
Internet Engineering Task Force SIP WG
Internet Draft Rosenberg/Mataga/Schulzrinne
draft-rosenberg-sip-app-components-01.txt dynamicsoft/Columbia U.
March 2, 2001
Expires: September 2001

An Application Server Component Architecture for SIP

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as work in progress.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 An application server is defined as an entity that is capable of
 providing advanced features to users. Examples of features include
 call forwarding, call screening, debit card calling, web interactive
 voice response, etc. However, the set of functions needed to enable a
 broad range of such applications is quite large - it includes speech
 recognition, DTMF recognition and digit collection, text-to-speech
 synthesis, database interfacing, audio and video coding and decoding,
 audio and video bridging and mixing, and signaling, to name a few.
 Supporting such a large set of functions on the same box presents a
 major challenge. To solve this problem, the industry is proposing a
 decomposition of the application server into two components - a media
 server that handles the media component, and an application server
 that handles the call control, data, and signaling. The interface
 that has been proposed between these two elements is a control
 mechanism along the lines of MGCP or Megaco. In this paper, we
 propose an orthogonal decomposition, which breaks an application

Rosenberg/Mataga/Schulzrinne [Page 1]

https://datatracker.ietf.org/doc/html/draft-rosenberg-sip-app-components-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft AS Components March 2, 2001

 server into application server components. Each component represents
 a application server in its own right, but it provides a well defined
 component that by itself may be a complete, but simpler, application.

1 Introduction

 An observable trend in VoIP systems is the continuing decomposition
 of monolithic elements into component subparts, with the
 corresponding development of standardized interfaces between
 components. This kind of decomposition can be observed in the
 MGCP/megaco [1] gateway decomposition of a large gateway into a
 signaling gateway (SG), media gateway (MG) and media gateway
 controller (MGC), often referred to as a softswitch. Following that
 decomposition, the softswitch was further decomposed into a pure call
 control component (still referred to as a softswitch) and an
 application server (AS), which provides features and services. The AS
 was then decomposed, breaking it into a signaling piece (still
 referred to as an application server), and a media server (MS), which
 provides the media components of applications. Protocols like MGCP
 [2] and Megaco [3] have been proposed as the interface between an AS
 and MS.

 This paper proposes an additional decomposition of an application
 server into application server components (ASCs). This decomposition
 is orthogonal to the MS/AS decomposition, and differs significantly
 in its goals and benefits. The primary motivation is the recognition
 that most complex (and interesting) applications require a common set
 of core pieces - speech recognition and text-to-speech, translation
 services, conference servers, messaging servers, etc. Each of these
 components is complex and a full-fledged application in its own
 right. In most cases, a complex application really doesn't care about
 the details of the operation of the component. In many cases, these
 components run on separate servers, and often, would be provided by
 separate providers. What is needed, then, is a well-defined,
 distributed interface to these application server components. Here,
 we motivate a distributed decomposition of applications into
 components, and then show why, for many of these, the interface is
 ideally suited for a distributed, session establishment and
 termination interface that follows a standardized pattern of
 addressing and parameter passing. We believe the Session Initiation
 Protocol (SIP) [4] is ideally suited for such an interface.

2 Why Decompose

 The first question to address is "why decompose an application
 server".

Rosenberg/Mataga/Schulzrinne [Page 2]

Internet Draft AS Components March 2, 2001

 Decomposition is the act of breaking a large, monolithic system into
 a number of smaller compoents that interact according to specified
 behaviors. Decomposition of large components offers a number of
 benefits:

 Scale. As systems need to serve more and more users, there are
 two approaches to scaling up. One is to buy increasingly
 faster hardware, so that the monolithic servers can keep up
 with increasing use. The second is to distribute the work
 across components, so that multiple servers perform the
 work. Distribution is fundamentally cheaper, since the cost
 of large monolithic systems increases exponentially with
 capacity, compared to the linear increase in cost with
 multiple, smaller units. Distribution of work can be done
 through load balancing, where each server remains
 homogeneous, but the work is spread across numerous
 servers, or it can be done through specialization, where
 the work is split into separate functions, and each
 function placed on a separate server. Specialization is
 ideal in cases where the work has different requirements
 for it to be completed. As an example, a component of an
 application may require special purpose hardware. This
 component can distributed to a specialized processor, with
 a normal off the shelf processor handling the more generic
 software tasks. Several of the components that we are
 describing fit into this category (such as the TTS server).

 Sharing of resources. By decomposing a server into components, a
 many-to-many interaction between them becomes possible.
 This means that one component can provide services to many
 other components. This provides for sharing of resources,
 which ultimately results in capital cost reduction.

 Expertise. Building a complex application requires expertise in
 call control, media services, compression, web, speech
 recognition, etc. It is highly unlikely that one
 organization will have enough expertise in all of these to
 build them all. By decomposing an application server into
 subpieces, organizations with expertise in one particular
 piece can build that one. The result is that the complete
 system can be composed of best in breed components.

 Speed of deployment. By decomposing, upgrading existing
 applications and deploying new ones becomes simpler. The
 decomposition provides isolation. This isolation means that

Rosenberg/Mataga/Schulzrinne [Page 3]

Internet Draft AS Components March 2, 2001

 one component can be changed or improved without affecting
 others. That makes it easy to add new features to an
 application, or to deploy a new one by using components
 already deployed.

 Decomposition does have its drawbacks. Primary amongst them is
 security. In general, the more boxes in a system, and the more they
 interact with each other, the more complex the security is. As a
 result, any distributed system has inherently more complex security
 issues. Another drawback is reliability. A system with multiple
 boxes, where the system requires all boxes to work in order to
 function, is less reliable than a system with a single box which must
 work.

3 Tightly Coupled Decomposition

 As an example of decomposition, it has been proposed to break the
 application server into a signaling and control component (the AS),
 plus a media server component (the MS). This decomposition is shown
 in Figure 1.

