
Workgroup: Mimi

Internet-Draft: draft-rosenberg-mimi-spin-00

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: J. Rosenberg

Five9

C. Jennings

Cisco

A. Cooper

Cisco

J. Peterson

Neustar

Simple Protocol for Inviting Numbers (SPIN)

Abstract

This document introduces a framework and a protocol for facilitating

voice, video and messaging interoperability between application

providers. This work is motivated by the recent passage of

regulation in the European Union - the Digital Markets Act (DMA) -

which, amongst many other provisions, requires that vendors of

applications with a large number of users enable interoperability

with applications made by other vendors. While such interoperability

is broadly present within the public switched telephone network, it

is not yet commonplace between over-the-top applications, such as

Facetime, WhatsApp, and Facebook Messenger. This document

specifically defines the Simple Protocol for Inviting Numbers (SPIN)

which is used to deliver invitations to mobile phone numbers that

can bootstrap subsequent communications over the Internet.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Implications of no Standards Action

3. Affected Actors

4. SPIN Framework

5. SPIN Protocol Overview

6. SPINvitation Object Syntax

7. SPIN Protocol for Providing URIs

8. Mobile OS vendor API Recommendations

9. Specifications of Communications Protocols

9.1. Voice and Video

9.2. Messaging

10. Security Considerations

11. Normative References

Authors' Addresses

1. Introduction

Voice, video and messaging today is commonplace on the Internet,

enabled by two distinct classes of software. The first are those

provided by telecommunications carriers that make heavy use of

standards, such as the Session Initiation Protocol (SIP) [RFC3261].

In this approach - which we call the telco model - there is

interoperability between different telcos, but the set of features

and functionality is limited by the rate of definition and adoption

of standards, often measured in years or decades. The second model -

the app model - allows a single entity to offer an application,

delivering both the server side software and its corresponding

client-side software. The client-side software is delivered either

as a web application, or as a mobile application through a mobile

operating system app store. The app model has proven incredibly

successful by any measure. It trades off interoperability for

innovation and velocity.

The downside of the loss of interoperability is that entry into the

market place by new providers is difficult. Applications like

WhatsApp, Facebook Messenger, and Facetime, have user bases

numbering in the hundreds of millions to billions of users. Any new

application cannot connect with these user bases, requiring the

vendor of the new app to bootstrap its own network effects.

¶

¶

¶

https://trustee.ietf.org/license-info

This situation has recently drawn the attention of regulators, and

was one of the motivations behind the Digital Markets Act (DMA) in

the European Union. Amongst its many provisions, it requires vendors

of large communications platforms to enable interoperability with

third party vendors. It does not, of course, specify an actual set

of protocols or technologies for enabling that interoperability.

This document seeks to fill that void, by defining a framework - the

SPIN Framework - for such interoperability. This framework seeks to

strike a balance between innovation and standardization, by

identifying only those portions of the protocol stack that must be

standardized in order to achieve end-to-end security for a minimum

feature set between providers, and leaving everything else to APIs

and protocols which each vendor can define on it's own.

This framework identifies the need for a new protocol to solve the

identity mapping problem - the SPIN Protocol. Specifically, how does

an originating user using one application identify a target user in

a different application with which they wish to communicate, and

then obtain an identifier for the target user in the target

application that is utilized by that target user? Consider the

following example. User Alice is a user of Facebook Messenger, and

wishes to send a 1-1 chat message to her friend Bob. Bob is a user

of a different application for messaging - Signal for example - but

this fact is not known to Alice. Alice needs to somehow obtain a URI

that can be used to send messages to the Signal application targeted

at Bob. This is the identity mapping problem, and is addressed by

the SPIN protocol defined here.

2. Implications of no Standards Action

In theory the application interoperability envisioned in the DMA

could be achieved entirely through the publication of vendor-

specific APIs and without standardization. However, this would yield

a suboptimal outcome for both users and app developers, as

supporting the matrix of pairwise communication flows between all of

the affected voice, video, and messaging applications in the market

via vendor-specific APIs will create a patchwork of inconsistent

user experiences and likely lead to buggy implementations. Using a

minimal standardized framework to bootstrap cross-app

commmunications will provide more consistency while leaving app

developers freedom to continue to make their own design choices.

