
SIMPLE J. Rosenberg
Internet-Draft dynamicsoft
Expires: November 24, 2003 May 26, 2003

The Extensible Markup Language (XML) Configuration Access Protocol
(XCAP)

draft-rosenberg-simple-xcap-00

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November 24, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This specification defines the Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP). XCAP allows a client to read,
 write and modify application configuration data, stored in XML format
 on a server. XCAP is not a new protocol. XCAP maps XML document
 sub-trees and element attributes to HTTP URIs, so that these
 components can be directly accessed by HTTP.

Rosenberg Expires November 24, 2003 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft XCAP May 2003

Table of Contents

1. Introduction . 3
2. Overview of Operation 4
3. Terminology . 5
4. Application Usages . 6
5. URI Construction . 8
5.1 Identifying the XML Document 8
5.2 Identifying the XML Nodes 9
6. Client Operations . 10
6.1 Creating a New Document 10
6.2 Replace an Existing Document 10
6.3 Deleting a Document . 10
6.4 Fetching a Document . 10
6.5 Creating a New Element 10
6.6 Replacing an Element in the Document 11
6.7 Delete an Element . 12
6.8 Fetch an Element . 12
6.9 Create an Attribute . 12
6.10 Replacing Attributes . 13
6.11 Deleting Attributes . 13
6.12 Fetching Attributes . 13
6.13 Fetching Metadata . 13
6.14 Read/Modify/Write Transactions 14
7. Server Behavior . 15
7.1 POST Handling . 16
7.2 PUT Handling . 17
7.3 GET Handling . 18
7.4 DELETE Handling . 18
7.5 Managing Modification Times 19
8. Examples . 21
9. Security Considerations 23
10. IANA Considerations . 24

 Normative References . 25
 Informative References 26
 Author's Address . 27
 Intellectual Property and Copyright Statements 28

Rosenberg Expires November 24, 2003 [Page 2]

Internet-Draft XCAP May 2003

1. Introduction

 The Session Initiation Protocol for Instant Messaging and Presence
 Leveraging Extensions (SIMPLE) working group has been developing
 specifications for subscribing to, and receiving notifications of,
 user presence [10]. An important aspect of user presence is
 authorization policy. Indeed, the presence specification requires a
 Presence Agent (PA) to both authenticate and authorize all
 subscriptions before accepting them. However, it does not define how
 the server determines the authorization status of a subscriber. Users
 can set their authorization policy through web pages or voice
 response systems. However, there is currently no protocol specified
 for setting this policy. A protocol for this purpose is called an
 authorization manipulation protocol.

 Mechanisms have also been defined to support reactive authorization
 [11][12]. Reactive authorization allows the user to be informed when
 someone has attempted to subscribe to their presence when the server
 is unable to determine an authorization policy. The user can then go
 and set an authorization policy for the subscriber, using the same
 unspecified mechanism for setting the policy.

 Another important aspect of presence systems is the buddy list, also
 known as the presence list. This is a list of users that a watcher
 wishes to learn presence state for. This list can be stored in the
 client, or it can be stored in a centralized server. In the latter
 case, the client would subscribe to the list as a whole [13]. The
 presence list can be set by using a web page or voice response
 application. However, there is no protocol mechanism currently
 specified to manage the presence list. Such a protocol is called a
 presence list manipulation protocol.

 The SIMPLE group has defined requirements for an authorization
 manipulation protocol and a presence list manipulation protocol.
 These protocols have similar requirements, and are captured in [14].

 This document proposes a candidate for the authorization and presence
 manipulation protocol, called the Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP). XCAP is not actually a new
 protocol. XCAP is a set of conventions for using HTTP to read, write
 and modify XML configuration data. XCAP is based heavily on ideas
 borrowed from the Application Configuration Access Protocol (ACAP)
 [15], but it is not an extension of it, nor does it have any
 dependencies on it. Like ACAP, XCAP is meant to support the
 configuration needs for a multiplicity of applications, rather than
 just a single one.

Rosenberg Expires November 24, 2003 [Page 3]

Internet-Draft XCAP May 2003

2. Overview of Operation

 XCAP supports the needs of any application that needs access to data
 defined by clients of the application. Each application that makes
 use of XCAP specifies an application usage (Section 4). This
 application usage defines the XML schema [1] for the data used by the
 application, along with other key pieces of information. The
 principal task of XCAP is to allow clients to read, write, modify,
 create and delete pieces of that data. These operations are supported
 using HTTP 1.1 [2]. An XCAP server acts as a repository for
 collections of XML documents. There will be documents stored for each
 application. Within each application, there are documents stored for
 each user. Each user can have a multiplicity of documents for a
 particular application. To access some component of one of those
 documents, XCAP defines an algorithm for constructing a URI that can
 be used to reference that component. Components refer to any subtree
 of the document, or any attribute for any element within the
 document. Thus, the HTTP URIs used by XCAP point to pieces of
 information that are finer grained than the XML document itself.