 Calls arrive at the AS component over SIP. The AS then accesses the
 MS using MGCP, and learns the IP address and port where the media for
 the call can be sent. This is returned in the 200 OK response by the
 AS. The AS then begins to instruct the MS to perform specific
 functions - collect digits, play tones and announcements, and to
 report the digits and tones back to the AS for further processing.
 Typically, the MGCP interface between the two devices is fairly
 "busy"; there is a lot of messaging for complex applications.

 In this model, there is a tightly coupled relationship between the MS
 and AS. The MS cannot function without the AS, and the AS needs to
 perform tight, low-level controls over the detailed operation of the
 media server.

 To some degree, breaking of an application server into these two
 components represents an implementation detail of how one builds a
 large, monolithic application server. It is not generally practical
 for the two components to be owned by separate providers, due to the
 master/slave relationship between the two.

 This decomposition also does not provide a true separation of
 function. Most applications that require media interaction (IVR,
 credit card and debit card, etc.) have very cleanly separated media
 phases and signaling phases. The details of the media interactions
 are usually not important to the signaling component, and vice a
 versa. As an example, consider a debit card application. The

Rosenberg/Mataga/Schulzrinne [Page 4]

Internet Draft AS Components March 2, 2001

 . .
 . +-------------+ .
 . | | .
 SIP . | | .
 -------------+ AS | .
 . | | .
 . | | .
 . | | .
 . +-------------+ .
 . | .
 . | .
 . | .
 . |MGCP .
 . | .
 . | .
 . | .
 . +-------------+ .
 . | | .
 . | | .
 RTP . | | .
 -------------+ MS | .
 . | | .
 . | | .
 . +-------------+ .
 . .

 Complete Application
 Server

 Figure 1: MGCP-based decomposition

 application starts with the user making a call. As part of the call
 processing, interaction is needed with the user via the media stream
 to determine the debit card number. The precise set of menu
 operations and interactions used to obtain this number aren't
 important to the call/signaling processing piece; only the result
 (the number), is important. Once the number is returned, media
 processing ceases, and data and call processing commence. The debit
 card is looked up in a subscriber database, and if enough time
 remains, the call is completed. The signaling component monitors the
 call, and when the card has run out of minutes, the call is

Rosenberg/Mataga/Schulzrinne [Page 5]

Internet Draft AS Components March 2, 2001

 terminated.

 Consider the case where the application provider decides that the
 menus presented for debit card collection are confusing, and they
 need to be changed. This change really affects the media processing
 only; ideally, we would like to have no change whatsoever in the data
 processing and signaling part of the application. However, in the
 decomposition afforded by MGCP, the AS component contains both the
 signaling and call control, in addition to the control of the IVR
 menus and and processing. Thus, the AS needs to be updated, even
 though what has changed is really an IVR component.

 The MGCP decomposition also presents a burden for software developers
 on the AS. They need to understand, and program, the detailed
 interactions with the MS that are provided by MGCP, in addition to
 the detailed signaling and data processing operations. The developers
 will also need to build and manage the low level state representing
 the controlled entity, which can be painful. The result is longer
 development times, less code reuse, and slower innovation.

 It has been argued that one of the benefits of the MGCP decomposition
 is that it offloads the "burden" of call control from the media
 server. However, from a complexity standpoint, the MGCP processing
 required is probably on par with (if not more than), the simple
 amount of call control and event processing needed if SIP and
 VoiceXML were used.

 From a reliability perspective, an MGCP style decomposition is less
 desirable. Since the components are strongly coupled, the system will
 fail so long as any of the pieces fail. Failure can also be
 introduced because of additional network resources needed for
 communications between the boxes. The result is that the MGCP
 decomposition may actually increase the probability of failure, as
 compared to no decomposition at all.

 Another decomposition that has been proposed is to break a proxy into
 a routing and call control component, plus a services component. The
 interface between the two is then a transactional interface for
 services, similar in concept to INAP, based upon state transitions
 within a call model. This is another form of tight coupling, since it
 requires the services component to have detailed knowledge of the
 operational model of the call control component. We believe that this
 decomposition is limiting, for the same reasons the AS/MS
 decomposition is limiting.

4 The Decoupled Model

4.1 Architecture

Rosenberg/Mataga/Schulzrinne [Page 6]

Internet Draft AS Components March 2, 2001

 As a result of this, we see the master/slave decomposition as being
 ideal for a single vendor to build a large system. However, this
 decomposition does not solve the other distribution needs we have
 motivated above. As a result, we propose that the AS be decomposed
 into an application component responsible for coordinating the
 overall execution of the application (called the controller), and
 application server components that provide pieces of the overall
 application. These components are only loosely coupled with the
 coordinating application server. The loose coupling implies that the
 interaction between them is the same as the interaction between the
 user and the coordinating application server, which is, in turn, the
 same as the interation between the application server components and
 other application server components. The components can easily be
 from separate vendors, and the interactions support the needed
 security and routing features to allow them to be owned by separate
 providers, even.

 The architecture is shown in Figure 2.

 The goal of the decoupling is to break the application into as
 coarse-grained pieces as possible. Each component (the coordinator
 included) should need to know as little as possible about the
 detailed operations performed by other components. A coarse-grained
 decomposition means that there is a clean and simple break in the
 functionality provided by the components. This enables significantly
 simpler interfaces between those components.

 Each component is really interested in passing a request for service
 to another, letting the other component perform its task, and then
 getting the final result of the task back as an output. From a
 software engineering perspective, this represents the classic
 function call; the call signaling component is making a function call
 to the media part. It is interested only in the return value - the
 debit card number, for example - and does not really care about the
 implementation of it. From a protocol perspective, this is a classic
 client-server system. The client makes a request of the server, and
 the server does whatever it needs to do to return the final response.
 The problem more closely resembes the client-server system than the
 function call, however. This is because we need the interaction to be
 across the network, rather than between code within the same process.
 This is because one of the key concepts here is that components can
 be provided by separate service providers.

