
RTCWEB J. Rosenberg
Internet-Draft M. Kaufman
Intended status: Informational M. Hiie
Expires: August 12, 2011 F. Audet
 Skype
 February 8, 2011

An Architectural Framework for Browser based Real-Time Communications
(RTC)

draft-rosenberg-rtcweb-framework-00

Abstract

 This document defines an architectural framework for browser-based
 real-time communications (RTC). We propose a media component model,
 where the browser provides an API abstraction which models media
 components and connections. The underlying protocols within the
 browser provide for a minimum set of functionality related to
 transport of media.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 12, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Rosenberg, et al. Expires August 12, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RTCWEB-fw February 2011

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. The Media Component Model 4
3. The Role of Signaling . 5
4. The Role of Media Transport 8
5. Benefits of the Media Component Model 9
5.1. Enabling Innovation 9
5.2. The Importance of Flexibility 10

6. Interoperability with Existing VoIP Gear 11
7. Informative References . 12

 Authors' Addresses . 13

Rosenberg, et al. Expires August 12, 2011 [Page 2]

Internet-Draft RTCWEB-fw February 2011

1. Introduction

 Real-time communications (RTC) remains one of the few - if only -
 classes of desktop applications that is not yet possible using the
 native capabilities of the web browser. These applications run
 natively on the desktop, or are powered by plugins. The
 functionality provided by these desktop clients is rich and complex -
 ranging from user interface, to real-time notifications, to call
 signaling and call processing, to instant messaging and presence, and
 of course - the real-time media stack itself, including codecs,
 transport, firewall and NAT traversal, security, and so on.

 Given the breadth of functionality in today's desktop RTC clients,
 careful consideration needs to be paid to how that functionality
 manifests in the browser. What functionality lives within the
 browser itself? What functionality lives on top of it - either in
 client-side Javascript or within servers? What protocols are spoken
 by the browser itself? What protocols can be implemented within the
 Javascript? What protocols need to be standardized, and which do
 not? Pictorially, the question is what protocols, APIs, and
 functionality reside within the box marked "Browser RTC Function" in
 Figure 1. Indeed, the central question is what functionality resides
 in that box, as the functionality will ultimately dictate the
 protocols that interface to it, and the APIs which control it.

Rosenberg, et al. Expires August 12, 2011 [Page 3]

Internet-Draft RTCWEB-fw February 2011

 +------------------------+ On-the-wire
 | | Protocols
 | Servers |--------->
 | |
 | |
 +------------------------+
 ^
 |
 |
 | HTTP/
 | Websockets
 |
 |
 |
 |
 +----------------------------+
 | Javascript/HTML/CSS |
 +----------------------------+
 Other ^ ^RTC
 APIs | |APIs
 +---|-----------------|------+
 | | | |
 | +---------+|
 | | Browser || On-the-wire
 | Browser | RTC || Protocols
 | | Function|----------->
 | | ||
 | | ||
 | +---------+|
 +---------------------|------+
 |
 V
 Native OS Services

 Figure 1: Browser Model

2. The Media Component Model

 It is our position that the functionality that manifests within the
 box be a media component model. In this model, the browser

Rosenberg, et al. Expires August 12, 2011 [Page 4]

Internet-Draft RTCWEB-fw February 2011

 implements the necessary functionality to perform the real-time
 processing of media, starting from capture/render, through
 encapsulation in real-time transport protocols sent over the
 Internet. This functionality must be built into the browser, rather
 than within Javascript, due to its tight timing requirements and
 complexity. Furthermore, the functionality manifest as a set of
 loosely coupled components, each of which performs some aspect of the
 real-time processing. Each component has APIs which allow that
 component to be configured (with sensible defaults where
 appropriate), along with APIs that allow applications to gather
 information and statistics about the performance of that module.

 The modules would include the codec itself, the acoustic echo
 canceller (AEC), the jitter buffer, audio and video pre-processing
 modules, and network transport components (including encryption and
 integrity protection of media) which speak specific transport
 protocols (such as the Real-Time Transport Protocol (RTP)). The
 media component model is purposefully minimalistic. It opts for
 maximizing the functionality that lives outside of the browser itself
 - within Javascript or servers. In particular, only functionality
 which is real-time - which cannot be done using Javascript or server
 functionality - resides within the browser itself. As explained in

Section 5, this facilitates innovation, differentiation, and
 development velocity - all of the key characteristics that have made
 the web what it is.