 With a standardized naming convention for components of XML
 documents, the basic operations for accessing the data are simple.
 Reading one of the components is just a standard HTTP GET operation.
 Writing, creating or modifying one of the components is a standard
 HTTP POST or PUT operation. Deleting a component is just a standard
 DELETE operation. For example, to add a friend to a presence list, a
 client would construct an XML document fragment which contains the
 information on that friend. The client would then construct a URI
 that refers to the location in the presence list document where this
 new fragment is to be added. The client then performs a POST
 operation against the URI, placing the document fragment into the
 body of the POST request. To provide atomic read/modify/write
 operations, the HTTP If-Unmodified-Since header field is used. The
 HTTP POST operation used by the client would contain the date
 obtained in the Last-Modified header field from the GET used to read
 the data.

Rosenberg Expires November 24, 2003 [Page 4]

Internet-Draft XCAP May 2003

3. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [3] and
 indicate requirement levels for compliant implementations.

Rosenberg Expires November 24, 2003 [Page 5]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft XCAP May 2003

4. Application Usages

 A central concept in XCAP is that of an application usage. An
 application usage defines the way in which a specific application
 makes use of XCAP. This definition is composed of several pieces of
 information, such as an XML schema and constraints on values of one
 element given values in another.

 Application usages are documented in specifications which convey this
 information. In particular, an application usage specification MUST
 provide the following information:

 Application Usage ID (AUID): Each application usage is associated
 with a name, called an AUID. This name uniquely identifies the
 application usage, and is different from all other AUIDs. AUIDs
 exist in one of two namespaces. The first namespace is the IETF
 namespace. This namespace contains a set of tokens, each of which
 is registered with IANA. These registrations occur with the
 publication of standards track RFCs [16] based on the guidelines
 in Section 10. The second namespace is the vendor-proprietary
 namespace. Each AUID in that namespace is prefixed with the token
 "vnd", followed by a period ("."), followed by a valid DNS name,
 followed by another period, followed by any vendor defined token.
 A vendor creating such an AUID MUST only create one using domain
 names for which it is an administrator. As an example, the
 example.com domain can create an AUID with the value
 "vnd.example.com.foo" but cannot create one with the value
 "vnd.example.org.bar". AUIDs within the vendor namespace do not
 need to be registered with IANA. The vendor namespace is also
 meant to be used in lab environments where no central registry is
 needed.

 MIME Type: Each application usage MUST register a MIME type for
 its XML documents. This is done based on the procedures of RFC

3023 [4].

 XML Schema: Each application will have a unique schema which
 defines the data needed by the application. In XCAP, this schema
 is represented using XML schema. As an example, presence list data
 is composed of a list of URIs, each of which represends a member
 of presence list. [17] defines the XML schema for this data.

 Additional Constraints: XML schemas can represent a variety of
 constraints about data, such as ranges and types. However, schemas
 cannot cover all types of data constraints, including constraints
 introduced by data interdependencies. For example, one XML element
 may contain an integer which defines the maximum number of
 instances of another element. The application usage defines these

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023

Rosenberg Expires November 24, 2003 [Page 6]

Internet-Draft XCAP May 2003

 additional constraints.

 Data Semantics: The application usage needs to define detailed
 semantics for each piece of data in the schema.

 Naming Conventions: The data defined by the XML schema will be
 used by any number of entities participating in the application.
 In the case of presence list, the data is used by the Resource
 List Server (RLS), which reads the data, and by the clients, which
 write it. During the execution of the application (i.e., the
 processing of the list subscription), specific documents will need
 to be read or written. In order for the application to function
 properly, there needs to be agreement on exactly which documents
 are read or written by the application. This is an issue of naming
 conventions; agreeing on how an application constructs the URI
 representing the document that is to be read or written. The
 application usage spells out this information.

 Computed Data: Frequently, some of the data defined in the schema
 is not independent; that is, its value depends on the values of
 other elements in the document. As a result, when a client uses
 XCAP to modify the independent pieces of the document, the server
 needs to compute the dependent ones in order to fully populate the
 document. The application usage needs to define which data
 components are dependent, and how they are computed. As an
 example, when the URI for a presence list is not specified by a
 client, a URI is chosen by the server and filled in. This needs to
 be specified by the application usage.

 Authorization Policies: By default, an XCAP server will only allow
 a user to access (read, write, delete or modify) their own
 documents. The application usage can specify differing default
 authorization policies. Of course, the default can always be
 overriden by operator or user-specified policies.

 Application usages are similar to dataset classes in ACAP.

Rosenberg Expires November 24, 2003 [Page 7]

Internet-Draft XCAP May 2003

5. URI Construction

 In order to manipulate a piece of configuration data, the data must
 be represented by an HTTP URI. XCAP defines a specific naming
 convention for constructing these URIs. This convention is very
 similar to the naming conventions used for dataset classes in ACAP,
 and makes use the XPath [5] specification for identifying nodes of an
 XML document.