 In such a model, where does the state for the sessions live? Here, we
 define a session as the complete set of interactions amongst all
 components for the delivery of the service. Thus, a session might
 span multiple protocols, and even multiple calls. Not surprisingly,

Rosenberg/Mataga/Schulzrinne [Page 7]

Internet Draft AS Components March 2, 2001

 session state is distributed amongst the components, and the
 distribution follows the architectural model of Figure 2. The top
 level server, the controller, maintains the high level pieces of
 state that deal with overall delivery of the service, and the state
 required to coordinate the interactions with the component servers.
 Each component server maintains only the state needed to execute
 their component, and to manage interactions with components below
 them. A component server does not know about the complete service
 being delivered, and does not know about sibling servers. This aspect
 of our model - hierarchical distribution of session state, leads to
 one of the primary benefits of the architecture - ease of
 development. Someone building a new application by reusing existing
 components only needs to manage the high level state for delivery of
 the service. State related to the details of operation of one of the
 components - timings between digits in an IVR server, for example, is
 not relevant to the coordinator, and does not need to be managed.

 The difference between classic RPC or client/server interactions and
 the interactions between the components here is that the relationship
 between the components represents a long lived association (i.e., a
 session), during which a session level service is being provided,
 rather than a simple input/output service. As an example, consider a
 component providing continuous real-time text-to-speech translation
 services. The application coordinator that wishes to use this service
 acts as a client, initiating a request for service to the server (in
 this case, the TTS server). However, the text is not passed as an
 "argument" to the TTS server, it is continually streamed for the
 duration of an active session, and the TTS server would continuously
 stream back the speech version of the text, which is the output of
 the service.

 Another example is a voice messaging server. The messaging server
 provides basic services like message drop, message retrieve, and
 message management. Each of these represent procedures that can be
 executed by a client component. To drop a message, for example, the
 client component would initiate a session with the messaging server.
 A prompt would be played over that session, something like "please
 record your message for Joe now", and then the component takes the
 media input stream, records it, and saves it. When it is done, the
 session is terminated.

 In some cases, the session may require a "side channel" over which
 intermediate data is passed, needed to control the session
 interactions from that point forward. IVR is the classic example. In
 some cases the coordinating application server can kick off the IVR
 script, and then only get back the final result - a menu option, a
 credit card number, or what have you. In other cases, the
 coordinating component may need to get intermediate results, so that

Rosenberg/Mataga/Schulzrinne [Page 8]

Internet Draft AS Components March 2, 2001

 +-----------+
 | |
 | |
 | AS |
 |coordinator|
 | |
 | |
 +-----------+
 SIP, -- \ ---
 RTP? -- \ ---- SIP,
 -- \ ---- RTP?
 -- \ SIP, ----
 -- \ RTP? ----
 -- \ --
 +----------+ +-----\----+ +----------+
 | | | | | |
 | | | | | |
 | | | | | |
 | ASC | | ASC | | ASC |
 | | | | | |
 | | | | | |
 +----------+ +----------+ +----------+
 \ /
 / \\ SIP, /
 / SIP, \ RTP? //
 / RTP? \\ / SIP,
 / \ / RTP?
 / +----------+
 +----------+ | |
 | | | |
 | | | |
 | | | ASC |
 | ASC | | |
 | | | |
 | | +----------+
 +----------+

 Figure 2: Decoupled Architecture

Rosenberg/Mataga/Schulzrinne [Page 9]

Internet Draft AS Components March 2, 2001

 it can guide the operation of the IVR moving forward. This requires a
 companion control channel that provides data output from the
 component server back to the client, and then returns further high
 level instructions from the client back to the server.

 There is a thin line in some cases between this control channel and
 the tightly coupled interactions of a master-slave MGCP relationship.
 However, the loosely coupled nature of the interaction can be
 maintained by using coarse-grained data passing over a distributed
 client-server protocol, such as HTTP or Corba.

 From this architectural description, it is clear that a client-server
 session establishment protocol, which allows for passing of
 parameters that describe service, is the ideal mechanism to
 coordinate the interaction between components. Clearly, SIP is
 perfect in such a role.

 Following the example above, an IVR application server component
 would be completely responsible for the execution of the IVR piece of
 an application, including both the media and the signaling call
 control. It would know the menus to maneuver through, and it would
 know when to collect digits and present prompts. The coordinating
 application server would request service from the IVR component by
 initiating a call to it (possibly using third party call control [5]
 to direct the media directly to the IVR without passing through
 itself; more on that below). The application component takes the
 media from the incoming call, running it against the IVR application.
 When the IVR is done, the final result - in this case, the credit
 card number, is passed back to the coordinating AS, possibly throug
 an HTTP POST operation. The coordinating AS then terminates the call
 with the IVR.

4.2 Benefits of the Decoupling

 This decoupled interaction between components provides several
 important benefits:

 Separation of Businesses. The decoupled interaction between
 components is needed to allow the components to be provided
 by separate providers. Master-slave control interactions do
 not work well across service providers, let alone across
 vendors. By allowing separate providers to offer the
 components, new businesses can be created that specialize
 in the piece they are providing.

 Rapid Development. Since the components can easily be placed in
 separate boxes from separate vendors, or even in separate

Rosenberg/Mataga/Schulzrinne [Page 10]

Internet Draft AS Components March 2, 2001

 providers, we achieve a separation of function that allows
 each piece to be developed in complete isolation. We also
 get reuse of components for new applications. This allows
 for rapid service creation.

 Better Interoperability. It can be argued that the decoupled
 interaction between components is more like to be
 interoperable that a master-slave mechanism. This is
 largely based on the assumption that a master-slave
 interaction requires a lot more messaging and exchange
 between the components, whereas the decoupled client-server
 mechanism requires less. The fewer information that passes
 back and forth, the easier it is to interoperate.

 Architectural Flexibility. The loose coupling of the components
 means that a server, such as a conferencing application or
 IVR, need not be implemented as an actual server. Rather,
 complex networks of components, with proxies providing
 routing of requests in arbitrarily complex ways, can be
 built to provide a service. Since the interaction is SIP,
 the application controller accessing the service doesn't
 know whether it is communicating with a single server or a
 network built in this fashion. That allows ASPs flexibility
 in how they can construct their service networks.