Furthermore, the usage of a standards-based solution ensures that

end-to-end messaging, voice, and video can happen between providers.

Without a standard, each vendor subject to the DMA will publish APIs

for access to their services. These APIs have traditionally provided

access to messages, voice and video that are not protected by e2e

crypto. While it is possible, in theory, that each application

¶

¶

¶

¶

provider could amend their APIs to provide access to e2e encrypted

content, doing so without an agreed-upon standard will almost

certainly lead to third parties decrypting in the cloud to avoid

implementing N variations in each client, one for each provider they

interop with.

3. Affected Actors

The solution defined by the SPIN framework requires participation

from multiple actors, and thus requires coordination through

standards. These actors are:

Mobile OS Vendors: Most notable Apple and Google. It requires

them to implement new APIs in their operating systems, new user

preference capabilities, and support for user identity through

certificates.

App Developers: App developers, such as a Signal or Facebook

Messenger, are required to change. They are required to utilize

the APIs exposed by the mobile OSs, and also implement the voice,

video and/or chat protocols specified by the SPIN Framework.

STIR/SHAKEN PA/CA: The SPIN framework suggests that it be

possible for the mobile OS vendors to generate STIR certificates

for the device. This requires that these vendors be supported as

valid CAs for STIR.

Note that the SPIN Framework described here does not require any

support or changes from the carriers themselves (Note however, the

open issue discussed below where we discuss an alternative

certification model where the telcos perform delegation to the

mobile OS vendors to install a cert on the phone).

4. SPIN Framework

The framework for SPIN is shown in the figure below:

¶

¶

*

¶

*

¶

*

¶

¶

¶

In the framework, we have two users - the originating and

terminating. The originating user wishes to send a message, make a

video call, or make a voice call, to the terminating user. A

fundamental assumption of SPIN is that the originating and

terminating users are both identifiable by telephone numbers on the

Public Switched Telephone Network (PSTN), and that the terminating

user can be reached via SMS. The originating user knows the

telephone number for the terminating user. The originating user is

using an app running on an operating system. The operating system

can be a mobile OS, such as iOS or Android. The originating OS

exposes APIs towards the application, which allow the originating

app to request communication to a user with the specified number.

The originating app is associated with a service running on the

Internet, and can connect to it for communications services. There

is a similar setup on the terminating side - the user has an

application running on an operating system which can receive SMS

messages, and their app is associated with a service reachable over

the Internet.

The role of the operating systems in this framework is to act as a

trust anchor. The OS is responsible for authenticating the

applications and vetting their behaviors, as they normally do on

mobile OSs.

The goal of the SPIN protocol is to allow a user of the originating

app to select a service (voice, video or messaging), and select a

phone number to which they communicate, and then receive a URI which

corresponds to the terminating service which can be used to perform

+---------------+ +---------------+

| | Comm Protocol | |

|Originating Svc+---------------+Terminating Svc|

| | | |

+-------+-------+ +-------+-------+

 | |

 | |

 | |

 | |

+-------+-------+ +-------+-------+

| | | |

|Originating App| |Terminating App|

| | | |

+-------+-------+ +-------+-------+

 | |

+-------+-------+ +-----+ +-------+-------+

|Originating OS +----+ SMS +----+Terminating OS |

+---------------+ +-----+ +---------------+

¶

¶

¶

that communication. The URIs of course correspond to protocols for

that form of communication.

Once the SPIN Protocol has run, the originating service now has a

protocol URI for the particular media type - voice, video or chat,

and can initiate it towards the terminating service. The SPIN

Framework recommends specific protocols for voice, video and chat.

For voice and video, the SPIN Framework suggests SIP [RFC3261],

with [I-D.rosenberg-dispatch-cloudsip], [RFC8224] and the webRTC

media stack. For messaging, it suggests creation of a new REST-based

protocol for 1-1 messaging, including e2e encryption using STIR-

based certificates, and features such as delivery and read receipts,

emojis, stickers, reactions, threads, images, URLs, contacts, and so

on, forming a baseline set of minimum viable 1-1 messaging. For the

initial phase of SPIN, group communications would be out of scope.