 The HTTP URI consists of two parts:

 XCAP-URI = Document-URI ["?" Node-Selector]
 Document-URI = http_URL ;from RFC2616
 Node-Selector = *uric ;Escape coded LocationPath from XPath

 The first part, the Document-URI, selects a specific XML document. It
 is a valid HTTP URL, subject to the constraints described here. The
 constraints for constructing this URI are discussed below in Section

5.1. Once a document is selected, the remainder of the URI (the
 Node-Selector) identifies which components of the document are being
 addressed. The Node-Selector is an XPath [5] LocationPath expression,
 subject to constraints described below.

5.1 Identifying the XML Document

 XCAP mandates that a server organizes documents according to a
 defined hierarchy. The root of this hierarchy is an HTTP URI called
 the XCAP services root URI. This URI identifies the root of the tree
 within the domain where all XCAP documents are stored. It can be any
 valid HTTP URL, but MUST NOT contain a query string. As an example,
 http://xcap.example.com/services might be used as the XCAP services
 root URI within the example.com domain. Typically, the XCAP services
 root URI is provisioned into client devices for bootstrapping
 purposes.

 Beneath the XCAP services root URI is a tree structure for organizing
 documents. The first level of this tree consists of the XCAP AUID.
 So, continuing the example above, all of the documents used by the
 presence list application would be under http://xcap.example.com/
 services/presence-lists.

 It is assumed that each application will have data that is set by
 users, and/or it will have global data that applies to all users. As
 a result, within the directory structure for each application usage,
 there are two sub-trees. One, called "users", holds the documents
 that are applicable to only specific users, and the other, called
 "global", holds documents applicable to all users.

https://datatracker.ietf.org/doc/html/rfc2616

Rosenberg Expires November 24, 2003 [Page 8]

Internet-Draft XCAP May 2003

 Within the "users" tree are zero or more sub-trees, each of which
 identifies a documents that apply to a specific user. XCAP does not
 itself define what it means for documents to "apply" to a user,
 beyond specification of a baseline authorization policy.
 Specifically, the default authorization policy is that only a user
 who authenticates themself as user X can read, write, or otherwise
 access in any way the documents within sub-tree X. Each application
 usage can specify additional authorization policies which depend on
 data used by the application itself.

 The remainder of the URI (the path following "global" or the specific
 user) is not constrained by this specification. The application usage
 MAY introduce constraints, or may allow any structure to be used.

5.2 Identifying the XML Nodes

 The second component of the XCAP URI specifies specific nodes of the
 XML document which are to be accessed. Nodes, in this context, refers
 to the definition provided in the XPath specification, and therefore
 includes XML elements, attributes, text, namespaces, processing
 instructions, comments, and roots. These nodes are identified by a
 LocationPath expression, as defined in XPath. Either the abbreviated
 or unabbreviated form MAY be used.

 Contraints are imposed on the XPath expression based on the operation
 being performed. These do not constrain the functions or axes that
 can be used in the XPath expression, but rather constrain the
 resulting node set. See Section 6 for details.

Rosenberg Expires November 24, 2003 [Page 9]

Internet-Draft XCAP May 2003

6. Client Operations

 An XCAP client is an HTTP 1.1 compliant client. An XCAP client
 performs a set of primitive operations by invoking specific methods
 against the server, using specific URIs, where the requests contain
 bodies and headers subject to specific constraints. The set of
 primitive operations, the methods used to accomplish them, and the
 header and body constraints are described here.

6.1 Creating a New Document

 To create a new document, the client constructs a URI that references
 the location where the document is to be placed. This URI MUST NOT
 contain a NodeSelector component, and MUST meet the constraints
 described in Section 5.1. The client then invokes a PUT method on
 that URI.

 The content in the request MUST be an XML document compliant to the
 schema associated with the application usage defined by the URI. For
 example, if the client performs a PUT operation to http://
 xcap.example.com/services/presence-lists/users/joe/mybuddies,
 presence-lists is the application unique ID, and the schema defined
 by it would dictate the body of the request.

6.2 Replace an Existing Document

 To replace an existing document with a new one, the procedures of
Section 6.1 are followed; the Request-URI merely refers to an

 existing document which is to be replaced with the content of the
 request.

6.3 Deleting a Document

 To delete a document, the client constructs a URI that references the
 document to be deleted. By definition this URI will not contain a
 NodeSelector component. The client then invokes a DELETE operation on
 the URI to delete the document.

6.4 Fetching a Document

 As one would expect, fetching a document is trivially accomplished by
 performing an HTTP GET request with the Request URI set to the
 document to be fetched. It is useful for clients to perform
 conditional GETs using the If-Modified-Since header field, in order
 to check if a locally cached copy of the document is still valid.

