. If any one of these steps
 fails, the request MUST be rejected with a 403. Otherwise, the
 server proceeds to the next step.

 The body of the request MUST be of type multipart MIME. Each part
 MUST be of type message/mls, and MUST correspond to a KeyPackage.
 There SHOULD be a KeyPackage for each client that the guest currently
 has, and for each, include a KeyPackage for each ciphersuite
 supported by each client.

 The response to a successful request is a 201 created, which contains
 a URI for the participant resource that was just created. This URI
 will be of the form:

 https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants/{participantUUID}

 Note that this is a UUID for the participant, distinct from its more
 human readable participantID. This allows the URIs to contain a UUID
 without needing to worry about URI encoding of the participantID.

 The body contains a JSON representation of the participant. This
 JSON object is structured as follows:

Rosenberg, et al. Expires 14 September 2023 [Page 27]

Internet-Draft MIMI Protocol March 2023

 {
 "id" : "{participantUUID}",
 "participantID" : "{participantId},
 "uri" : "https://{provider-name}/.well-known/mimi/
 group-chats/ {groupChatId}/participants/
 {participantUUID}",

 "joinedAt" : "{timestamp}"
 "provider" : "{provider-name}"

 "groupChat" : {
 "id" : "{groupChatId}",
 "uri" : "https://{provider-name}/.well-known/mimi/
 group-chats/{groupChatId}/"
 }
 }

 The timestamp MUST be formatted as a string in JSON, and be no longer
 than 16 characters. Its content MUST be valid timestamp, a positive
 integer measuring the number of milliseconds since Unix epoch time.
 That allows the timestamp to be monotonically increasing at the
 owning provider, and valid across different backend servers that may
 process the request.

8.6. Leave Request

 If a guest participant wishes to leave, its provider can invoke the
 following API:

 DELETE https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants/{participantUUID}

 The server MUST authorize that the request comes from a valid guest
 provider, and that the guest provider name matches the one associated
 with the user that is being removed. The server MUST validate that
 the groupID exists and is valid, and that the participant in question
 is part of the group chat at this time. Assuming all checks pass,
 the user is removed from the group at the MTP layer. The abouve REST
 endpoint will not longer be valid.

 This operation has no effect yet on the MLS of course. To do that,
 the owning domain SHOULD request a user in the owning domain to
 remove the participant. A user, upon accepting this request to be
 removed, will generate a new Commit message and sent it to the owning
 provider. This new Commit, with this user removed, will be
 distributed via the event stream to all other remaining participants.

Rosenberg, et al. Expires 14 September 2023 [Page 28]

Internet-Draft MIMI Protocol March 2023

 [OPEN ISSUE: Do we want to allow non-owning members to process leave
 requests?]

 The DELETE request will generate an immediate 200 OK response and not
 await the MLS Commit message which removes the member from the group.

8.7. Guest Addition

 POST https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants/{userId}?connect={connectionId}

 Details to be filled in.

8.8. Add Message

 If a guest user wishes to add a message to a group chat, their
 provider invokes the following API:

 POST https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants/{participantUUID}/messages

 The body of the request has the media type message/mls. It contains
 the end-to-end encrypted application message.

 The server MUST validate that the groupChatId exists and is valid,
 the user with userId is a member of the group, has permissions to
 post messages, and that their provider is the same as the provider
 making the request (based on the Authorization header field). If any
 of these checks fail, the server MUST return a 403.

 If the message addition is successful, the server returns a 200 OK
 that includes the following JSON payload. This is not strictly
 needed for synchronization but reflects best practice in REST APIs to
 return a copy of the resource that was created. In this case, the
 meta-data of the message.

