
SIMPLE J. Rosenberg
Internet-Draft Cisco Systems
Expires: December 28, 2006 June 26, 2006

A Processing Model for Presence
draft-rosenberg-simple-presence-processing-model-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 28, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document defines the underlying data processing operations used
 by Session Initiation Protocol (SIP) for Instant Messaging Leveraging
 Presence Extensions (SIMPLE) presence agents and presence user
 agents. The data processing operations described here include
 composition, privacy filtering, and watcher filtering.

Rosenberg Expires December 28, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Presence Processing Model June 2006

Table of Contents

1. Introduction . 3
2. Definitions . 3
3. Publication . 4
3.1. Reporting . 4
3.2. Overriding . 5

4. Presence Server Processing 7
4.1. SIP Subscription Processing 7
4.2. Presence Document Processing 7
4.2.1. Collection . 10
4.2.2. Composition . 11
4.2.3. Privacy Filtering 17
4.2.4. Watcher Filtering 17
4.2.5. Post-Processing Composition 18

5. Security Considerations 18
6. Acknowledgements . 18
7. Informative References . 18

 Author's Address . 20
 Intellectual Property and Copyright Statements 21

Rosenberg Expires December 28, 2006 [Page 2]

Internet-Draft Presence Processing Model June 2006

1. Introduction

 Presence conveys the ability and willingness of a user to communicate
 across a set of devices. RFC 2778 [1] defines a model and
 terminology for describing systems that provide presence information.

RFC 3863 [3] defines an XML document format for representing presence
 information. [6] defines a data model for modeling communications
 systems using that document format.

 This specification is a companion to the data modeling specifications
 described above. Rather than describing the meaning of the
 underlying presence data, it describes the processing operations used
 by presence agents in processing that data. Other specifications,
 such as the presence event package [4] and the PUBLISH method [8]
 document the protocol interfaces for moving presence documents
 between these entities. However, none of these specifications define
 the behaviors these elements can exhibit in terms of processing those
 documents. This specification defines those procedures, including
 composition, privacy filtering, and watcher filtering, in more
 detail. By providing a model for those operations, consistent
 interpretation of authorization policies and composition policies
 across implementations can be achieved. This allows for consistent
 user experiences.

2. Definitions
 Subscription Authorization Decision: The process by which a server
 determines whether a subscription should be placed into the
 accepted, rejected or pending states.
 Presence Document Generation Process: The flow of operations followed
 by a presence server that takes a set of presence sources, and
 based on various policy documents, produces the presence document
 sent to a particular watcher.
 Composition: The act of combining a set of presence and event data
 about a presentity into a coherent picture of the state of that
 presentity.
 Raw Presence Document: The result of an initial composition
 operation, before privacy and watcher filtering operations have
 been applied.
 Collection: The process of obtaining the set of event state that is
 necessary for performing the composition operation.
 Merging: Merging is an operation that allows a presence server to
 combine together a set of different services or devices into a
 single composite service or device.

https://datatracker.ietf.org/doc/html/rfc2778
https://datatracker.ietf.org/doc/html/rfc3863

Rosenberg Expires December 28, 2006 [Page 3]

Internet-Draft Presence Processing Model June 2006

 Privacy Filtering: The act of applying permissions to a presence
 document for the purposes of removing information that a watcher
 is not authorized to see.
 Watcher filtering The act of removing information from a presence
 document at the request of a watcher, to reduce the information
 flowing to that watcher.
 Pivot: A presence attribute used to select a set of services or
 devices that are to be combined as part of a composition
 operation.
 View: A view represents a stream of presence documents generated by a
 presentity after composition and authorization policies have been
 applied. Depending on how these policies are structured, each
 watcher to a presentity may get a different view, or they may all
 get the same view.
 Publication: The act of pushing a piece of event state, including
 presence, to a state agent, such as a presence server.
 Back end subscription: A subscription made from a state agent, such
 as a presence server, to a source of presence, for the purpose of
 collecting event state in order to perform composition.
 Device View: A presence document obtained by composing together
 services with the same value of the device ID attribute.
 Presentity View: A presence document obtained by composing together
 all services into a single tuple.
 Service View: A presence document whereby the compositor has not
 combined together services, or it has combined them, but not used
 the device ID as a pivot.
 Splitting: Splitting is the process of taking a single service or
 device data element, and splitting into two services or devices.
 Reporting: When a service or device publishes presence data about
 itself, it is called reporting. Reporting is in contrast to
 overriding, where a software agent publishes about a different
 service or device.
 Overriding: When a service or device publishes presence information
 about a different service or device, in an attempt to correct or
 modify that data.