6.5 Creating a New Element

Rosenberg Expires November 24, 2003 [Page 10]

Internet-Draft XCAP May 2003

 To create a new XML element within an existing document, the client
 constructs a URI whose Document-URI points to the document to be
 modified. The Node-Selector MUST be present, containing an expression
 identifying the point in the document where the new element is to be
 added. The node-set selected by the expression MUST contain only a
 single XML element.

 The client then invokes the HTTP POST method. The content in the
 request MUST be an XML document. That XML document MUST be conformant
 to the schema associated with the application usage defined by the
 URI. The server will insert the document such that the first element
 of the document becomes the next sibling immediately following the
 element specified by the Request-URI. The client SHOULD be certain,
 before making the request, that the resulting modified document will
 also be conformant to the schema.

6.6 Replacing an Element in the Document

 Replacing an element of the document constitutes storage of a
 supplied entity under the specified URI, and is therefore
 accomplished with the PUT method (as opposed to POST, which will
 insert). The client constructs a URI whose Document-URI points to the
 document to be modified. The Node-Selector MUST be present,
 containing an expression identifying the element whose value is to be
 replaced. The node-set selected by the expression MUST contain only a
 single XML element.

 The client then invokes the PUT method. The entity of the request
 MUST be of type text/plain. The server will take the value of the
 element specified by the request URI, and replace it with the content
 of the PUT request. Here, value refers to the binary contents of an
 XML document, starting with the beginning tag of the element, and
 ending with the end tag. This differs from the "string value" defined
 in XPath, which refers only to the values of the text element
 descendants of an element. The client SHOULD be certain, before
 making the request, that the resulting modified document will be
 conformant to the schema.

 The body of the request here is of type text/plain because the value
 of an element need not be a valid XML document; frequently, it will
 be text or CDATA. Of course, the value of an XML element may be other
 XML elements, in which case the body of the request will be an XML
 document fragment, and by itself not compliant to any schema.

 Note that this operation only modifies the value of an element. It
 cannot modify the attributes of the element. To do that, the replace
 attribute operation is performed.

Rosenberg Expires November 24, 2003 [Page 11]

Internet-Draft XCAP May 2003

6.7 Delete an Element

 To delete elements from a document, the client constructs a URI whose
 Document-URI points to the document containing the elements to be
 deleted. The Node-Selector MUST be present, containing an expression
 identifying the elements to be deleted. Unlike most of the other
 operations, the node-set selected by the expression MAY contain
 multiple elements.

 The client then invokes the HTTP DELETE method. All of the elements
 specified by the node set will be deleted by the server. The body of
 the request SHOULD be empty. The client SHOULD be certain, before
 making the request, that the resulting modified document will also be
 conformant to the schema.

6.8 Fetch an Element

 To fetch an element of a document, the client constructs a URI whose
 Document-URI points to the document containing the element to be
 fetched. The Node-Selector MUST be present, containing an expression
 identifying the element whose value is to be fetched. The node-set
 selected by the expression MUST contain only a single XML element.

 The client then invokes the GET method. The response will contain an
 XML document with the specified element as the one and only child of
 the document root.

 OPEN ISSUE: This only allows you to get one element at a time. We
 could allow the XPath expression to specify multiple elements, and
 then the response contains a document with each of those elements
 as a child of the document root. However, that document might not
 be compliant to the schema, and worse, the document doesnt
 actually reflect any specific sub-tree of the actual document.

6.9 Create an Attribute

 To create an attribute in an existing element of a document, the
 client constructs a URI whose Document-URI points to the document to
 be modified. The Node-Selector MUST be present, containing an
 expression identifying an attribute that is to created. Specifically,
 the last location step of the expression MUST specify an attribute
 axis, and the context MUST specify a single element that exists
 within the document.

 The client then invokes the HTTP POST method. The content defined by
 the request MUST be of type text/plain. A new attribute is added to
 the element defined by the context, with the name specified by the

Rosenberg Expires November 24, 2003 [Page 12]

Internet-Draft XCAP May 2003

 node test in the last location step, with a value specified by the
 body of the request. If an attribute of this name already exists, it
 is replaced. The client SHOULD be certain, before making the request,
 that the resulting modified document will also be conformant to the
 schema.

6.10 Replacing Attributes

 To replace an attribute in an existing element of a document, the
 client constructs a URI whose Document-URI points to the document to
 be modified. The Node-Selector MUST be present, containing an
 expression identifying an attribute that is to be replaced.

 The client then invokes the HTTP PUT method. The content defined by
 the request MUST be of type text/plain. The value of the attribute
 defined by the Node-Selector is replaced by the body of the request.
 The client SHOULD be certain, before making the request, that the
 resulting modified document will also be conformant to the schema.

6.11 Deleting Attributes

 To delete attributes from the document, the client constructs a URI
 whose Document-URI points to the document containing the attributes
 to be deleted. The Node-Selector MUST be present, containing an
 expression identifying the attributes to be deleted. Unlike most of
 the other operations, the node-set selected by the expression MAY
 contain multiple attributes.