 {
 "id" : "{messageTimestamp}",
 "uri" : "https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants/{userId}/messages/
 {messageTimestamp}",

 "groupChat" : {
 "id" : "{groupChatId}",
 "uri" : "https://{provider-name}/.well-known/mimi/
 group-chats/{groupChatId}/"
 }
 }

Rosenberg, et al. Expires 14 September 2023 [Page 29]

Internet-Draft MIMI Protocol March 2023

 It is very important to note that the ID of this messages is not a
 UUID, but rather is a timestamp that represents the number of
 milliseconds since the Unix epoch time. This makes each message
 uniquely identified by the group chat ID and the timestamp. The
 server MUST enforce a rule that no two messages posted ever have the
 same timestamp, in order for the timestamps to serve as unique IDs.
 The timestamp is generated by the owning provider.

8.9. Retrieve Membership

 When a user intially joins the group, their UI will need to show the
 list of group members, including display names. Display names are
 not part of the MLS messages, and thus this endpoint is provided to
 allow a guest to retrieve them in paginated form for rendering
 purposes [OPEN ISSUE: This is contentious, do we need this]. This
 list is maintained by the owning provider. The following REST
 endpoint allows the guest provider to retrieve the current group
 membership:

 GET https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants/

 The server MUST validate that the groupChatId exists and is valid,
 and that at least one participant in the group is in a guest
 provider, and the guest provider name matches the provider name
 associated with the access token in the Authorization header field.
 If these checks do not pass, a 403 Forbidden response is returned.

 Otherwise, the server returns the group membership as a pagination.
 This follows the guidelines defined above for pagination. Each
 element of the item array is formatted as following:

 {
 "id" : "{userId}",
 "uri" : "https://{provider-name}/.well-known/mimi/group-chats/
 {groupChatId}/participants/{participantUUID}",
 "name" : "{displayname},

 "properties" {
 "provider" : "provider-name"
 },

 "groupChat" : {
 "id" : "{groupChatId}",
 "uri" : "https://{provider-name}/.well-known/mimi/
 group-chats/{groupChatId}/"
 }
 }

Rosenberg, et al. Expires 14 September 2023 [Page 30]

Internet-Draft MIMI Protocol March 2023

 The displayname is for display purposes, and can be set by the user
 at any time. It is however RECOMMENDED that mimi implementations on
 mobile devices which have access to the address book, instead utilize
 the display name from the address book instead of ones conveyed by
 mimi.

 Each user resource also contains a set of user properties. This set
 is extensible, either through an extension through a standards body,
 or through private registration. Initially, this specification has
 only a single property defined - provider - which contains the
 provider-name for that user. This would allow user interfaces to
 indicate when users are "guests" and which app they are using to
 access the chat. Additional properties which could be considered for
 future extension include whether or not a user is a moderator of the
 group, whether they have permission to post or delete messages, and
 so on. The owning provider includes the list of all properties it
 supports; any properties not understood by the client are just
 ignored.

 The group membership will include members that joined the group
 through the join REST API above, but for whom the MLS rekeying has
 not yet completed. Similarly, the membership will omit members that
 left the group using the REST API above, but for whom the MLS
 rekeying has not yet completed.

8.10. Retrieve Group Chat Information

 To retrieve information about the group:

 GET https://{provider-name}/.well-known/mimi/group-chats/{groupChatId}

 The server MUST validate that the groupChatId exists and is valid,
 and that at least one participant in the group is in a guest
 provider, and the guest provider name matches the provider name
 associated with the access token in the Authorization header field.
 If these checks do not pass, a 403 Forbidden response is returned.

 Mimi allows groups to have properties. [OPEN ISSUE: should we have
 default properties to handle things like moderation or make this
 extensible] Properties represent information about the group,
 distinct from its membership and messages. This specification
 defines a single property - groupName. Mimi allows for these to be
 extended to provide additional properties in the future. These
 extensions can be through IETF consensus or private registrations.
 Examples of functionality which can be introduced through new
 properties in the future include broadcast or read-only groups,
 moderated groups, and so on. If an owning domain is providing a
 property which is not registered with IANA, it MUST use a property

Rosenberg, et al. Expires 14 September 2023 [Page 31]

Internet-Draft MIMI Protocol March 2023

 name that contains a reverse DNS version of its provider name, i.e.,
 "com.messenger.newprop" would be used for a property called newprop
 that is proprietary to Facebook Messenger.