 As an example, a codec component implementing Opus
 [I-D.ietf-codec-opus] might be represented by a Javascript object
 with properties that mirror the configuration settings of the codec
 itself - the sample rate (one of narrowband, mediumband, wideband or
 super-wideband), the packet rate (number of frames per packet), the
 bitrate (which can vary between 6 and 40kbps), a slider that adjusts
 the packet loss resilience, a Boolean which indicates whether inband
 FEC should be used, and another Boolean which indicates whether to
 apply silence suppression. Of course, all of these parameters might
 have reasonable defaults so that non-expert programmers can just make
 it work. However, an advanced programmer could force a mode or
 change a setting as needed. After all, the Opus codec itself makes
 these parameters tunable exactly because there is no one right value;
 the correct setting depends on the application scenario and needs of
 the developer.

3. The Role of Signaling

 It is our view that signaling is accomplished using a combination of
 existing client-server web protocols (HTTP, COMET, and websockets)
 and standards-based server-to-server protocols, such as SIP. A view

Rosenberg, et al. Expires August 12, 2011 [Page 5]

Internet-Draft RTCWEB-fw February 2011

 of the "browser RTC Trapezoid" is shown in Figure 2.

 +-----------+ +-----------+
 | Web/ | | Web/ |
 | SIP | SIP | SIP |
 | |-------------| |
 | Server | | Server |
 | | | |
 +-----------+ +-----------+
 / \
 / \ Proprietary over
 / \ HTTP/Websockets
 / \
 / Proprietary over \
 / HTTP/Websockets \
 / \
 +-----------+ +-----------+
 |JS/HTML/CSS| |JS/HTML/CSS|
 +-----------+ +-----------+
 +-----------+ +-----------+
 | | | |
 | | | |
 | Browser | ------------------------- | Browser |
 | | Media | |
 | | | |
 +-----------+ +-----------+

 Figure 2: Browser RTC Trapezoid

 In this example, a call is placed between two different providers.
 They use a SIP-based interface to federate between them. However,
 each of their respective browser-based clients signals to its server
 using proprietary application protocols built ontop of HTTP and
 Websockets. For example, provider A might offer simple calling
 services, and have a very simple web services interface for placing
 calls:

http://calling.providerA.com/call?target=joe@providerB.com&myIP=1.2.3.4:4476

 Which takes only the called party and local IP/port as arguments.
 Provider A's server infrastructure - some combination of web and SIP
 servers built in any way it likes - uses the identity of the target,
 along with previously-known information on the capabilities of the
 caller's browser learned through a web-services registration, to

http://calling.providerA.com/call?target=joe@providerB

Rosenberg, et al. Expires August 12, 2011 [Page 6]

Internet-Draft RTCWEB-fw February 2011

 generate a SIP INVITE. This arrives at provider B's server
 infrastructure, which alerts its browser-based client of the incoming
 call. Provider B might be an enterprise service provider, and offer
 much richer features and signaling. Provider B uses a websocket
 interface to the browser, providing it the identity of the caller,
 the list of available codecs, and so on. B's service provider offers
 web-services based APIs for answering the call, declining it, sending
 to voicemail, redirecting to another number, parking it, and so on.

 APIs within the browser allow each side to instruct the browsers to
 send media, including selection of media types and codecs. In this
 model, there is no SIP in the browser. It is our view that SIP has
 no place within the browser.

 SIP is an application protocol - providing call setup, registration,
 codec negotiation, chat and presence, amongst other features. For
 each and every new feature that is desired to run between a SIP
 client and a SIP server, a new standard must be defined and then
 implemented. The feature set is indeed vast, considering the wealth
 of potential endpoints, ranging from simple consumer "voice only"
 clients, to richer videophones, to voice and video multiparty
 conferencing (including content sharing), to low-end enterprise
 phones, to high end executive admin phones, to contact centers
 endpoints, and beyond. Each of those requires more and more SIP
 extensions in order to function. This has resulted in a growing
 number of specifications, with diminishing returns of
 interoperability and feature velocity. As an example, the BLISS
 working group in IETF was formed to tackle some basic business phone
 features - including line sharing, park, call queuing, and automated
 call handling. Each of these individual features requires one or
 more specifications, and needs to be designed to meet the needs of
 all of the participants in the process.