 Reliability The loose coupling of the components improves
 reliability compared to a tight coupling. Thats because the
 system can probably still continue to operate in the
 failure of a single component. For example, if a TTS server
 fails during a session, an application server can use a
 server from a completely different provider, or it can use
 a media server instead, converting the text to VoiceXML
 scripts. Depending on the service, the TTS component could
 possible be skipped altogether. Note, however, that the
 reliability is still not as good as a monolithic system.
 Having ten identical boxes each running a complete set of
 services is better than spreading the service across ten
 boxes, where some subset cause total failure.

5 Architecture for the Interfaces

 Up to now, we have been fairly vague about exactly how such an
 interface would work in practice. We have argued that it is SIP, but
 not described in detail how SIP is actually used for this function.

Rosenberg/Mataga/Schulzrinne [Page 11]

Internet Draft AS Components March 2, 2001

 SIP (along with SDP [6]) clearly provides the facilities for
 initiation and termination of the sessions between the controller and
 components, and for specification of the media addresses to and from
 which media is sent. However, SIP leaves a lot of flexibility in
 terms of naming, additional message content, session duration, and
 control. Here, we discuss each of these in turn.

5.1 Naming

 In any remote procedure call system, a key component is naming. The
 identified resource must be properly addressed so that the underlying
 message passing system can properly determine where the request
 should go.

 The same is true in SIP. Messages are routed based on the request
 URI, as it serves as the primary naming tool for routing messages. In
 its application to AS component interaction, the request URI serves
 as the primary tool to identify the resource to which the session is
 addressed. A critical piece of defining a session level service that
 can be accessed by SIP is defining the naming of the resources within
 that service. This point cannot be understated.

 As an example, consider a conferencing service. In this case, the
 primary resource that is being accessed is a mixing service. We would
 like to have a way to identify which conference is being addressed by
 any given call. All calls for the same conference are all bridged
 together. By default, the bridging would operate in an N-1
 configuration (that is, each user receives a mixed media stream that
 represents all of the other users besides themself). Conferences can
 be set up in two ways - ad-hoc, which are not pre-established at all,
 and exist so long as there is a participant in them, and scheduled,
 where they exist for a certain period of time.

 One might imagine that a conferencing service breaks its URI
 namespace into two pieces - one piece that represents ad-hoc
 conferences, and another that represents scheduled conferences. Ad-
 hoc conferences are addressed using a URI of the form <conference
 ID>.adhoc@conferences.com. All users who initiate a call to the URI
 sip:as9dahas89.adhoc@conferences.com are bridged together. The
 conference state is established when the first call to a conference
 occurs, and destroyed when the last call terminates. In contrast,
 scheduled conferences might be named by <conference
 id>.scheduled@conferences.com, so that a call to
 sip:conference12.scheduled@conferences.com allows a user access to a
 pre-arranged conference.

 There are several benefits to naming ad-hoc conferences vs. scheduled
 ones in this fashion. The primary one is convenience; the name makes

Rosenberg/Mataga/Schulzrinne [Page 12]

Internet Draft AS Components March 2, 2001

 it the type of conference apparent to any entities that are
 interested. Secondly, it can avoid certain misconfigurations. Let's
 say there are no conventions for naming of ad-hoc versus scheduled
 conferences. I am asked to join a scheduled conference
 (conf2321@conferences.com), but I mis-type the URL in my browser
 (conf2123@conferences.com). I don't want this to drop me into an ad-
 hoc conference where I sit for 15 minutes thinking others will
 eventually join. If ad-hoc conferences are named differently, a call
 to cond2123@conferences.com is never going to be an ad-hoc
 conference, and so my call will be rejected immediately.

 For an application server to use a conferencing service as a
 component, the AS must know the URI namespace conventions used to
 identify the various conferences. The above information, for example,
 would be provided by the conferencing provider to its customers.

 This same concept of using the request URI as a service identifier
 has been described in detail for voicemail systems [7].

 The great advantage of using the request URI as a service identifier
 comes because of the combination of two facts. First, unlike in the
 PSTN, where numbers are limited, URIs come from an infinite space.
 They are plentiful, and they are free. Secondly, the primary function
 of SIP is call routing through manipulations of the request URI. In
 the traditional SIP application, this URI represents people. However,
 the URI can also represent services, as we propose here. This means
 we can apply the routing services SIP provides to routing of calls to
 services. The result - the problem of service invocation and service
 location becomes a routing problem, for which SIP provides a scalable
 and flexible solution. Since there is such a vast namespace of
 services, we can explicitly name each service in a finely granular
 way. This allows the distribution of services across the network. In
 the conferencing example above, since we have separated the names of
 ad-hoc conferences from scheduled conferences, we can program proxies
 to route calls for ad-hoc conferences to one set of servers, and
 calls for scheduled ones to another, possibly even in a different
 provider. In fact, since each conference itself is given a URI, we
 can distribute conferences across servers, and easily guarantee that
 calls for the same conference always get routed to the same server.

 This is in stark contrast to conferences in the telephone network,
 where the equivalent of the URI - the phone number - is scarce. An
 entire conferencing provider generally has one or two numbers.
 Conference IDs must be obtained through IVR interactions with the
 caller, or through a human attendant. This makes it difficult to
 distribute conferences across servers all over the network, since the
 PSTN routing only knows about the dialed number.

Rosenberg/Mataga/Schulzrinne [Page 13]

Internet Draft AS Components March 2, 2001

 Care must be taken not to push this concept too far. Naming of
 services should not become so fine-grained that all parameters
 associated with the service simply become encoded into the request
 URI as well. The right level of granularity can be determined based
 on routing. If a service is represented by multiple URLs, but
 requests for each of those URLs are always routed in the same way,
 the naming is too fine-grained.

5.2 Additional Message Content

 Sometimes, connecting to a service requires the service to know
 additional information that is not appropriate for the request URI.
 As an example, the conferencing server might need to know the name,
 address, phone number, company, and email address of the
 participants, which it converts to speech and uses as an announcement
 when the user joins and leaves the bridge.

 This kind of content can easily be carried in the body of the SIP
 messages used to establish and manage the session with the service.
 For simple data, SIP headers may be appropriate. In the conferencing
 example above, the conferencing service might mandate that a vCard be
 attached to all INVITEs, in order to provide that information.