3. Publication

 Publication is defined as the process by which an event publication
 agent (EPA) pushes event state into the network [8]. In this
 section, we consider how an EPA for the presence event package would
 generate the presence document it will publish.

3.1. Reporting

 Reporting is the process whereby a service publishes about itself, an
 agent on a device publishes about the device, or an agent

Rosenberg Expires December 28, 2006 [Page 4]

Internet-Draft Presence Processing Model June 2006

 representing the human user publishes person information elements.
 Reporting is in contrast to overriding, where a software agent
 attempts to publish information about a different service or device.

 An EPA for presence (also known as a Presence User Agent (PUA))
 computes the presence document as if it had full knowledge of the
 state of the presentity. That is, it represents the complete view of
 user presence as understood by that PUA. Frequently, the PUA is a
 software agent that acts as a service, and will therefore be
 authoritative for the service information it reports. It is
 anticipated that services will also frequently report information on
 device and person status as well, as this information is sometimes
 collected by applications representing services. It is possible that
 devices can themselves publish information about a presentity, and
 that software agents representing the person, and not their services,
 can also publish presence documents. For the remainder of this
 discussion, we assume that the entity doing the publishing is a
 service.

 When a document is created by such a PUA, the presentity URI (encoded
 in the "entity" attribute) will typically be a SIP URI, and equal to
 the AOR of the presentity. This will also usually be the same as the
 request URI in the PUBLISH request itself, but it need not be so.
 The URI serve different purposes. As described in [8], the request
 URI serves as a means to route the request to the appropriate event
 state compositor, and identity the target of the publication. As
 such, it is primary a means for targeting the document. The entity
 about whom presence is reported is always taken from the "entity" of
 the presence document.

 A PUA will also publish the services it knows about, and the device
 it's associated with. The service URI needs to be a unique
 identifier that defines the service as far as the PUA is concerned.
 That URI should be a GRUU, as discussed above. The device ID for the
 device is obtained from the local operating system.

3.2. Overriding

 Overriding is the process whereby a PUA attempts to publish
 information in an explicit attempt to have that information take the
 place of information published by a different PUA for the same
 presentity.

 The motivating use case for this feature is as follows. A user has
 an office PC and a home PC, both of which run an Instant Messaging
 (IM) application. While at work, they set the status of their IM
 application to "in a meeting". This information is reported in
 publications produced by the PUA on their office PC. When the user

Rosenberg Expires December 28, 2006 [Page 5]

Internet-Draft Presence Processing Model June 2006

 arrives at home, they realize that their office PC is still reporting
 out-of-date information, and they would like to correct it. As such,
 the user would like their home PC to publish data that overrides the
 information being published by their office PC.

 In this specific example, the office PC will be publishing a document
 with a person information element indicating that the user is in a
 meeting and a service information element indicating availability for
 IM communications. The service URI is equal to the GRUU for that
 client. The home PC will be publishing a document with a person
 information element indicating that the user is at home and a service
 information element indicating availability for IM service. That IM
 service uses a different service URI than the one at work, since the
 two are running on separate UA instances. This presents the presence
 server with conflicting person information elements for the same
 presentity.

 Overriding is ultimately an attempt by a publisher to force the
 composition processing in a presence server to resolve a conflict in
 a particular way. Ideally, this is done by having a software agent
 directly set the composition policy that will be used, and then
 publishing information which will be known to "win" the conflict
 resolution. In the absence of directly controllable conflict
 resolution policies, Section 4.2.2.2 provides guidelines on resolving
 conflicts for service, device and person information. Publishers can
 attempt to make use of these guidelines to cause an override to
 occur.