 There are two important consequences of this. First, the requirement
 of standardization acts as a huge deterrent to innovation. Indeed,
 in many ways, it is anathema to the very notion of how the web is
 supposed to work. In the web model, the provider can define
 arbitrary content to render to users, craft arbitrary UI, and define
 arbitrary messaging from the browser back to the server, all without
 standardization or change to the web browser. Google does not need
 to wait for the browsers to implement IMAP in order to provide mail
 service. Facebook does not need the browser to have XMPP or SIP to
 enable presence and instant messaging. Why is call processing any
 different? Why should Skype or any other real-time communications
 provider be constrained by standardized application protocols? Each
 provider should be able to design and innovate what it needs, and not
 be constrained by the functionalities of the application protocols
 burned into the browser.

Rosenberg, et al. Expires August 12, 2011 [Page 7]

Internet-Draft RTCWEB-fw February 2011

 While it is true that standardization will be required in order to
 extend these features between domains, that standardization process
 can be the successor - not the predecessor - to successsful
 deployment and usage of the feature within a domain. Furthermore,
 many features and services do not need to be extended between
 domains. Many of the BLISS features are good examples of this.

 Inclusion of SIP in the browser for client to server signaling will
 also harm interoperability. Unfortunately, SIP interoperability
 betweend endpoints and servers has been relatively poor; working only
 for basic call setup, teardown, and basic features. Important
 concepts like configuration remain poorly standardized and almost
 never interoperate. The web has certainly had interoperability
 problems, but the nature of those problems is different. In the web,
 content providers often need to code differently for different
 browsers, but at least they can deliver their application
 functionality. On the other hand, with SIP phones, many cases
 features simply do not and cannot work, and this cannot be resolved
 through software development on behalf of the SIP provider.
 Interoperability is improved when there are fewer standards and not
 more. Instead of adding SIP and its extensions to the browser,
 application providers can use the tools that are already there - HTTP
 and websockets, and then define whatever signaling functions they
 desire ontop, without interoperability consequences.

 Make no mistake - SIP remains important as a glue between service
 providers, and between server infrastructure within service provider
 networks. However, in a web context, there is simply no need for SIP
 support in the browser.

4. The Role of Media Transport

 Unlike signaling, media transport does need to be in the browser, for
 two important reasons:

 1. It operates in real-time and does not fit well with the
 programming model of Javascript

 2. It needs to flow between endpoints directly - over UDP - in order
 to achieve low latency, and therefore requires standardization in
 order to interoperate with other providers or endpoints

 The second point is important. Unlike most other web protocols,
 real-time media needs to be sent from the browser client to
 recipients other than the origin server or domain from which the web
 content came from. This is essential for ensuring low latency
 operations - one of the key metrics of quality in Voice over IP

Rosenberg, et al. Expires August 12, 2011 [Page 8]

Internet-Draft RTCWEB-fw February 2011

 systems. In some cases, the recipient will be another browser
 endpoint from the same provider. However, it could be a desktop
 client or mobile client from the same provider, or as shown in
 Figure 2, it could be a browser endpoint or desktop endpoint from
 another service provider. In all cases, a direct connection - indeed
 a direct UDP connection - is important whenever possible.

 From a security perspective however, the browser cannot just have an
 API that tells it to send arbitrary UDP datagrams or even
 standardized-format voice (or worse - video) media packets to an
 arbitary IP address. The former introduces the opportunity for
 malicious JavaScript to craft packets that mimick other application
 protocols and send them to arbitrary endpoints (for example, an
 enterprise SNMP server). The latter would introduce a substantial
 opportunity for denial-of-service attacks. Malicious Javascript
 could tell the browser to "spam" an unwitting recipient with high
 bandwidth video. In the voice literature, this is referred to as the
 voice hammer attack [RFC5245]. In existing voice systems, this
 attack is possible but not likely due to the closed nature of most of
 the software and systems. In a web environment, where all it takes
 is one line of malicious Javascript, the attack becomes almost a
 certainty.