Though the framework is expressed in terms that align with mobile

operating systems, the same framework can apply in other cases. For

example, the terminating service, app and OS can logically be a

single entity. As an example, the terminating service, app and OS

could be associated with a Contact Center as a Service (CCaaS)

provider. In that setup, the SMS messages are delivered directly to

the CCaaS provider, and there is not a mobile operating system

involved to receive them.

5. SPIN Protocol Overview

The behavior of the SPIN Protocol is best understood through a high

level sequence diagram:

¶

¶

¶

¶

On the terminating side, the terminating user at some point installs

an application which is capable of handling communications for one

or more media types (voice, video or messaging). The application

will register with the terminating OS, using APIs exposed in the OS,

that it is capable of acting as a SPIN handler. As part of the

+-----------+ +---------+ +-----------+ +-----+ +---------+ +-----------+ +-----------+

| orig_app | | orig_os | | orig_svc | | sms | | term_os | | term_app | | term_svc |

+-----------+ +---------+ +-----------+ +-----+ +---------+ +-----------+ +-----------+

 | | | | | | |

 | | | | | register | |

 | | | | |<---------------------| |

 | | | | | | |

 | call {number} | | | | | |

 |------------------->| | | | | |

 | | | | | | |

 | | inv | | | | |

 | |---------------------->| | | |

 | | | | | | |

 | | | | inv | | |

 | | | |--------->| | |

 | | | | | -------------\ | |

 | | | | |-| verify sig | | |

 | | | | | |------------| | |

 | | | | | ---------------\ | |

 | | | | |-| verify hndlr | | |

 | | | | | |--------------| | |

 | | | | | | |

 | | | | send URI | | |

 | |<---------------------------------| | |

 | | | | | | |

 | URI | | | | | |

 |<-------------------| | | | | |

 | | | | | | |

 | req passport | | | | | |

 |------------------->| | | | | |

 | | | | | | |

 | passport | | | | | |

 |<-------------------| | | | | |

 | | | | | | |

 | call | | | | | |

 |-------------------------------->| | | | |

 | | | | | | |

 | | | INVITE | | | |

 | | |--->|

 | | | | | | |

¶

registration, the application provides the OS with a URI for the

service it provides of that media type. As discussed below, this can

be a proprietary API, or can be a baseline standard protocol. In the

case of voice, that baseline standard is SIP, and in particular,

cloud SIP [I-D.rosenberg-dispatch-cloudsip].

Later on, a user in an originating application decides to place a

call to a number. The originating application does not have a user

with that number as part of its own service, so it knows it needs to

use SPIN to route the call. It goes to the operating system on the

mobile phone, and requests it to provide a URI for voice

communications to the specified phone number. The originating OS

then prepares an SPINvitation object. This is a JWT which contains

several fields. THe fields include the phone number of the

originating user (which must be known and verified by the mobile

OS), and an HTTP URI that can be used by the terminating OS to send

the results back, and the communications service that is requested.

This HTTP URI will normally contain an embedded Authorization header

field that contains a short-lived token, valid to send the results

back. It then signs the JWT and sends an SMS (more likely, an MMS

given the size of the signed object), to the target user's phone

number. The terminating OS receives the SMS/MMS, and notices that it

contains an SPINvitation object, and thus should not be rendered to

the user. Should the terminating user and its OS not support this

protocol, it will end up rendering the MMS. The MMS includes some

plain text, which can be rendered to the user, indicating that the

caller wishes to speak with them, so that the human user can take

some action (like a return voice call over the PSTN).

Assuming the terminating OS supports this protocol, the MMS is

absorbed and decoded. THe signature is verified and then the

communications service is obtained. In this example use case, it is

for a voice call. The terminating OS has an application that has

registered itself as a handler for voice. Note that, the terminating

user might have multiple applications on their OS which can act as

handlers for voice. In such a case, the mobile OS would offer the

user a configuration setting to choose one as a default.

The app had previously registered itself as a handler and provided a

SIP URI for the receipt of calls, something like sip:{number}

@provider.com. This URI is sent back to the originating OS. Rather

than sending this back via SMS/MMS, IP communications are used. The

invitation object contained an HTTP URI which can be used by the

terminating OS to send the SIP URI. The SPIN protocol defines the

exact syntax and semantics of this HTTP POST operation. This is

received by the originating OS, which then informs the app that it

was able to locate the user. The originating OS provides the

communications URI (in this case, a SIP URI for voice calls).