 The client then invokes the HTTP DELETE method. All of the attributes
 specified by the node set will be deleted by the server. The body of
 the request SHOULD be empty. The client SHOULD be certain, before
 making the request, that the resulting modified document will also be
 conformant to the schema.

6.12 Fetching Attributes

 To fetch an attribute of a document, the client constructs a URI
 whose Document-URI points to the document containing the attribute to
 be fetched. The Node-Selector MUST be present, containing an
 expression identifying the attribute whose value is to be fetched.
 The node-set selected by the expression MUST contain only a single
 XML attribute.

 The client then invokes the GET method. The response will contain an
 text/plain document with the value of the specified attribute.

6.13 Fetching Metadata

Rosenberg Expires November 24, 2003 [Page 13]

Internet-Draft XCAP May 2003

 Elements and attributes in an XML document have various meta-data
 associated with them. For example, and XML element has a certain
 number of child elements. That number is a piece of meta-data that
 describes the element. Currently, there is no way to fetch meta-data
 for XML elements or attributes.

 OPEN ISSUE: Is this restriction OK? XPath does specify functions
 for computing meta-data about node sets. We can't use them since
 XCAP mandates that the request URI be a location set, which does
 not include these other functions. We could relax the constraint
 if this is deemed important.

6.14 Read/Modify/Write Transactions

 It is anticipated that a common operation will be to read the current
 version of a document or element, modify it on the client, and then
 write the change back to the server. In order for the results to be
 consistent with the client's expectations, the operation must be
 atomic.

 To accomplish this, the client stores the value of the Last-Modified
 header field from the response to its GET operation used to read the
 element, attribute, or document that is to be modified. To guarantee
 atomicity, the PUT or POST operation used to write the changes back
 to the server MUST contain an If-Unmodified-Since header field, whose
 value is equal to the value from the prior GET response. If the
 request fails with a 412 response, the client knows that another
 update of the data has occurred before it was able to write the
 results back. The client can then fetch the most recent version, and
 attempt its modification again.

Rosenberg Expires November 24, 2003 [Page 14]

Internet-Draft XCAP May 2003

7. Server Behavior

 TODO: Specify an XML body type for the responses that contains
 error conditions or success results.

 An XCAP server is an HTTP 1.1 compliant origin server. The behaviors
 mandated by this specification relate to the way in which the HTTP
 URI is interpreted and the content is constructed.

 An XCAP server MUST be explicitly aware of the application usage
 against which requests are being made. That is, the server must be
 explicitly configured to handle URIs for each specific application
 usage, and must be aware of the constraints imposed by that
 application usage.

 OPEN ISSUE: It may be possible to remove this restriction by
 allowing an application usage to define operation in a server that
 doesnt understand the usage. That may require some capabilities
 discovery to be introduced, this constraint didnt seem that
 problematic.

 When the server receives a request, the treatment depends on the URI.
 If the URI refers to an application usage not understood by the
 server, the server MUST reject the request with a 404 (Not Found)
 response. If the URI refers to a user that is not recognized by the
 server, it MUST reject the request with a 404 (Not Found).

 Next, the server authenticates the request. All XCAP servers MUST
 support HTTP Digest [6]. Furthermore, servers MUST support HTTP over
 TLS, RFC 2818 [7]. It is RECOMMENDED that administrators use an HTTPS
 URI as the XCAP root services URI, so that the digest client
 authentication occurs over TLS.

 Next, the server determines if the client has authorization to
 perform the requested operation on the resource. The default
 authorization policy is that only client X can access (create, read,
 write, modify or delete) resources under the "users/X" directory. An
 application usage can specify an alternate default authorization
 policy specific to that usage. Of course, an administrator or
 privileged user can override the default authorization policy,
 although this specification provides no means for doing that.
 Generally, if users need to be able to control authorization for
 access to XCAP data, an XCAP application usage should be specified
 which allows the user to set the policies as needed.

 OPEN ISSUE: This is different from ACAP, where authorization
 policies are built into the protocol. I think the default
 generally will suffice, so I would rather not burden the baseline

https://datatracker.ietf.org/doc/html/rfc2818

Rosenberg Expires November 24, 2003 [Page 15]

Internet-Draft XCAP May 2003

 protocol with it.

 Once authorized, the specific behavior depends on the method and what
 the URI refers to.

7.1 POST Handling

 If the URI contains only a Document-URI, the server examines the
 entity body of the request. If there is no entity in the body, the
 server MUST reject the request with a 409 response. If there is an
 entity, but it is not well-formed, the server MUST reject the request
 with a 409 response. If it is well-formed, but not compliant to the
 schema associated with the application usage, the server MUST reject
 the request with a 409 response. If it is compliant to the schema,
 the server MUST store the document at the requested URI. If there is
 not already a document stored at that URI, a 201 (Created) response
 code MUST be sent, and it MUST include a Location header field
 containing the value of the URI for the document (which will be the
 same as the one in the Request-URI). Otherwise, a 200 OK response is
 returned, and the document in the body replaces the existing one at
 that URI. For either a 200 or 201 response, the new document is
 returned in the body of the response, with a Content-Type equal to
 the MIME type defined by the application usage.