 In most cases, the information that needs to be overriden will be
 person information. In the example above, the stale information is
 the status "in a meeting", which is a property of the person
 information element. Service information is most usually "self
 reported" - that is, reported by an agent providing that service.
 That agent will likely be authoritative for the service, and it is
 unlikely that some other service needs to provide more up to date
 information. The situation is more complicated for devices. At the
 time of writing, most devices did not contain separate agents that
 published information about themselves; the publication happens from
 the software agent providing the service. This does present the
 possibility that conflicting or incorrect information could be
 reported about a device, neccesitating an override. Since a human
 being is authoritative about the person information elements, it is
 likely that any software agent that reports it will have incorrect
 information. It is for this reason that person information elements
 are expected to be the most common target for overrides.

 Fortunately, overriding person information is easy. The guidelines
 in Section 4.2.2.2 recommend that, absent policy or meta-data guiding

Rosenberg Expires December 28, 2006 [Page 6]

Internet-Draft Presence Processing Model June 2006

 otherwise, the most recently reported status wins. An agent wishing
 to override the person status can therefore just publish a person
 information element for the presentity. It only needs the presentity
 URI to do so.

 Overriding service and device information elements is more
 complicated, since it requires the service URI or device ID published
 by that service or device. The composition operation will often
 modify the service URI and device ID before the presence document is
 distributed to watchers. The result is that a normal watcher of
 presence information will not have enough information at its disposal
 to perform an override. At the time of writing, it was anticipated
 that new event packages could be defined to facilitate this
 discovery, should the need really arise in practice.

4. Presence Server Processing

 In this section, we outline the processing done by a presence server.
 This processing is broken into two components - the SIP subscription
 processing and the presence document processing.

4.1. SIP Subscription Processing

 For the most part, processing of SIP subscriptions is described in
RFC 3856 [4]. That specification does leave some hooks for policy-

 based decisions in subscription handling, as discussed in Section
6.6.2 of RFC 3856. In particular, when the presence server receives

 a SUBSCRIBE request, it needs to make an immediate decision to put
 that subscription into one of three states - rejected, successful,
 and pending. That decision, called the subscription authorization
 decision, is governed by a Presence Authorization document. This
 document, discussed below in more detail, also contains information
 that guides privacy filtering when the subscription is accepted.

 Users can change their presence authorization documents at any time.
 As a result, a user could change those policies to alter the state of
 the subscription. Changes in the document need to take effect
 immediately.

4.2. Presence Document Processing

 Once a subscription has been accepted, presence documents are
 delivered to the watcher through notifications. This requires the
 presence server to generate a presence document for the watcher. The
 process for doing that is called the presence document generation
 process. This process is invoked by the presence server under
 several conditions:

https://datatracker.ietf.org/doc/html/rfc3856
https://datatracker.ietf.org/doc/html/rfc3856#section-6.6.2
https://datatracker.ietf.org/doc/html/rfc3856#section-6.6.2

Rosenberg Expires December 28, 2006 [Page 7]

Internet-Draft Presence Processing Model June 2006

 Subscription Transition to Accepted: When the subscription itself
 transitions to the accepted state, the presence server needs to
 generate the current state of the presentity and place this in a
 NOTIFY to the watcher. To do this, the presence document
 generation process is invoked.
 SUBSCRIBE refreshes: Once in the accepted state, SUBSCRIBE refreshes
 on the SIP dialog request that the server generate a notification
 containing the current state of the presentity. To do this, the
 presence document generation process is invoked.
 Source changes: When one of the sources of presence information for a
 user changes, the result may change the state of the presentity.
 To determine the new state, the server invokes the presence
 document generation process.
 Policy changes: When one of the policy documents governing the
 presence document generation process changes, the result may
 change the state of the presentity. To determine the new state,
 the server invokes the presence document generation process.

 The basic steps in the presence document generation process are shown
 in Figure 1. This is a logical flow, and does not require a server
 to implement exactly these steps every time the process is invoked.