 When existing data formats (like a vCard) are not defined to provide
 the needed information, it can be encoded in an XML document, for
 example, and carried along in the INVITE.

 Each service would need to specify the content that it needs in order
 to process the session invitation.

5.3 Session Duration

 The duration of the session that is established with a server depends
 entirely on the nature of the service. For example, for a conference,
 the initiation of the call begins the mixing service for that user,
 and the termination of the call results in that user leaving the
 conference.

 For an IVR service, the INVITE request begins the interaction with
 the service. Once the INVITE transaction completes, the IVR would
 play out the initial prompt, and begin collecting data from the
 caller. How the IVR terminates depends on its usage. When the
 initiator of the service is an application server, we would argue
 that in almost all cases, it should be the responsibility of the
 controller to determine when the interaction is complete (and thus
 terminate the call with a BYE). However, when the initiator is an end
 user, the IVR will usually be the one to terminate the session. We
 discuss IVR interactions in more detail below in Section 6.1.

Rosenberg/Mataga/Schulzrinne [Page 14]

Internet Draft AS Components March 2, 2001

5.4 Third Party Call Control

 Third party call control, as defined in [5], plays an integral role
 in this architecture.

 In many cases, the controller orchestrating a service wishes to
 invoke the resources of an IVR or conferencing server. However, the
 AS is not the actual source of the media that drives the IVR. The
 source of the media is the end user that initiated the call to the
 controller. What is needed, then, is a way for the AS to call the IVR
 or conferencing server, and pass it the media information of the end
 user. Similarly, the media address of the IVR server (described in
 the SDP from the media server), needs to be passed to the end user
 that initiated the call. By using third party call control, an
 application server can direct the media of the end user to and from
 the components that it is using to provide the application. Once one
 service is complete, the controller can move the media to a different
 component. SIP re-INVITEs also allow the controller to request the
 caller to send multiple media streams, one, for example, containing
 only DTMF and tones. This allows for DTMF control of services without
 carrying DTMF in SIP itself.

 Figure 3 shows how we use a component server to collect DTMF input
 for a service; specifically, a simple (and perhaps useless) service
 that allows a caller to press '1' to indicate that they want to put
 the call on hold. The service is, in principal, useless, since hold
 is so common that the end user can do this themselves. However, it is
 useful for example purposes.

 The caller sends an INVITE request to the called party (1), which is
 routed to a server handling calls for the domain of the called party.
 In this case, the server is an application server. The AS decides
 that it would like to offer the caller advanced services based on
 DTMF events sent mid-call. As a result, it decides to invoke the
 services of a media server component. The AS will use third party
 call control mechanisms to have the caller send any DTMF related
 media to the media server, in addition to sending its media to the
 called party. To accomplish this, the AS sends an INVITE to the media
 server (2), with an indication that the media stream is send only
 (this is accomplised using the sendonly SDP attribute [6]). The
 request URI of this INVITE binds that session to a service that looks
 for any in-band DTMF, and reports it back to the AS through an HTTP
 GET or POST operation. In section 6.1, we show how this is easily
 done with a VoiceXML driven IVR server.

 The media server responds with a 200 OK (3) that contains SDP with
 the address where the media should be sent to. The application server

Rosenberg/Mataga/Schulzrinne [Page 15]

Internet Draft AS Components March 2, 2001

 ACKs this response (4), and holds on to that SDP. The AS then proxies
 the original INVITE request (5), and the called party answers the
 call (6). This acceptance is proxied upstream (7), and then
 acknowledged (8,9). At this point, media is flowing between the
 caller and called party (10). The next step for the AS is to get a
 stream of DTMF digits to flow from the caller to the media server. To
 do this, it sends a re-INVITE to the caller (11). This re-INVITE
 contains the same SDP as the response (6) from the called party, but
 with the addition of a new media line. This media line is audio, and
 contains a single codec, the RTP payload format for DTMF and tones
 [8]. The connection address and port are from the SDP returned from
 the media server. This tells the caller to send an additional media
 stream to the media server, using only the DTMF codec. The result is
 that RTP packets are sent only when the caller presses a button on
 the phone.

 The caller accepts this re-INVITE (12), and the AS acknowledges it
 (13). Now, DTMF only RTP is flowing between the caller and the media
 server (14). At some point later, the caller presses the 1 key
 (which, for example, might imply call hold). This is processed by the
 media server, and the result is an HTTP request being sent to the AS
 (15). The HTTP request contains the value of the collected digit. The
 AS receives this request, and knows that the user keyed in a 1.
 Recognizing this input as call hold, the AS sends a re-INVITE to the
 called party (17). The SDP in this re-INVITE is the same as the SDP
 in the original INVITE from the called party (1), except that the
 connection address is set to zero, indicating call hold. The called
 party accepts the re-INVITE (18), and this is ACKed by the AS (19).
 The called party is now on hold.

 Note that the call flow remains unchanged if the stimulus were based
 on voice recognition instead of DTMF. The only difference would be
 that a general purpose codec, such as G.711, would be used instead of

RFC 2833 for communications between the caller and the media server.
 This achieves an important unification. Independent of the type of
 stimulus - voice, DTMF, or, in fact, direct http requests from the
 caller (if they were using a softphone), the service execution code
 is unchanged.