 If the Request URI contains a Node-Selector, the server MUST verify
 that the document defined by the Document-URI exists. If no such
 document exists on the server, the server MUST reject the request
 with a 409 response code. If the document does exist, the server
 evaluates the Node-Selector as an XPath RelativeLocationPath,
 relative to the root of the document. If the Node-Selector does not
 comply to the grammar for RelativeLocationPath, the server MUST
 reject the request with a 400 response code. If the Node-Selector
 does comply, and it evaluates to anything other than the empty set, a
 single attribute node or single element node, the server MUST reject
 the request with a 409 response code.

 If the Node-Selector evaluates to the empty set, and the last
 location step is on the attribute axis, and the expression without
 the last location step evaluates to a single element node, the server
 adds an attribute to that element. Its name is the name given in the
 node test of the last location step, and its value is taken from the
 body of the request. The server then generates a 200 OK response,
 whose body contains the value of the attribute, with a Content-Type
 of text/plain.

 If the Node-Selector evaluates to a single element node, the server
 takes the content of the request, and inserts it into the document
 specified by the URI such that the selected element is the immediate

Rosenberg Expires November 24, 2003 [Page 16]

Internet-Draft XCAP May 2003

 sibling of the nodes defined by the content of the request. The
 server then generates a 200 OK response, whose body contains the
 parent element of the new elements just inserted. The parent element
 is represented by extracting the contents of the XML document,
 starting with, and including, the begin tag of the element, up to,
 and including, the end tag for the element. The Content-Type of the
 response is set to application/xml.

 OPEN ISSUE: We can't use the MIME type for the application usage,
 since the schema may not allow for the document to start with any
 element defined by the schema. Is that OK? I think so.

 If the Node-Selector evaluates to a single attribute node, the server
 takes the content of the request, and sets it as the value of the
 attribute specified by the body of the request. The server then
 generates a 200 OK response, whose body contains the value of the
 attribute, with a Content-Type of text/plain.

 If the result of the POST is a document which does not comply with
 the XML schema for the application usage, the server MUST NOT perform
 the POST, and MUST reject the request with a 409 (Conflict).

7.2 PUT Handling

 When the Request URI contains only the Document-URI, the semantics of
 PUT are as defined in HTTP 1.1 Section 9.6 - the content of the
 request is placed at the specified location.

 If the Request URI contains a Node-Selector, the server MUST verify
 that the document defined by the Document-URI exists. If no such
 document exists on the server, the server MUST reject the request
 with a 409 response code. If the document does exist, the server
 evaluates the Node-Selector as an XPath RelativeLocationPath,
 relative to the root of the document. If the Node-Selector does not
 comply to the grammar for RelativeLocationPath, the server MUST
 reject the request with a 400 response code. If the Node-Selector
 does comply, and it evaluates to anything other than the a single
 element node or attribute node, the server MUST reject the request
 with a 409 response code.

 If the Node-Selector evaluates to a single element node, the server
 takes the content of the request, and replaces the value of that
 element (where value is defined as all of the content - elements,
 text, or CDATA - between the begin and end tags of the element) with
 that content. The server then returns a 200 OK response.

 OPEN ISSUE: PUT is not quite right here, since a subsequent GET on
 the same URI will not return exactly the same thing - the begin

Rosenberg Expires November 24, 2003 [Page 17]

Internet-Draft XCAP May 2003

 and end tags will be present. This may need to be POST, but then,
 how to differentiate a replace with an append operation?

 If the Node-Selector evaluates to a single attribute node, the server
 takes the content of the request, and sets it as the value of the
 attribute. It then returns a 200 OK response.

 If the result of the PUT is a document which does not comply with the
 XML schema for the application usage, the server MUST NOT perform the
 PUT, and MUST reject the request with a 409 (Conflict).

7.3 GET Handling

 If the request URI contains only a Document-URI, the server returns
 the document specified by the URI if it exists, else returns a 404
 response.

 If the request URI specifies a Node-Selector, the server verifies
 that the document specified by the Document-URI exists. If it does
 not exist, the server returns a 404 (Not Found) response. If the
 document does exist, the server evaluates the Node-Selector as an
 XPath RelativeLocationPath, relative to the root of the document. If
 the Node-Selector does not comply to the grammar for
 RelativeLocationPath, the server MUST reject the request with a 400
 response code. If the Node-Selector does comply, and it evaluates to
 anything other than the a single element node or attribute node, the
 server MUST reject the request with a 409 response code.

 If the Node-Selector evaluates to a single element node, the server
 takes the document text, starting with, and including, the begin tag
 of the element, up to, and including, the end tag for the element,
 and places it into the body of a 200 OK response, setting the
 Content-Type to application/xml.