 These properties, including the group name, are returned in the
 response:

 {
 "id" : "{groupId}",
 "uri" : "https://{provider-name}/.well-known/mimi/
 group-chats/{groupChatId}",

 "properties" {
 "groupName" : "{groupName}"
 },
 }

8.11. Set Group Property

 To set a property of the group, including the group name, the
 following API is used:

 POST https://{provider-name}/.well-known/mimi/
 group-chats/{groupChatId}

 This requires has a mandatory URI parameter, userID, which contains
 the user that is performing this request. This request requires a
 second URI parameter, which is the property. This specification
 defines only one - groupname, whose value is a URI encoded version of
 the group name to use for the group. Any other properties known to
 the server, can be accepted in the request and saved.

 The server MUST validate that the groupChatId exists and is valid,
 that user userID in the userID parameter is valid and a member of the
 group, and their guest provider name matches the provider name
 associated with the access token in the Authorization header field.
 If these checks do not pass, a 403 Forbidden response is returned.

 The server then executes the property change. For the name, this
 name is set as a property of the group.

 Note that, the group name and associated properties are not e2e
 encrypted with MLS, since they may affect server side processing.
 [OPEN ISSUE: Im sure we need to discuss this one, including display
 name].

Rosenberg, et al. Expires 14 September 2023 [Page 32]

Internet-Draft MIMI Protocol March 2023

8.12. Commit

 This REST endpoint is used to support the MLS protoocl, and allows
 users in guest providers to push a Commit message into the system, to
 be delivered to all other participants. [OPEN ISSUE: renaming this
 "handshake" to allow bare proposals as well.]

 POST https://{provider-name}/.well-known/mimi/
 group-chats/{groupChatId}/commits

 This requires has a mandatory URI parameter, participantUUID, which
 contains the participant that is performing this request.

 The server MUST validate that the groupChatId exists and is valid,
 that participantUUID is valid and a member of the group, and their
 guest provider name matches the provider name associated with the
 access token in the Authorization header field. If these checks do
 not pass, a 403 Forbidden response is returned.

 When receiving this request, the server MUST increase the epoch.
 [TODO: The _server_ doesn't increase the epoch. The Commit caused
 the group to enter a new epoch. The owning provider agrees that the
 new Commit is valid and therefore allows it to be sent to other
 clients.] It MUST ensure that all Commits are accepted and forwarded
 strictly in-order within an MLS group. [TODO: add reference to the
 language in section 4.2.1 of mls-architecture saying that this
 protocol requires Strongly Consistent ordering.]

 The response is a 200 OK with no body. [Question: does the epoch
 need to be returned?? No, the Commit contained the epoch.] [TODO:
 you need a response code which clearly indicates that the Commit had
 the wrong epoch.]

 Beyond that, the commit message is then distributed to participants
 using the synchronization protocol to drive MLS operations.

9. Synchronization

 The second major piece of functionality provided by mimi is a
 synchronization function. This function allows a guest domain to
 receive changes to the group chats and connections in real time, so
 it can handle them and process accordingly.

Rosenberg, et al. Expires 14 September 2023 [Page 33]

Internet-Draft MIMI Protocol March 2023

 A guest domain MUST maintain a list of the group chats and
 connections for which its users have an active membership, which are
 in a different owning provider. This list is potentially very long -
 millions of group chats might exist. To subscribe to changes, the
 domain utilizes a set of subscriptions using an HTTP long poll. Each
 subscription is to one or more group chats or one or more
 connections.

 To subscribe to events for a group chat:

 POST https://{provider-name}/.well-known/mimi/
 group-chats/{groupChatId}/events

 and for connections:

 POST https://{provider-name}/.well-known/mimi/
 connections/{ConnectionId}/events

 Both requests take two optional parameters - "from" and "to" which
 contain timestamps. If the "to" parameter is absent, it means that
 the subscription should continue to deliver new events as they
 happen. If the "from" is absent. it means taht the subscription is
 from the beginning of time, and thus generate all historical events.

 The body of the response is a streaming JSON, representing an array
 of events.