 Others have proposed that DTMF digits be carried in SIP directly from
 the caller to the AS [9,10]. However, this approach does not work
 for anything beyond DTMF, while our approach works for DTMF, speech,
 and web interfaces. Another drawback of the DTMF-in-SIP approach is
 that all entities on the call signaling path will receive any DTMF
 digits dialed by the called party. Furthermore, since the caller
 doesn't know if there is an entity interested in DTMF, it is required
 to send DTMF within SIP messages all the time, even if no entity is
 interested.

https://datatracker.ietf.org/doc/html/rfc2833

Rosenberg/Mataga/Schulzrinne [Page 16]

Internet Draft AS Components March 2, 2001

 Caller Coordinator Media Server Callee
 | | | |
 |(1) SIP INV | | |
 |--------------->|(2) SIP INV | |
 | |----------------->| |
 | |(3) 200 OK | |
 | |<-----------------| |
 | |(4) SIP ACK | |
 | |----------------->| |
 | |(5) SIP INV | |
 | |----------------------------------->|
 | |(6) 200 OK | |
 |(7) 200 OK |<-----------------------------------|
 |<---------------| | |
 |(8) SIP ACK | | |
 |--------------->|(9) SIP ACK | |
 | |----------------------------------->|
 |(10) RTP | | |
 |...|
 | | | |
 |(11) SIP INV | | |
 |<---------------| | |
 |(12) 200 OK | | |
 |--------------->| | |
 |(13) SIP ACK | | |
 |<---------------| | |
 |(14) RTP | | |
 |...................................| |
 | | | |
 | |(15) HTTP GET | |
 | |<-----------------| |
 | |(16) 200 OK | |
 | |----------------->| |
 | | | |
 | |(17) SIP INV | |
 | |------------------+---------------->|
 | |(18) 200 OK | |
 | |<-----------------+-----------------|
 | |(19) SIP ACK | |
 | |------------------+---------------->|
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |

 Figure 3: Call Flow for DTMF Enabled Hold Service

Rosenberg/Mataga/Schulzrinne [Page 17]

Internet Draft AS Components March 2, 2001

 There have been proposals for adding a subscription/notification
 mechanism on top of this to avoid this problem. However, this further
 complicates the system by adding a requirement for the caller to
 support a subscription and notification service just for DTMF.

 Our approach fits well within the existing SIP framework, and
 requires no additional work from the end users. Furthermore, it
 transparently supports multiple application server components
 receiving DTMF. This is because an AS is able to send a DTMF stream
 to a component by adding a new media line to the list of media
 streams being sent by the caller. The list of media streams being
 sent by the caller is observed by each AS through the initial INVITE,
 along with any subsequent re-INVITEs which might modify it. Consider
 the situation with two application servers, A and B, depicted in
 Figure 4. The original call setup starts with the caller, flows
 through A, then B, then the called party. At some point later, A
 sends a re-INVITE (10) to the caller, adding a media stream, just as
 described in Figure 3. The SDP in this INVITE will be the same as
 provided by the caller in message (1), plus the additional DTMF
 stream. Note that this re-INVITE does not pass through B. Now, B
 decides to add a media stream for DTMF. So, it sends a re-INVITE
 (13). This goes first to A. As far as A is concerned, this re-INVITE
 is from the called party. A computes the difference between what it
 believes the called party should perceive as the set of media
 streams, and what is in the re-INVITE (13). This difference (the
 additional DTMF stream added by B) is added to the SDP that A had
 sent to the caller previously (10), and the result is sent in a re-
 INVITE to the caller (14). This SDP now contains the media streams
 meant for the actual called party, along with two DTMF streams; one
 for A, and one for B. The caller thus sends DTMF to both servers.

 A further advantage of our approach is that the DTMF can even be sent
 using multicast, since it is being sent in RTP rather than as part of
 SIP. This allows for tremendous scalability, if needed, in the number
 of entites receiving the DTMF streams.

5.5 Side Channels

 Side channels are used for passing of events from the application
 server components back to the client, and for passing control
 commands from the client to the application server component.

 Unfortunately, side channels complicate the simple session level
 interface between components. It is our belief, at least for the
 components described here, that only minimal side channels are
 needed. Specifically, the only service below that requires one to be
 effective is the IVR service, for which HTTP forms an ideal side

Rosenberg/Mataga/Schulzrinne [Page 18]

Internet Draft AS Components March 2, 2001

 channel. If the side channel becomes so complex as to introduce
 extensive synchronization, bandwidth, and transactional issues, the
 relationship between the components becomes tightly coupled once
 more, and the benefits we are espousing here begin to disappear.

 As such, we believe that a reasonable side channel for decoupled
 server interactions is defined as follows:

 o The event reporting and control components have no real time
 requirements.

 o Event reporting from the component back to the client
 accessing it are infrequent; specifically, the intervals are
 much larger than the round trip times between the client and
 the component.

 o Control from the client to the component is infrequent;
 specifically, the intervals are much larger than the round
 trip times between the client and component.

 o Event reporting is coarsely granular, so that the client does
 not need to explicitly subscribe to specific events in order
 to avoid be overwhelmed with data.

 o The amount of data passed in both the events and in the
 control is small.

 o There are no requirements for transaction support.

 Note that protocols like MGCP and megaco do not meet these
 requirements, as they require tight timing, synchronization, and
 explicit subscriptions. HTTP, as used in VoiceXML, however, does meet
 these requirements.

6 Patterns for Accessing Components

 In this section, we propose a set of patterns that define the
 interaction of a controller with an application server component.
 These patterns manifest themselves in the description of the service
 invoked when a session is initiated, a discussion of the naming
 conventions of the service, and a description of any back channel
 used for control and data passing.

6.1 Interactive Voice Response Services

 We have touched upon the basics of the interaction between a
 controller and an IVR server. The controller initiates a call to the
 server, the server executes some kind of IVR service, and data is

Rosenberg/Mataga/Schulzrinne [Page 19]

Internet Draft AS Components March 2, 2001

 Caller A B Callee
 | | | |
 |(1) SIP INV | | |
 |-------------->|(2) SIP INV | |
 | |--------------->|(3) SIP INV |
 | | |---------------->|
 | | |(4) 200 OK |
 | |(5) 200 OK |<----------------|
 |(6) 200 OK |<---------------| |
 |<--------------| | |
 |(7) SIP ACK | | |
 |-------------->|(8) SIP ACK | |
 | |--------------->|(9) SIP ACK |
 | | |---------------->|
 |(10) SIP INV | | |
 |<--------------| | |
 |(11) 200 OK | | |
 |-------------->| | |
 |(12) SIP ACK | | |
 |<--------------| | |
 | | | |
 | |(13) SIP INV | |
 |(14) SIP INV |<---------------| |
 |<--------------| | |
 |(15) 200 OK | | |
 |-------------->|(16) 200 OK | |
 | |--------------->| |
 | |(17) SIP ACK | |
 |(18) SIP ACK |<---------------| |
 |<--------------| | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |

 Figure 4: Multiple Application Servers and DTMF

 possibly fed back to the controller with intermediate and/or final

 results of the IVR interaction.