Rosenberg Expires December 28, 2006 [Page 8]

Internet-Draft Presence Processing Model June 2006

 +---------+
 |Presence |
 | Source |\
 +---------+ \ +-----------+
 \ | |
 \ /------\ | Raw | //------\\
 +---------+ \// Create \\ | Presence | || Privacy ||-----+
 |Presence |----| View |-->| Document |->|| Filtering|| |
 | Source | \\ // | | \\------// |
 +---------+ / \------/ | | |
 / ^ +-----------+ ^governs |
 / |governs | |
 +---------+ / +------------+ +------------+ |
 |Presence |/ | Composition| | Presence | |
 | Source | | Policy | selects | Auth | |
 +---------+ | |<----------------| | |
 governs | | | | |
 +--------| | | | |
 | +------------+ +------------+ |
 | |
 V V
 ------ +-----------+ +-----------+
 //// \\\\ | | ------ | |
 | Post | | Filtered | /// \\\ | Candidate | | |
 | Processing |<---| Presence |<--| Watcher | | Presence |
 | Composition | | Document | | Filter | <---| Document |
 \\\\ //// | | \\\ /// | |
 ------ | | ------ | |
 | +-----------+ +-----------+
 |
 |
 |
 |
 V

 +-----------+
 | |
 | Final |
 | Presence |
 | Document |
 | |
 | |
 +-----------+

 Figure 1

Rosenberg Expires December 28, 2006 [Page 9]

Internet-Draft Presence Processing Model June 2006

4.2.1. Collection

 The first step is the process of collection. Collection is defined
 as the process of obtaining the set of event state that is necessary
 for performing the composition operation that creates the initial
 view. A view is defined as the particular stream of presence
 documents seen by a watcher after the application of policy. In this
 case, the initial view is the view of the presentity before the
 application of privacy and watcher filtering.

 The event state that is collected includes all of the presence
 documents that have been published for the presentity. This, by
 definition, is the set of documents whose "entity" attribute in the
 <presence> element in the presence document is the same as that of
 the presentity. However, it may also include other presence
 documents for other presentities, in cases where the presence server
 knows that the state of one presentity is a function of the state of
 another. An example is the helpdesk presentity, whose state is a
 function of the state of the users in the help desk.

 In addition to presence events, other event state can be used as
 well. As an example, registration state [2] has a bearing on
 presence, as does dialog state [12], and the state of non-SIP
 systems, such as traditional telephony equipment, layer 2 devices,
 and so on. This state can be obtained by a presence server in
 several ways. Firstly, publishers for that state can send PUBLISH
 requests for it to the presence server. In another approach, the
 presence server acts as a watcher, and subscribes to the event state
 for the resources it needs. This is referred to as a back-end
 subscription.

 Each of these non-presence events can then be converted into a piece
 of presence state (presentity, device or service information) based
 on local policy. For example, if the presence server has somehow
 obtained information that says that the user's cell-phone is on, this
 can be converted into device state (using the device ID of the phone)
 along with service state, if the presence server knows about the
 services on the device.

 Registration state is of particular importance. It can be obtained
 by a presence server by having the presence server co-located with
 the registrar, or by having the presence server subscribe to the
 registration event package for the user [2]. Each registered contact
 is considered a service. The service URI (expressed in the <contact>
 element in each tuple of the presence document) is obtained from the
 GRUU for each contact, if it exists, else it is set to the Contact
 URI from the registration. Service parameters can be extracted from
 any callee capabilities provided in the registration [9]. The

Rosenberg Expires December 28, 2006 [Page 10]

Internet-Draft Presence Processing Model June 2006

 presentity URI is set to the address-of-record. This mapping has the
 advantage that it is readily correlated to any service information
 that might also be PUBLISHed explicitly by that UA. As such, a UA
 that registers should also PUBLISH its state, in the event the
 presence server cannot access registration information.

 Once the non-presence event state is converted into pieces of
 presence state, the compositor will have, at its disposal, a set of
 presence data, each of which is for the same presentity.

4.2.2. Composition

 The next step in the process is the composition operation, which
 produces the raw presence document, also known as the initial view,
 from the document sources. This document is "raw" because it
 contains more information than any watcher might actually see.
 Privacy and watcher filtering may eliminate some of the data from the
 document.

 Composition is governed by the rules defined in the composition
 policy. The composition policy is a document selected by the
 presence authorization document. Since different composition
 policies may have differing implications on privacy, the
 authorization rules themselves need to select the composition policy.
 As an example, "polite blocking", defined in RFC 2779 [5], is
 actually the selection of a specific composition policy - one which
 generates a view that falsely represents the watcher as unavailable.
 The decision as to whether to invoke this composition policy or not
 is dictated by the authorization document.