 If the Node-Selector evaluates to a single attribute node, the server
 takes the value of the attribute and returns it as the content of the
 200 OK response, setting the Content-Type to text/plain.

 OPEN ISSUE: Do we need to say anything about HEAD? We havent said
 anything about meta-data so far; most of that is just regular HTTP
 usage, I think.

7.4 DELETE Handling

 If the request URI contains only a Document-URI, the server deletes
 the document specified by the URI if it exists and returns a 200 OK
 response, else returns a 404 response.

Rosenberg Expires November 24, 2003 [Page 18]

Internet-Draft XCAP May 2003

 If the request URI specifies a Node-Selector, the server verifies
 that the document specified by the Document-URI exists. If it does
 not exist, the server returns a 404 (Not Found) response. If the
 document does exist, the server evaluates the Node-Selector as an
 XPath RelativeLocationPath, relative to the root of the document. If
 the Node-Selector does not comply to the grammar for
 RelativeLocationPath, the server MUST reject the request with a 400
 response code. If the Node-Selector does comply, and it evaluates to
 the empty set, the server MUST reject the request with a 404 (Not
 Found).

 Otherwise, the server removes all of the data defined by the
 node-set. Specifically, any elements in the node set are removed from
 the document, and any attributes in the node set are removed from the
 document. It then returns a 200 OK response.

 If the result of the deletion is a document which does not comply
 with the XML schema for the application usage, the server MUST NOT
 perform the deletion, and MUST reject the request with a 409
 (Conflict).

7.5 Managing Modification Times

 An XCAP server MUST maintain modification times for all resources
 that can be referenced by a URI. Specifically, this means that each
 document, and within the document, each element and attribute, MUST
 be associated with a modification time maintained by the server.
 These modification times are needed to support condition GET, POST
 and PUT requests.

 When a PUT or POST request is made that creates or replaces a
 document, the modification time of that document and all elements and
 attributes within is set to the current time. When a PUT request is
 made to a URI referencing an XML element, the modification time of
 that element and all of its enclosed children and their attributes is
 set to the current time. Furthermore, the modification time of all
 elements which are ancestors of that element have their modification
 time set to the current time. However, the modification times of
 attributes belong to elements that are ancestors of the modified
 element do not have their modification times changed.

 When a POST request is made to a URI referencing an XML element, the
 modification time of all of the elements and their attributes within
 the document in the body of the request is set to the current time.
 Furthermore, the modification time of the element which is the new
 parent of the elements in the request, and all of its ancestors, have
 their modification time set to the current time. However, the
 modification times of their attributes are unchanged.

Rosenberg Expires November 24, 2003 [Page 19]

Internet-Draft XCAP May 2003

 When a POST request is made to a URI referencing an XML attribute,
 the modification time of that attribute, its element, and all
 elements that are ancestors of that element is set to the current
 time.

 When a DELETE request is made to a URI referencing an element, the
 modification time of all ancestors of that element is set to the
 current time. When a DELETE request is made to a URI referencing an
 attribute, the modification time of its element, and all ancestors of
 that element, is set to the current time.

Rosenberg Expires November 24, 2003 [Page 20]

Internet-Draft XCAP May 2003

8. Examples

 This section goes through several examples, making use of the
 presence-lists [17] XCAP application usage.

 First, a user Bill creates a new presence-list, initially with no
 users in it:

 PUT
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml HTTP/1.1
 Content-Type:application/presence-lists+xml

 <?xml version="1.0" encoding="UTF-8"?>
 <presence-lists xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <list name="friends" uri="sip:friends@example.com" subscribable="true">
 </list>
 </presence-lists>

 Next, Bill adds an entry to the list:

 PUT
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml?
 presence-lists/list[@name="friends"] HTTP/1.1
 Content-Type:text/plain

 <entry name="Bill" uri="sip:bill@example.com">
 <display-name>Bill Doe</display-name>
 </entry>

 Note how the URI in the PUT request selects the list element whose
 name attribute is "friends". The body of that request replaces the
 existing value of that element, which was empty.

 Next, Bill adds another entry to the list, which is another list that
 has three entries:

Rosenberg Expires November 24, 2003 [Page 21]

Internet-Draft XCAP May 2003

 POST
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml?
 presence-lists/list[@name="friends"]/entry[@name="Bill"] HTTP/1.1
 Content-Type:text/plain

 <list name="close-friends" uri="sip:close-friends@example.com"
 subscribable="true">
 <entry name="Joe" uri="sip:joe@example.com">
 <display-name>Joe Smith</display-name>
 </entry>
 <entry name="Nancy" uri="sip:nancy@example.com">
 <display-name>Nancy Gross</display-name>
 </entry>
 <entry name="Petri" uri="sip:petri@example.com">
 <display-name>Petri Aukia</display-name>
 </entry>
 </list>

 Then, Bill decides he doesnt want Petri on the list, so he deletes
 the entry:

 DELETE
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml?
 presence-lists/list/list/entry[@name="Petri"] HTTP/1.1

 Bill decides to check on the URI for Nancy:

 GET
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml?
 presence-lists/list/list/entry[@name="Nancy"]/@uri HTTP/1.1

 and the server responds:

 HTTP/1.1 200 OK
 Content-Type:text/plain

 sip:nancy@example.com

Rosenberg Expires November 24, 2003 [Page 22]

Internet-Draft XCAP May 2003

9. Security Considerations

 Frequently, the data manipulated by XCAP contains sensitive
 information. To avoid eavesdroppers from seeing this information,
 XCAP RECOMMENDS that an admistrator hand out an https URI as the XCAP
 root services URI. This will result in TLS-encrypted communications
 between the client and server, preventing any eavesdropping.

 Client and server authentication are also important. A client needs
 to be sure it is talking to the server it believes it is contacting.
 Otherwise, it may be given false information, which can lead to
 denial of service attacks against a client. To prevent this, a client
 SHOULD attempt to upgrade [8] any connections to TLS. Similarly,
 authorization of read and write operations against the data is
 important, and this requires client authentication. As a result, a
 server SHOULD challenge a client using HTTP Digest [6] to establish
 its identity, and this SHOULD be done over a TLS connection.

Rosenberg Expires November 24, 2003 [Page 23]

Internet-Draft XCAP May 2003

10. IANA Considerations

 This specification instructs IANA to create a new registry for XCAP
 application usage IDs (AUIDs).

 XCAP AUIDs are registered by the IANA when they are published in
 standards track RFCs. The IANA Considerations section of the RFC
 must include the following information, which appears in the IANA
 registry along with the RFC number of the publication.

 Name of the AUID. The name MAY be of any length, but SHOULD be no
 more than twenty characters long. The name MUST consist of
 alphanum [9] characters only.

 Descriptive text that describes the application usage.

Rosenberg Expires November 24, 2003 [Page 24]

Internet-Draft XCAP May 2003

Normative References

 [1] Thompson, H., Beech, D., Maloney, M. and N. Mendelsohn, "XML
 Schema Part 1: Structures", W3C REC REC-xmlschema-1-20010502,
 May 2001.

 [2] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Murata, M., St. Laurent, S. and D. Kohn, "XML Media Types", RFC
3023, January 2001.

 [5] Clark, J. and S. DeRose, "XML Path Language (XPath) Version
 1.0", W3C REC REC-xpath-19991116, November 1999.

 [6] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A. and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

 [7] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [8] Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/1.1",
RFC 2817, May 2000.

 [9] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg Expires November 24, 2003 [Page 25]

Internet-Draft XCAP May 2003

Informative References

 [10] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", draft-ietf-simple-presence-10 (work
 in progress), January 2003.

 [11] Rosenberg, J., "A Watcher Information Event Template-Package
 for the Session Initiation Protocol (SIP)",

draft-ietf-simple-winfo-package-05 (work in progress), January
 2003.

 [12] Rosenberg, J., "An Extensible Markup Language (XML) Based
 Format for Watcher Information",

draft-ietf-simple-winfo-format-04 (work in progress), January
 2003.

 [13] Rosenberg, J., Roach, A. and B. Campbell, "A Session Initiation
 Protocol (SIP) Event Notification Extension for Resource
 Lists", draft-ietf-simple-event-list-03 (work in progress), May
 2003.

 [14] Rosenberg, J. and M. Isomaki, "Requirements for Manipulation of
 Data Elements in Session Initiation Protocol (SIP) for Instant
 Messaging and Presence Leveraging Extensions (SIMPLE) Systems",

draft-ietf-simple-data-req-02 (work in progress), April 2003.

 [15] Newman, C. and J. Myers, "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [16] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October
 1998.

 [17] Rosenberg, J., "An Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP) Usage for Presence Lists",

draft-rosenberg-simple-xcap-list-usage-00 (work in progress),
 May 2003.

https://datatracker.ietf.org/doc/html/draft-ietf-simple-presence-10
https://datatracker.ietf.org/doc/html/draft-ietf-simple-winfo-package-05
https://datatracker.ietf.org/doc/html/draft-ietf-simple-winfo-format-04
https://datatracker.ietf.org/doc/html/draft-ietf-simple-event-list-03
https://datatracker.ietf.org/doc/html/draft-ietf-simple-data-req-02
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/draft-rosenberg-simple-xcap-list-usage-00

Rosenberg Expires November 24, 2003 [Page 26]

Internet-Draft XCAP May 2003

Author's Address

 Jonathan Rosenberg
 dynamicsoft
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@dynamicsoft.com
 URI: http://www.jdrosen.net

Rosenberg Expires November 24, 2003 [Page 27]

http://www.jdrosen.net

Internet-Draft XCAP May 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Rosenberg Expires November 24, 2003 [Page 28]

Internet-Draft XCAP May 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg Expires November 24, 2003 [Page 29]