 This naming introduces an important concept - that of an event. An
 event often is associated with the posting of a message, and this
 will be the most common event. But, it is not the only event. There
 are also events for changes in group membership, changes in group
 properties, changes in user properties, MLS Welcome and Commit
 messages. Each event has a unique timestamp, different from all
 other events. This means that all events form an ordered stream,
 which can be subscribed to. When a guest provider has missed events,
 it can also subscribe to events within a range of time, to fill in
 missing parts of the event stream.

 Each event in the stream is formatted as a JSON payload, with the
 following common format:

 {
 "eventTimestamp" : "{timestamp}",
 "type" : "{eventType}",

 }

Rosenberg, et al. Expires 14 September 2023 [Page 34]

Internet-Draft MIMI Protocol March 2023

 The type conveys the type of event. Defined types are "message",
 "mls", "groupPropertyChange" and "userPropertyChange",
 "groupChatAddRequest", and so on. Depending on the type, there will
 be additional JSON properties, unique to that specific type. Details
 TBD.

10. Security Considerations

 Security is an essential part of this specification. The following
 subsections consider different threat vectors and how they are
 countered by mimi.

10.1. Spam Prevention

 The single most important consideration in the design of mimi, is
 ensuring that it doesnt become a vector for spam.

 In traditional email, it is possible for a malicious organization to
 send unwanted messages to any user, at very low cost. MIMI layers in
 several layers of protections to help prevent this. Of course, no
 technology can completely block all spam.

10.1.1. Consent Based Protection

 The first line of defense against this is the consent-based model
 used in mimi. Consider a malicious provider that acts as an owning
 provider for a particular group chat. In order for that provider to
 deliver messages to a target user with a given email address or
 mobile phone number, they cannot just send a message. This is
 because the guest provider associated with that user needs to
 actively pull messages for that group chat. To entice the target
 user to ask their guest provider to pull messages for this group
 chat, all of the following must happen:

 1. A message, such as an email or text, must be sent to the target
 user with a mimi URI,

 2. The target must click on the mimi URI,

 3. The target must have a messaging app installed on their device,
 registered as a mimi handler

 If all three conditions are met, it would be possible for a malicious
 provider to cause unwanted chat messages to appear to the target.

 Clearly, it is possible for the malicious provider to send an email
 or text to the target with a mimi URI. In mimi, valid emails are
 sent by the email address and/or mobile number of the actual user,

Rosenberg, et al. Expires 14 September 2023 [Page 35]

Internet-Draft MIMI Protocol March 2023

 not a system address. Emails from malicious providers are likely to
 come from a system address. As such, they are likely to be caught by
 normal email spam filters and by SMS filtering techniques used by
 mobile operators. In essence, MIMI "inherits" the existing network
 of anti-spam and SMS filtering techniques in place today. This helps
 reduce the likelihood of the malicious email getting through.

 Assuming it does get through, the target must be enticed to click on
 the MIMI URL. This is important. In mimi, it takes an active action
 on behalf of the recipient, to receive messages as part of a group
 chat. This is unlike spam emails or texts, where no action is
 required for the recipient to receive the unwanted message. Mimi
 allows users to differentiate a legiminate email or tet with a mimi
 URL, from an unwanted one. The main differentiator is the source of
 the message. In mimi, the text or email messages will be delivered
 using the mobile number or email address of the user generating the
 invite. Often, this will be someone known to the recipient, and thus
 match an entry in the user's mobile or email address book. In those
 cases, it is easy for the user to confirm that the request is
 legitimate. In cases where the inviting user is not known to the
 recipient, the email address or mobile number may not match an
 address book entry. In those cases, the invited user can respond and
 request further information before accepting the invitation.

 It is also the case that, over the past many years, many users have
 been trained to not click on links in unsolicited communications. As
 a result, one would expect the click rates on these links to be low,
 reducing the chance of the user accepting the invitation.

 As a final protection (albeit a small one), the receiving user must
 have a messaging app installed on their device that is compliant to
 mimi. If they do not, the invitation to chat will not be accepted.