 The authorization rules applicable to the presence document
 generation process can themselves depend on the current state of the
 presentity, which is derived from the initial view in the raw
 presence document. This results in a seemingly circular decision -
 the composition policy to generate the raw presence document is based
 on authorization policies that are selected by the value of the raw
 presence document. However, as discussed below, this problem is
 avoided by using a specific composition policy (the default policy)
 to compute the view used to assist in the selection of the
 authorization policy. That authorization policy can select a
 different composition policy to generate the document actually sent
 to a watcher.

 Composition policies can be complex and rich. However, there are
 some general tools and techniques that merit discussion.

https://datatracker.ietf.org/doc/html/rfc2779

Rosenberg Expires December 28, 2006 [Page 11]

Internet-Draft Presence Processing Model June 2006

4.2.2.1. Correlation

 A key part of composition is using information in one presence
 document, describing a person, service or device, to affect
 information in another. As an example, if the presence server has a
 document indicating that the user has a telephony service that is
 busy, the server can use this to extract information about the person
 - that they are on the phone. Similarly, if one document indicates
 that a device with ID 1 is off, and another document that indicates a
 telephony service is running on the device with ID 1, the server can
 determine that the telephony service is closed.

 The way in which the various input data impact each other are a
 matter of local policy. However, a key to performing such
 combination operations is the usage of a correlation identifier that
 can match a service, device, and person together across input
 sources. The presence document provides the service URI, presentity
 URI and device ID as correlation identifiers. All three of these
 identifiers have uniqueness and temporal persistence properties that
 make them useful for purposes of correlation. Indeed, its not just
 that the identifiers have temporal persistence; its that they have a
 common value that is used persistently across different sources. In
 the example above, the device ID of 1 is useful for correlating the
 device state to the service state, if, and only if, the source
 indicating the device state uses the same device ID as the source
 indicating the service state. This makes selection of the device ID
 a critically important operation.

4.2.2.2. Conflict Resolution

 In some cases, there may be multiple sources that provide conflicting
 information about a service, person, or device. In this case,
 "conflicting" means that there are multiple person data elements that
 say different things, multiple service data elements for the same
 service (where the same service is defined as two services with the
 same service URI), or multiple device data elements with the same
 device ID.

 Conflicting person information is very likely. The typical situation
 is described in Section 3.2, where a user wishes to change a stale
 status set by another software agent no longer under their direct
 control.

 Ultimately, how to resolve conflicts is under the control of the
 composition policy governing the operation of the server. Here, we
 discuss approaches that would be typical and appropriate to use.

 One way in which conflicts can be resolved is by measuring the

Rosenberg Expires December 28, 2006 [Page 12]

Internet-Draft Presence Processing Model June 2006

 likelihood that the information from each source is accurate. In
 this simple case, the person data element is reported from two IM
 clients. However, one IM client may report an idle indicator for the
 device, whilst the other (the home IM client) reports that it is not
 idle. The presence server can use this information to believe the
 device which is not idle.

 More generally, when a source publishes information, it publishes its
 "world view", including information it thinks it knows about the
 person, about the service it is providing, and the device it runs on.
 The fact that all of these are reported together in a presence
 document is key. It provides additional context that can be used to
 determine the level of accuracy of a source for particular
 information. For example, if a cell phone reports that the user is
 in a meeting, the cell phone's document will include, in addition to
 the person status, cell phone device and cell phone service
 information. Simimlarly, if a calendaring application acts as a
 source, and indicates that the user is in a meeting, it would include
 only information about the meeting. The presence server might decide
 to trust the information that reports *just* the meeting, more than a
 cell phone that reports a meeting.

 The presence server may also know the source of the presence data,
 based on authenticated identities. For example, in the case above,
 the calendaring application may have a separate identity it uses to
 authenticate itself to the presence server. The presence server can
 be configured to know that the owner of that particular authenticated
 identity is a calendar application, and therefore, it can trust its
 information on meeting status information more than another source.
 [[OPEN ISSUE: do we want a <source> attribute that can be used to
 explicitly define information about the publisher of the
 information?? How would this be authorized??]].

 Without such additional meta-data, the conflict can be resolved by a
 simple freshness metric. The presence source which has most recently
 begun reporting information for a specific service, device or person
 data element, wins. It is imporant not to confuse the time at which
 a status is initially reported, from when it is refreshed. The
 former occurs when the status of the person, device or service
 changes, and the latter occurs for subsequent publications which do
 not change the value.