 To avoid this attack, a simple handshake can be utilized. The
 browser should support a simple STUN-based [RFC5389] connection
 handshake. The exchange of the STUN transaction ID prior to
 transmission of media prevents the attack.

5. Benefits of the Media Component Model

 There are several important benefits of the media component model
 proposed here.

5.1. Enabling Innovation

 One of the reasons why the Web has been successful as a user
 interface platform is the short turn-around time to deploy new
 versions of web-based services. Often, these new versions are
 experiments that vary small details which are important to make the
 service successful. It is the fine granularity of user interface
 elements in HTML and related technologies that allow this
 experimentation with details. As there is no agreed-upon
 configuration of real-time audio/video communication technologies
 that always delivers the best result, we think that it is essential
 to give the application developers the same benefit of short turn-
 around time and ability to experiment with details. Therefore, the
 real-time communication primitives offered by user agents to web

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5389

Rosenberg, et al. Expires August 12, 2011 [Page 9]

Internet-Draft RTCWEB-fw February 2011

 applications/services should be fine-grained enough to allow for
 enhanced configurations and possibly new scenarios. Also, these
 interfaces to the primitives should allow gathering real-world data
 in enough detail on how the primitives are operating, to enable the
 feedback loop of deploy-measure-reconfigure-redeploy.

 One of the areas where perhaps the most innovation can be expected is
 signaling - one only needs to look at the plethora of standards
 around SIP. Proposing user-agent vendors to implement all these
 standards is a sure way to make the common denominator across user
 agents marginal. Instead, the browser already has a programmability
 model (JavaScript) that can handle all these use cases, and more,
 provided the programming environment has access to the underlying
 media components as we propose here. Drawing again parallels from
 user interface development, there is an undecided problem of what
 should be executed by the user agent, and what by the web servers
 (e.g. validation). Similar gray boundary between the client and the
 server exists in the field of real-time communications. Therefore we
 propose to leave standardization of signaling out of scope for this
 activity, and let the web service providers define signaling as they
 see fit.

5.2. The Importance of Flexibility

 There are obviously tradeoffs between built-in functionality and
 programmability. It is often tempting to provide the web page author
 with a simple and relatively inflexible way of expressing their
 intent so as to minimize the page author's effort and accelerate
 adoption. As an example, the "<blink>" tag was adopted much more
 rapidly than it would have been if blinking text could have only been
 implemented by writing a JavaScript timer task to manipulate the DOM
 style objects.

 On the other hand, such built-in functionality comes at two important
 costs. First, each browser implementation must implement the
 functionality, and the more which is moved from JavaScript to
 built-in functionality the more code must be present for that
 implemention. Second, and more important, the page author is now
 restricted to the subset of functionality which is provided by these
 browser implementations.

 The "<video>" tag as it currently stands is an excellent example.
 While it does make it possible for a page author to embed video
 playback within a page without relying on external plug-ins (and
 without knowing much more than the URL of the video they wish to
 play), it also leaves the implementation of advanced functionality -
 such as adaptive multi-bitrate streaming - in the hands of the
 browser developer, not the page author. Unless all vendors agree on

Rosenberg, et al. Expires August 12, 2011 [Page 10]

Internet-Draft RTCWEB-fw February 2011

 a standard for transmission of such videos (including things like the
 file format for manifest information), this advanced functionality
 will be not available across the browser landscape. Most
 importantly, the logic - the actual decisions about when to switch
 rates and why - becomes buried deep inside the browser, hard or
 potentially impossible to adjust for various circumstances.

 An alternative approach for adaptive multi-bitrate video streaming
 was recently adopted by the Flash Player. The video object simply
 has an API for receiving bits to be played back. The script engine
 (and thus the script author, usually through the use of a pre-
 existing library) becomes responsible for determining which bits to
 download and which bits to pass to the video object. This enables
 adaptive multi-bitrate HTTP streaming video, but it also enables any
 number of other uses, many of which were not even contemplated by the
 providers of that API. It also means that upgrades to this logic
 come in the form of new script libraries, and not in the form of an
 upgrade to the Flash Player itself.