¶

¶

¶

¶

Next - the originating app places a SIP call. Because we are now

dealing with inter-domain and inter-provider calls, secure caller ID

is required. SPIN requires that STIR passports [RFC8225] are

included, sent using [RFC8224]. The originating OS is required to

obtain a passport that is valid for the originating user. In this

framework, this is done by virtue of the mobile OS having a

certificate by which it can perform the signing operation directly.

There are two ways in which the originating OS can obtain such a

certificate. In one approach, the mobile OS would perform SMS

verification (again, invisibly, by absorbing the SMS it sends to

itself), and add an additional check of comparing it agaisnt the

mobile numnber the user claimed they owned during provisioning time

of the device. The mobile OS vendor would be a valid CA, and then

generte a certificate valid for that individual phone number. In an

alternative model, the telco uses certificate delegation [RFC9060],

and generates a certificate that is handed to the phone during

device provisioning. The latter approach is more secure in some ways

(as it would no longer depend on SMS forward routability for

authentication of a user), but is much harder to deploy.

The originating app makes an API call into the OS to obtain the

passport, which is then returned to the app. The app uses its own

app-specific protocols to communicate with its servers, and will

send the passport and the terminating user's phone number to its

service. Its service will then send a SIP INVITE to the target

number, including the passport in the SIP Identity header field.

From there, the terminating service can alert its app using the

mobile OS push techniques, and a call has been placed.

The SPIN framework therefore consists of the following:

A standardized syntax for the SPINvitation object that can be

sent via MMS

A standardized HTTP-based protocol for providing URIs for

communications - the actual SPIN on the wire protocol

Recommendations for mobile OS vendors on APIs they should

provide to enable SPIN, without actually specifying any details

of what those APIs look like

Specifications for communications protocols needed for voice,

video and messaging between app providers

6. SPINvitation Object Syntax

This will be a JWT that contains:

The desired media type, one of an enumerated set

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

* ¶

An HTTP URI for a callback

Details TBD.

7. SPIN Protocol for Providing URIs

To be filled in

8. Mobile OS vendor API Recommendations

To be filled in

9. Specifications of Communications Protocols

There are several ways in which the communications protocols could

be specified. On one extreme, the standard could leave this entirely

up to the terminating provider to define its protocol or API and

document it publically. It would then be the responsibility of the

originating service to implement each of these APIs for every

terminating provider it wishes to speak to. On the other extreme, we

can fully specify a protocol - most likely with reference to

existing standards.

SPIN tries to take a middle ground. It allows terminating providers

to choose whether their interface is proprietary, or, whether it

follows a minimum baseline protocol specified here.

9.1. Voice and Video

Because the communications are between providers that may not have

previously had an established bilateral relationship, we want the

communications to be possible without any kind of manual

configuration. For this reason, SPIN specifies that the default

voice and video communications protocol is SIP [RFC3261], along with

it's extension for cloud SIP [I-D.rosenberg-dispatch-cloudsip], and

it utilizes the media protocols standardized by webRTC. The usage of

cloud SIP allows scalable, reliable, inter-provider SIP over the

Internet, and the usage of the webRTC media stack provides a well-

defined baseline media stack that is already widely implemented. The

SIP messaging MUST utilize [RFC8224] to ensure secure user identity.

Media between the originating and terminating service will be DTLS-

SRTP by virtue of using webRTC, and e2e media encryption is

supported and bootstrapped using a certificate bound to the user's

phone numbers. The mobile OS would hold the STIR certificate, and

allow the application to request a signature over the keying

material for driving DTLS-SRTP.

Details to be filled out.

* ¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-mls-architecture]

[I-D.rosenberg-dispatch-cloudsip]

9.2. Messaging

For messaging, 1-1 messaging will be supported in the initial

specification. All messages will be e2e encrypted, using the STIR

certificate as well. A specification will be produced that defines a

REST-based protocol for basic 1-1 messaging features, including read

receipts, delivery notifications, typing indicators, images, videos,

contact cards, and so on. A baseline set of capabilities would be

provided, along with an extensibility framework for future content

that would allow users to pop out to a browser in cases where some

new content is added, that is not yet supported.