10.1.2. Leave the Group

 In the case where a user is tricked into joining a group chat that
 delivers them unwanted actions - the user has a recourse - they can
 always leave the group. [NOTE: This is actually really hard in MLS.]
 This is in contrast to email, where a user has no way to opt-out of
 communications. With persistent group chat, they can always leave.
 Beacuse mimi is based on a pull architecture, once a user leaves a
 group by asking their guest provider to do so, the guest provider
 ceases to synchronize (and thus receive) messages for that group.

Rosenberg, et al. Expires 14 September 2023 [Page 36]

Internet-Draft MIMI Protocol March 2023

10.1.3. Malicious Sender Traceability

 Owing to the usage of MLS, all senders of chat messages are
 authenticated. This means the sender's original email address or
 mobile phone number will be signed. If the signature is provided by
 the malicious provider themselves, this is perhaps small consolation.
 However, should mimi make use of identities verified with a
 different, trusted third party identity source, this will provide
 good identification of the originator of the unwanted communications.

10.1.4. Provider Authorization

 In email, any domain is allowed to send email to any other domain.
 This has allowed email to be a global messaging fabric. But, its
 completely open nature have made it trivial for a malicious entity to
 spin up as many domains as it wants, and send email from any domain.

 In mimi, we do not expect this to be the case. In mimi, each
 provider needs to explicitly opt-in to the set of other providers
 whose mimi connections they will accept, or connect to. We
 anticipate that the larger providers in particular will implement
 quite strict policies on which other providers they connect to. Such
 connections are likely to be accompanied by significant offline
 vetting of the providers, to ensure they are legitimate, and provide
 human contact information that can be used to trace back in case
 malicious messages start to be sent from that provider.

10.2. Malicious Providers Manipulating other Users

 Consider a group chat with owning provider A, and guest providers B
 and C. The group chat consists of users A1, B1 and C1 from their
 respective providers.

 In this configuration, malicious provider C might attempt to
 manipulate the state of the group chat, by removing users A1 or B1.
 This attack is prevented by mimi. As part of the authorization
 checks performed by owning provider A, a provider is only permitted
 to request that a user leave the chat, if the user in question is a
 member of that provider. This check is done explicitly to prevent
 this attack.

 There are other similar attacks, wherein provider C tries to post a
 message as if it came from user B1 or A1. These attacks are
 prevented in mimi with this same mechanism, but are also prevented by
 MLS. This provides two layers of security for those kinds of
 attacks.

Rosenberg, et al. Expires 14 September 2023 [Page 37]

Internet-Draft MIMI Protocol March 2023

11. IANA Considerations

11.1. URI Scheme Registration

 This specification registers the mimi URI syntax as required by
 [RFC7595].

 Scheme Name: mimi

 Status: Permanent

 Applications/protocols that use this scheme name: (NOTE TO RFC-
 EDITOR: Replace with the RFC number for this specification)

 Contact: Jonathan Rosenberg, jdrosen@jdrosen.net
 (mailto:jdrosen@jdrosen.net)

 Change Controller: IETF

 References: (NOTE TO RFC-EDITOR: Replace with the RFC number for this
 specification)

11.2. Well-Known URI Registration

 This specification registers the mimi well-known URI as required by
 [RFC5785].

 URI Suffix: "mimi"

 Change Controller: "IETF"

 Specification Document: (NOTE TO RFC-EDITOR: Replace with the RFC
 number for this specification)

11.3. MIMI Property Registry

 [TODO: can you please provide an existence proof of a property that
 shows we needs this?]

 This specification establishes a new registry with IANA for MIMI
 properties. This registry contains the following parameters:

 Property Name: the name of the property being registered

 Context: The context is "user" for properties that apply to users
 only, "groupchat" for properties that apply to the group chat only,
 or "both" for properties which are defined for both.

https://datatracker.ietf.org/doc/html/rfc7595
https://datatracker.ietf.org/doc/html/rfc5785

Rosenberg, et al. Expires 14 September 2023 [Page 38]

Internet-Draft MIMI Protocol March 2023

 Type: The syntax for the property. This must be one of string,
 enumerated string, boolean, or integer. [OPEN ISSUE: should we just
 make these all string and require the spec to define the type]

 Governing Authority: This can either be a recognized standards body,
 such as the IETF, or a private registration.