 We advocate a similar approach here whenever it is possible. With
 the exception of the passing of real-time data to and from the media
 components (which we believe must communicate directly in order to
 meet real-time latency constraints) we advocate placing all of the
 logic outside of the browser itself and instead into the hands of the
 page author through JavaScript APIs. These APIs may be more complex
 to use for some cases, but they minimize the implementation effort on
 the part of the browser vendor and can provide functionality that has
 not yet been contemplated.

 An example of this might be the peer-to-peer NAT traversal problem.
 Rather than having an API for "browser, please use ICE [RFC5245] to
 open a connection to another peer" we would instead have APIs like
 "browser, please send an ICE-compatible STUN [RFC5389] probe to the
 following candidate address". This allows the actual logic, the
 sequencing, the choice of what to implement at the client and what to
 offload to the server, to be in the hands of the JavaScript
 developer. We expect that libraries to implement common
 functionality (such as ICE, which could be built ontop of this) will
 become readily and freely available, and so in short order the extra
 work required for a page author to work with these lower level APIs
 becomes insignificant.

6. Interoperability with Existing VoIP Gear

 In order for Browser-based Real-Time Communication to be successful,
 it is essential to ensure a good level of interoperability with
 existing VoIP gear. This means that a strong baseline for

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5389

Rosenberg, et al. Expires August 12, 2011 [Page 11]

Internet-Draft RTCWEB-fw February 2011

 interoperability of end-to-end media needs to be defined.

 The amount of VoIP gear currently deployed is very substantial for
 both VoIP Service Providers and Enterprise IP Telephony. In both
 cases, media is transported on RTP/RTCP [RFC3550] using codecs such
 as G.711 and G.729. Signaling for call control uses SIP [RFC3261],
 H.323, H.248/Megaco, and a wide range of proprietary protocols.
 Inter-domain, the signaling protocol is mostly SIP.

 Interoperability at the signaling level can be handled by gateways,
 and is outside the scope of this paper. Media interoperability
 however needs to be addressed. It is not acceptable to rely on
 servers to convert media from one transport (and codec) to another
 because it introduces significant challenges. First, it requires a
 large number of servers to do the actual transcoding, which increases
 cost. Second, it affects the routing of media by adding an
 additional leg to the transport, which increases end-to-end delay,
 and therefore decreases voice quality. If there is codec
 translation, it decreases voice quality even further. And finally,
 it can potentially complicate end-to-end security.

 Interoperability means working with reality, and not just standards.
 As such, it is important that browsers support basic RTP transport
 for voice and support the G.711 codec. Furthermore, they should
 interoperate with network-based session border controllers, which are
 the most commonly deployed technique for NAT traversal in existing
 networks. They should also support security, based on SRTP
 [RFC3711].

7. Informative References

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [I-D.ietf-codec-opus]
 Valin, J. and K. Vos, "Definition of the Opus Audio
 Codec", draft-ietf-codec-opus-02 (work in progress),
 February 2011.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/draft-ietf-codec-opus-02
https://datatracker.ietf.org/doc/html/rfc5245

Rosenberg, et al. Expires August 12, 2011 [Page 12]

Internet-Draft RTCWEB-fw February 2011

 Applications", STD 64, RFC 3550, July 2003.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, March 2004.

Authors' Addresses

 Jonathan Rosenberg
 Skype
 Monmouth, NJ
 US

 Email: jdrosen@skype.net
 URI: http://www.jdrosen.net

 Matthew Kaufman
 Skype
 Palo Alto, CA
 US

 Email: matthew.kaufman@skype.net

 Magnus Hiie
 Skype
 Palo Alto, CA
 US

 Email: magnus.hiie@skype.net

 Francois Audet
 Skype
 Palo Alto, CA
 US

 Email: francois.audet@skype.net

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3711
http://www.jdrosen.net

Rosenberg, et al. Expires August 12, 2011 [Page 13]