 Conflicts of services or devices are less likely to occur in the
 model presented here, due to the unique nature of the service URI and
 device ID. However, it is possible. Indeed, a client might
 explicitly choose to publish with the same service URI as another
 client, if its goal is to explicitly override the service of the
 other. Using the same service ID is the "hint" to the presence

Rosenberg Expires December 28, 2006 [Page 13]

Internet-Draft Presence Processing Model June 2006

 server that conflicting data exists, and one needs to be chosen.

4.2.2.3. Merging

 Merging is an operation that allows a presence server to combine
 together a set of different services or devices into a single
 composite service or device. Two services are different if they have
 different service URIs, and two devices are different if they have
 different device IDs. This operation is a common one in composition
 operations.

 The merging process involves three steps. The first is to select the
 set of services or devices to merge. The second is to combine the
 characteristics and status of each. The third is to generate a
 composite service URI or device ID.

 One way to identify the set of services that will be combined is by
 defining a "pivot". A pivot is a particular attribute (either
 characteristic or status) of a service that is used as the selector.
 All of the services in the raw presence document for whom the pivot
 attribute has the same value, are all combined together, and the
 resulting service will clearly have that value for that particular
 pivot attribute. If the raw presence document has three distinct
 values for the pivot attribute, the presence document, after
 combination, will have three services.

 For example, if the video prescaps [10] attribute is used as the
 pivot, then all services that support video will be combined, and all
 of those that don't will be combined. The resulting presence
 document after merging will have two services - one with a
 characteristic of video, and one with a characteristic of no-video.

 An important pivot is the SIP address-of-record. When a PUA
 publishes a presence document, it includes its GRUU as the service
 URI in the <contact> element in the tuple. If the presence server
 has access to registrar data, it can determine the AOR associated
 with that GRUU (if there is one). By using the implicitly provided
 AOR as a pivot, the presence server can combine together all of the
 services which are reachable through the same AOR.

 Once the set of services or devices is selected, the next step is to
 combine their characteristics and status information. How the
 characteristics and status are combined will vary for each attribute.
 For many attributes, if the value is the same across all services,
 the combination operation is easy - use that value. If the attribute
 differs across services, it is a matter of local policy as to how
 they are combined.

Rosenberg Expires December 28, 2006 [Page 14]

Internet-Draft Presence Processing Model June 2006

 As an example, consider the <basic> status as defined in [3]. The
 most sensible combination operation is the boolean OR operation.
 That is, a composite service is said to be available as long as one
 of its component services is available.

 The final step, combining service URIs, is more complicated. If the
 service URIs are GRUUs within the same AOR, they can easily be
 combined by using the AOR as the result of the combination function.
 Indeed, even if the presence server is not combining multiple
 services together, it might make sense to change the GRUU to the AOR
 in the presence document delivered to a watcher. If the service URIs
 are SIP URIs but are not GRUUs, the presence server may need to
 create a URI which represents the collection of services. Requests
 made to that URI could fork to the set of services that were combined
 together. If the service URIs are not even the same URI scheme, for
 example, a mailto and a tel URI, there is little that can be done.
 In such a case, the <contact> URI should be removed from the
 document. There are some cases where URIs with distinct URI schemes
 can be combined. For example, if one service has a tel URI, and the
 other has a SIP URI, a combined service can be represented by a SIP
 URI generated by the presence server. If the watcher generates a
 request towards this SIP URI, the proxy server could fork the request
 to the original tel URI and the original SIP URI. This works in this
 specific case (sip and tel URI combination) because SIP requests can
 sensibly be directed to a tel URI. These cases aside, it is
 generally not a good idea to combine services together that have
 radically different URIs.

 The merging operation takes place for devices identically to the way
 it takes place for services. Fortunately, combining of device IDs is
 a bit less complicated than combining service URIs. The server can
 manufacture new device IDs that represent a "virtual" device that
 represents a collection of other devices.

 It is perfectly valid for the merging operation to eliminate all
 devices from the final document, or to eliminate the person data
 element. However, for a presence document to be meaningful, it has
 to contain at least one service data element (encoded using a
 <tuple>).