Rosenberg/Mataga/Schulzrinne [Page 20]

Internet Draft AS Components March 2, 2001

 1. How is the IVR service identified?

 2. How can the controller specify the details of the dialog
 the IVR carries out with the user?

 3. How does data from the IVR get passed back to the
 controller?

 4. How is intermediate control performed (e.g., to interrupt
 or reset IVR based on some event at the controller, in this
 case)?

 We believe that VoiceXML [11] represents the ideal partner for SIP in
 the development of distributed IVR servers. VoiceXML is an XML based
 scripting language for describing IVR services at an abstract level.
 VoiceXML supports DTMF recognition, speech recognition, text-to-
 speech, and playing out of recorded media files. The results of the
 data collected from the user are passed to a controlling entity
 through an HTTP form POST operation. The controller can then return
 another script, or terminate the interaction with the IVR server.

 From a naming perspective, the primary issue is how a request URI is
 associated with a script to invoke when the call is answered. We see
 three primary mechanisms:

 1. There is a one-to-one binding of the address in the request
 URI to a script to execute. These bindings are published by
 the provider of the IVR service.

 2. The initial script to execute is actually carried as
 content in the body of the SIP INVITE request. The request
 URI indicates that the desired service is execution of
 content in the request (i.e., sip:executebody@servers.com).

 3. The initial script to execute is fetched by the VoiceXML
 server; the URL to fetch it from is passed in the SIP
 INVITE message that initiates the IVR session. This can be
 accomplished either with the application/uri MIME type as a
 body, or using the new *-Info headers [12] which provide
 references to content to fetch.

 We believe that the third approach is probably the best one. SIP is
 not the ideal transfer mechanism. Passing a URI allows a far better
 transfer tool, namely HTTP, to be used to actually fetch the script
 back from the controller.

 HTTP is then also used to pass back form data from the IVR to the
 controller. The results of the HTTP POST can also contain additional

Rosenberg/Mataga/Schulzrinne [Page 21]

Internet Draft AS Components March 2, 2001

 VoiceXML scripts to execute. It represents the side channel discussed
 in section 5.5

 Note that in some cases, there needs to be interactions between the
 HTTP server that receives the HTTP POST requests, and the controller
 that initiates and terminates the SIP sessions with the IVR. This is
 the case when the data collected by the VoiceXML server is used to
 guide signaling behavior. For example, a pre-paid calling application
 might use the IVR to collect the users PIN code. The PIN code is
 looked up, and the number of minutes remaining is determined. This
 amount of time must be known to the SIP controller, as it will need
 to hang up the call once this time expires. Some kind of session
 sharing mechanism is needed between the SIP controller and the HTTP
 server in this case.

 Figure 5 shows the interaction between an application server acting
 in a coordinating role, and an IVR server component. In this example,
 consider an application where the user makes a call, but the system
 needs additional information to determine where to forward it to. The
 user is prompted for the info, and once the name of the desired
 called party is obtained and looked up, the call is completed to the
 requested destination.

 First, in step (1), the caller sends an INVITE to the controller. The
 controller then creates a brand new call to the IVR application
 server (2), using the SDP from the INVITE in (1). The IVR accepts the
 call (3), and the SDP from that acceptance is returned in a 183
 response to the caller (4). The call to the IVR is acked (5), and now
 a media stream exists between the caller and the IVR server. The IVR
 server, in step (6), fetches the initial VoiceXML script to execute,
 which is returned by the controller (7). The prompts are played to
 the caller, and the identity of the called party is collected. This
 is passed to the controller through another POST (8), which returns
 an empty VoiceXML script (9)[1] complete, the controller hangs up
 with it (10 and 11). The information the controller got in the POST
 (8) is used to determine the next hop SIP server, and the initial
 INVITE is proxied there (12).

 Its important to observe the all call control related to executing
 the service lives within the controlling application server. The IVR
 application server deals strictly with the media component. This
 division of work, as we have discussed above, allows for independent

 [1] Note that it is unusual for an empty script to be
returned; this is because we want the AS to maintain
control of the call signaling

Rosenberg/Mataga/Schulzrinne [Page 22]

Internet Draft AS Components March 2, 2001

 evolution of the call control and media components of services. For
 example, if the desired called party did not have a reachable SIP
 address, but they did have an email address, the call could be
 redirected to a mailto URL. To support this twist, only the
 controlling application server code need change. The media component
 remains completely and totally unchanged.

 Readers familiar with VoiceXML will observe that VoiceXML almost
 achieves this perfect separation. It lacks any call control excepting
 a two - for call transfer and call termination. These tags are
 clearly not sufficient for many services. Our architecture would
 argue that instead of adding call control to VoiceXML, all control
 should be removed, so that call control can be left to other server
 components.

 The separation of the control from the media component also allows
 the media component to change without affecting the control
 component. In fact, because of the http interface between the two,
 the media server can be completely removed and replaced with a normal
 web browser, with only a small effect on the call control component.
 As an example, if the calling party was coming from a web enabled SIP
 client (known by the presence of the Accept header with text/html as
 a value in the INVITE request), the controller could return an HTTP
 URL in the 183 with an actual web form that gets filled out by the
 caller. This would be instead of using an IVR server to collect the
 data. Interestingly, the representation of the collected data is
 identical in both cases. Both use an HTTP POST operation to send the
 data to the controller. This allows the data collection code in the
 controller to be unified across both voice access and web access.

6.2 Conferencing Servers

 Conferencing servers today vary in type and complexity. Some are
 dialup only, supporting IVR access. Others support ad-hoc
 conferencing with web interfaces. Others still support three way
 calling as part of a PBX system.