Details TBD.

10. Security Considerations

The SPIN protocol defined here is meant to address the following

threats:

A malicious application that "steals" incoming calls or chats

against user wishes. To prevent this, this protocol enlists the

mobile operating system as a trusted third party that governs

dispatch of communication requests to the right application based

on user preferences.

A malicious application that spams target users with requests for

communication. This is mitigated by enlisting the aid of the

mobile operating system on the terminating side to absorb SMS's

conforming to this specification, and not presenting them to the

user. Digital signatures are used over the content of the SMS

messages, and the terminating OS can validate that it trusts the

sender before taking further action.

Intermediates that eavesdrop on communications between app

providers. This is mitigated by using e2e encryption across

messaging, voice and video, ensuring it can be retained when

crossing provider boundaries.

11. Normative References

Beurdouche, B., Rescorla, E., Omara, E., Inguva, S.,

Kwon, A., and A. Duric, "The Messaging Layer Security

(MLS) Architecture", Work in Progress, Internet-Draft,

draft-ietf-mls-architecture-09, 19 August 2022, <https://

www.ietf.org/archive/id/draft-ietf-mls-

architecture-09.txt>.

Rosenberg, J., Jennings, C., and

T. Asveren, "SIP Extensions for High Availability and

¶

¶

¶

*

¶

*

¶

*

¶

https://www.ietf.org/archive/id/draft-ietf-mls-architecture-09.txt
https://www.ietf.org/archive/id/draft-ietf-mls-architecture-09.txt
https://www.ietf.org/archive/id/draft-ietf-mls-architecture-09.txt

[RFC2119]

[RFC3261]

[RFC8224]

[RFC8225]

[RFC9060]

Load Balancing for Public Cloud", Work in Progress,

Internet-Draft, draft-rosenberg-dispatch-cloudsip-00, 21

February 2021, <https://www.ietf.org/archive/id/draft-

rosenberg-dispatch-cloudsip-00.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

Peterson, J., Jennings, C., Rescorla, E., and C. Wendt,

"Authenticated Identity Management in the Session

Initiation Protocol (SIP)", RFC 8224, DOI 10.17487/

RFC8224, February 2018, <https://www.rfc-editor.org/info/

rfc8224>.

Wendt, C. and J. Peterson, "PASSporT: Personal Assertion

Token", RFC 8225, DOI 10.17487/RFC8225, February 2018,

<https://www.rfc-editor.org/info/rfc8225>.

Peterson, J., "Secure Telephone Identity Revisited (STIR)

Certificate Delegation", RFC 9060, DOI 10.17487/RFC9060,

September 2021, <https://www.rfc-editor.org/info/

rfc9060>.

Authors' Addresses

Jonathan Rosenberg

Five9

Email: jdrosen@jdrosen.net

Cullen Jennings

Cisco

Email: fluffy@cisco.com

Alissa Cooper

Cisco

Email: alissa@cooperw.in

Jon Peterson

https://www.ietf.org/archive/id/draft-rosenberg-dispatch-cloudsip-00.txt
https://www.ietf.org/archive/id/draft-rosenberg-dispatch-cloudsip-00.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc8224
https://www.rfc-editor.org/info/rfc8224
https://www.rfc-editor.org/info/rfc8225
https://www.rfc-editor.org/info/rfc9060
https://www.rfc-editor.org/info/rfc9060
mailto:jdrosen@jdrosen.net
mailto:fluffy@cisco.com
mailto:alissa@cooperw.in

Neustar

Email: jon.peterson@neustar.biz

mailto:jon.peterson@neustar.biz

	Simple Protocol for Inviting Numbers (SPIN)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Implications of no Standards Action
	3. Affected Actors
	4. SPIN Framework
	5. SPIN Protocol Overview
	6. SPINvitation Object Syntax
	7. SPIN Protocol for Providing URIs
	8. Mobile OS vendor API Recommendations
	9. Specifications of Communications Protocols
	9.1. Voice and Video
	9.2. Messaging

	10. Security Considerations
	11. Normative References
	Authors' Addresses