 If a presence document is obtained by using the device ID within each
 service element as a pivot, the result is a device view - there is a
 single service in the document for each device. If all of the
 services are composed together, so that the final document has a
 single service, it is called a presentity view. A service view is
 used to describe documents where services are either uncombined, or
 are combined using a pivot other than the device ID.

Rosenberg Expires December 28, 2006 [Page 15]

Internet-Draft Presence Processing Model June 2006

4.2.2.4. Splitting

 Splitting is the process of taking a single service or device data
 element, and splitting into two services or devices. This is useful
 when the presence server or presence user agent wishes to model a
 complex application (such as a voice, video and IM enabled client) by
 a multiplicity of distinct services.

 The process of splitting involves taking the attributes (both status
 and characteristics) for the service, and determine which of the
 component services that attribute will describe. In some cases, a
 single attribute will be split so that it is present in both
 components. For example, if the composite service has an idle
 indication, meaning that the service has not been used in some time,
 the component services would both inherit the same value for the idle
 indicator. In other cases, an attribute gets assigned only to one
 service, or in other cases, its value is changed as it is split up.
 The way in which this is done is a matter of local policy.

 In all cases, it is important to remember that the purpose of having
 multiple services or devices described in a document is to give the
 watcher choice about what service to use. Therefore, the splitting
 operation should result in multiple services that have sufficient
 characteristics associated with them to differentiate them to a
 watcher.

 Splitting of a service URI is a relatively simple operation. The
 entity performing the split creates two new service URIs, each of
 which, should a request be received for that URI, would get
 translated to, or routed to, the composite service URI. If a
 presence user agent is performing the split, it can use the grid
 parameter of the GRUU to manufacture an infinite supply of URIs that
 all get routed to itself. If a presence server is doing the split,
 it can manufacture an entirely new URI (in conjunction with the
 domain owner, of course) as needed.

 When a service is split, there is usually no reason to split the
 device as well. The component services all run on the same device,
 and there is much benefit to indicating that this is the case. For
 example, it would allow a presence server that is compositing the
 presence document for the presentity, to determine that all of the
 component services are inactive if the device should fail.

4.2.2.5. Default Composition Policy

 Unless a user specifies otherwise through an explicit composition
 policy statement, it is RECOMMENDED that presence servers follow the
 default composition policy described here. By following this

Rosenberg Expires December 28, 2006 [Page 16]

Internet-Draft Presence Processing Model June 2006

 default, the processing of the presence server becomes more
 predictable by users and their agents, allowing them to set their
 presence status in ways that result in the desired predictable
 output. If a different default is used, users may be surprised by
 the results of their actions.

 TODO: place default policy here

4.2.3. Privacy Filtering

 Once the merging operation has been applied, the next step is to
 perform privacy filtering. Privacy filtering is a process by which
 information is removed or transformed in a raw presence document, for
 the purposes of withholding sensitive information about the
 presentity. Typically, the filtering operation runs at the bequest
 of the presentity, in order to protect their own privacy. However,
 privacy filtering can be instantiated by the operator, in order to
 execute domain filtering policies, or even third parties that are
 authorized to specify filtering.

 The exact privacy filtering operation that takes place depends on the
 identity of the watcher, and can also depend on other variables, such
 as time of day, the weather in Helsinki, and so on. The set of
 information that dictates the way in which privacy filtering is
 executed is called authorization policy. Authorization policy is
 expressed using the document format defined in [7].

 These rules describe how a series of authorization documents are
 matched to the subscription, combined together, and then applied.
 This matching process is based on conditions described in each
 authorization document. These conditions can include the presence
 state of the presentity itself. The presence state used to determine
 these authorization policies is different than the presence state
 sent to the watcher. To compute this presence state, the presence
 server runs the presence document generation process using the
 default composition policy described above, and then stops the
 process once the raw presence document is generated. This raw
 presence document is used for any presence states needed to select
 the authorization policies applicable to the watcher.

4.2.4. Watcher Filtering

 Watcher filtering is the process by which information is further
 removed from the presence document. However, it is the watcher which
 specifies the information subset that they would like to receive.
 Watcher filtering is accomplished by including filter documents in
 subscription requests. These filters are then bound to the
 subscription, and applied to any presence document generated during

Rosenberg Expires December 28, 2006 [Page 17]

Internet-Draft Presence Processing Model June 2006

 the lifetime of that subscription.