 Governing Specification: A link to the document defining the
 property. This can either be an IETF RFC, a specification from
 another standards body, or a document published somewhere on the
 Internet that contains information on the property.

 Contact: Name and email address of the contact for the registration

 {backmatter} This document instructs IANA to accept all registrations
 coming through the IETF standards process, for which an RFC performs
 the registration. For all others, expert review is required.

12. Normative References

 [I-D.ietf-mls-architecture]
 Beurdouche, B., Rescorla, E., Omara, E., Inguva, S., and
 A. Duric, "The Messaging Layer Security (MLS)
 Architecture", Work in Progress, Internet-Draft, draft-

ietf-mls-architecture-10, 16 December 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-mls-

architecture-10>.

 [I-D.ietf-mls-protocol]
 Barnes, R., Beurdouche, B., Robert, R., Millican, J.,
 Omara, E., and K. Cohn-Gordon, "The Messaging Layer
 Security (MLS) Protocol", Work in Progress, Internet-
 Draft, draft-ietf-mls-protocol-17, 19 December 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-mls-

protocol-17>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2396] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 DOI 10.17487/RFC2396, August 1998,
 <https://www.rfc-editor.org/info/rfc2396>.

https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-10
https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-10
https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-10
https://datatracker.ietf.org/doc/html/draft-ietf-mls-architecture-10
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-17
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-17
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-17
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2396
https://www.rfc-editor.org/info/rfc2396

Rosenberg, et al. Expires 14 September 2023 [Page 39]

Internet-Draft MIMI Protocol March 2023

 [RFC2717] Petke, R. and I. King, "Registration Procedures for URL
 Scheme Names", RFC 2717, DOI 10.17487/RFC2717, November
 1999, <https://www.rfc-editor.org/info/rfc2717>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,
 March 2011, <https://www.rfc-editor.org/info/rfc6120>.

 [RFC6121] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Instant Messaging and Presence",

RFC 6121, DOI 10.17487/RFC6121, March 2011,
 <https://www.rfc-editor.org/info/rfc6121>.

 [RFC6914] Rosenberg, J., "SIMPLE Made Simple: An Overview of the
 IETF Specifications for Instant Messaging and Presence
 Using the Session Initiation Protocol (SIP)", RFC 6914,
 DOI 10.17487/RFC6914, April 2013,
 <https://www.rfc-editor.org/info/rfc6914>.

 [RFC7595] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
 and Registration Procedures for URI Schemes", BCP 35,

RFC 7595, DOI 10.17487/RFC7595, June 2015,
 <https://www.rfc-editor.org/info/rfc7595>.

Authors' Addresses

 Jonathan Rosenberg
 Five9
 Email: jdrosen@jdrosen.net

 Cullen Jennings
 Cisco
 Email: fluffy@iii.ca

 Suhas Nandakumar
 Cisco

https://datatracker.ietf.org/doc/html/rfc2717
https://www.rfc-editor.org/info/rfc2717
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc5785
https://www.rfc-editor.org/info/rfc5785
https://datatracker.ietf.org/doc/html/rfc6120
https://www.rfc-editor.org/info/rfc6120
https://datatracker.ietf.org/doc/html/rfc6121
https://www.rfc-editor.org/info/rfc6121
https://datatracker.ietf.org/doc/html/rfc6914
https://www.rfc-editor.org/info/rfc6914
https://datatracker.ietf.org/doc/html/bcp35
https://datatracker.ietf.org/doc/html/rfc7595
https://www.rfc-editor.org/info/rfc7595

Rosenberg, et al. Expires 14 September 2023 [Page 40]

Internet-Draft MIMI Protocol March 2023

 Email: snandaku@cisco.com

Rosenberg, et al. Expires 14 September 2023 [Page 41]