 Filters are described using the document format defined in [11].

4.2.5. Post-Processing Composition

 After the privacy and watcher filtering operations have been applied,
 the resulting presence document may contain service or device
 elements which no longer contain enough information to differentiate
 one from another. As discussed above, the purpose of having multiple
 services or devices described in a document is to give the watcher
 choice about which service to invoke. If the services defined in a
 document all appear the same, differing only in the service URI,
 there is no reason for a user to choose one over another. In such a
 case, composition rules, and in particular, merging of services, will
 need to be done. The result is the final presence document that can
 be delivered to watchers.

5. Security Considerations

6. Acknowledgements

 This document is really a distillation of many ideas discussed over a
 long period of time. These ideas were contributed by many different
 participants in the SIMPLE working group. Henning Schulzrinne
 initially described the "pivot" operation described above for
 composition. Brian Rosen deserves credit for the "presentity view".
 Aki Niemi, Paul Kyzivat, Cullen Jennings, Ben Campbell, Robert
 Sparks, Dean Willis, Adam Roach, Hisham Khartabil, and Jon Peterson
 contributed many of the concepts that are described here. A special
 thanks to Steve Donovan for discussions on the topics discussed here.

7. Informative References

 [1] Day, M., Rosenberg, J., and H. Sugano, "A Model for Presence
 and Instant Messaging", RFC 2778, February 2000.

 [2] Rosenberg, J., "A Session Initiation Protocol (SIP) Event
 Package for Registrations", RFC 3680, March 2004.

 [3] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and
 J. Peterson, "Presence Information Data Format (PIDF)",

RFC 3863, August 2004.

 [4] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

https://datatracker.ietf.org/doc/html/rfc2778
https://datatracker.ietf.org/doc/html/rfc3680
https://datatracker.ietf.org/doc/html/rfc3863
https://datatracker.ietf.org/doc/html/rfc3856

Rosenberg Expires December 28, 2006 [Page 18]

Internet-Draft Presence Processing Model June 2006

 [5] Day, M., Aggarwal, S., Mohr, G., and J. Vincent, "Instant
 Messaging / Presence Protocol Requirements", RFC 2779,
 February 2000.

 [6] Rosenberg, J., "A Data Model for Presence",
draft-ietf-simple-presence-data-model-07 (work in progress),

 January 2006.

 [7] Rosenberg, J., "Presence Authorization Rules",
draft-ietf-simple-presence-rules-07 (work in progress),

 June 2006.

 [8] Niemi, A., "Session Initiation Protocol (SIP) Extension for
 Event State Publication", RFC 3903, October 2004.

 [9] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating
 User Agent Capabilities in the Session Initiation Protocol
 (SIP)", RFC 3840, August 2004.

 [10] Lonnfors, M. and K. Kiss, "Session Initiation Protocol (SIP)
 User Agent Capability Extension to Presence Information Data
 Format (PIDF)", draft-ietf-simple-prescaps-ext-06 (work in
 progress), January 2006.

 [11] Khartabil, H., "An Extensible Markup Language (XML) Based
 Format for Event Notification Filtering",

draft-ietf-simple-filter-format-05 (work in progress),
 March 2005.

 [12] Rosenberg, J., Schulzrinne, H., and R. Mahy, "An INVITE-
 Initiated Dialog Event Package for the Session Initiation
 Protocol (SIP)", RFC 4235, November 2005.

https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/draft-ietf-simple-presence-data-model-07
https://datatracker.ietf.org/doc/html/draft-ietf-simple-presence-rules-07
https://datatracker.ietf.org/doc/html/rfc3903
https://datatracker.ietf.org/doc/html/rfc3840
https://datatracker.ietf.org/doc/html/draft-ietf-simple-prescaps-ext-06
https://datatracker.ietf.org/doc/html/draft-ietf-simple-filter-format-05
https://datatracker.ietf.org/doc/html/rfc4235

Rosenberg Expires December 28, 2006 [Page 19]

Internet-Draft Presence Processing Model June 2006

Author's Address

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

Rosenberg Expires December 28, 2006 [Page 20]

http://www.jdrosen.net

Internet-Draft Presence Processing Model June 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg Expires December 28, 2006 [Page 21]