 We observe once more that all of these conferencing "servers" are
 really conferencing applications that are just bundled as a server.
 These conferencing applications can be decomposed into components in
 exactly the way we have described above. At the core of each of these
 conferencing applications is a mixing service. This service is
 responsible for taking N audio or video streams, mixing them
 according to some matrix, and returning the mixed stream to each
 participant. Issues such as conference policy, provisioning of
 conferences, and authentication are all completely separate and
 outside of this basic mixing component.

Rosenberg/Mataga/Schulzrinne [Page 23]

Internet Draft AS Components March 2, 2001

 | INVITE (1) | |
 |------------------------>| |
 | | INVITE (2) |
 | |------------------------->|
 | | 200 OK (3) |
 | |<-------------------------|
 | 183 (4) | |
 |<------------------------| |
 | | ACK (5) |
 | |------------------------->|
 | MEDIA | |
 |--|
 | | |
 | | HTTP GET (6) |
 | |<-------------------------|
 | | HTTP 200 OK (7) |
 | |------------------------->|
 | | |
 | | |
 | | |
 | | |
 | | HTTP GET (8) |
 | |<-------------------------|
 | | |
 | | HTTP 200 OK (9) |
 | |------------------------->|
 | | |
 | | BYE (10) |
 | |------------------------->|
 | | 200 OK (11) |
 | |<-------------------------|
 | | |
 | | INVITE (12) |
 | |--------------------------------------->
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |

 Caller Controller IVR Server

 Figure 5: Interaction of App Server and IVR Component

Rosenberg/Mataga/Schulzrinne [Page 24]

Internet Draft AS Components March 2, 2001

 For this reason, we argue that a large variety of conferencing
 applications can be easily constructed by having the mixing service
 as separate application server component.

 What does the interface to such a mixing server look like? For the
 call control interface, users would join a conference by calling the
 server. The server would answer the call, thus appearing as a SIP
 UAS. The media sent from the user is mixed with other users in the
 conference, and the media sent back to the user is the mixed stream.
 The user can leave the conference by sending a BYE to the server, and
 the server can kick a user out of the conference by sending the user
 a BYE.

 Since the primary resource being accessed is a conference, it is no
 surprise that we would argue that the request URI of an incoming call
 defines the conference a user is mixed in to. In other words, all
 users that call the server with the same request URI, are all mixed
 together. The conferences are not defined by Call-ID or other SIP
 header fields. Using the request URI has tremendous advtanges from a
 routing and naming perspective, as we have discussed more generally
 above.

 It is not neccesary (in fact, not even advisable), for the
 conferencing server to require that the URIs that define the
 conference be set up ahead of time. Conference lifecycles in the
 mixing server are very simple. Conference state is created when the
 first call arrives for a particular URI, and ends when the last user
 with a call to that URI hangs up. This model allows the same mixing
 server to support both ad-hoc conferences, and pre-arranged
 conferences too. Pre-arranged conferences are handled through policy
 and control in a coordinating server external to the mixing server.
 This server lives entirely in the call control and signaling plane,
 not in the media plane.

 SIP (and RTP, of course) alone is not sufficient for complete usage
 of a conferencing server. Media mixing policies (effectively, the
 matrix indicating which users hear which other users, and with what
 relative volumes) need to be set. Information on the status of the
 conference, such as the identity of the current speaker, number of
 users currently being mixed, etc., may need to be reported back to
 some control entity. These represent the requirements for the side
 channel. In IVR servers, the side channel used HTTP. We argue that to
 unify these concepts, HTTP is ideally suited here as well. Updates to
 the mixing policy can be made through HTTP POST requests against the
 mixing server, using well defined interfaces (possibly SOAP).
 Similarly, information about the status of the conference can be
 obtained through HTTP GET operations against the mixing server. The
 side channel here meets the requirements outlined in Section 5.5; it

Rosenberg/Mataga/Schulzrinne [Page 25]

Internet Draft AS Components March 2, 2001

 is not real time in nature, does not reuqire transactional support,
 and passes relatively infrequent data and control. In fact, such a
 side channel will often not be needed at all. In 90 default mixing
 policy (the so-called N-1 matrix, where each user hears everyone but
 themselves, all at equal volume, with no floor control) will suffice.

 Fans of the INFO method [13] will argue that instead of using HTTP
 for the control, why not INFO? This would eliminate the need for an
 additional protocol, after all. The answer is the same as to why SIP
 should not simply replace HTTP - the two have different strengths and
 weakenesses. SIP is a poor data transfer protocol. It has insufficent
 support for transfer of medium to large data sets, which is important
 here. Furthermore, we may want to allow an entity separate from the
 one that initiated the session to control the session. Usage of INFO
 would only work from the same device (because of the sequence
 numbering).

 In the next few sections, we show how this basic application server
 component can be used, along with a controller and other components,
 to build more complex conferencing applications.

6.2.1 Web Scheduled Conference Services

 In this application, we'd like a conferencing service where all
 conferences must be pre-scheduled. The pre-scheduling is done through
 a web page. At the page, the user will enter the start time (but not
 mandatory stop time) of the conference, the maximum number of
 attendees, and the identities of the attendees (if known). Once
 entered in a form, the server returns a SIP URL representing the
 conference.

 To implement this, we use an coordinating application server that has
 a SIP and HTTP interface, along with the mixing application server
 just described.

 Figure 6 shows a call flow for this service. A web client is first
 used to submit the information. Let us suppose a simple case where
 the conference can have up to two participants, and the conference
 starts immediately. The HTTP POST representing the form data is sent
 to the controller (1). It stores the information for the conference
 in a local data store, and chooses a SIP URL for the conference. This
 URL can be anything, so long as it is different from any URLs handed
 out so far by the controller. The URL is returned to the web client
 in step (2). As an additional convenience feature, the URL could be
 emailed to the participants. This would require the controller to
 have an SMTP interface, in addition to HTTP and SIP. Note that this
 SIP URL points to the controller, NOT the mixing server.

Rosenberg/Mataga/Schulzrinne [Page 26]

Internet Draft AS Components March 2, 2001

 A few moments later, the first participant calls in using a SIP
 INVITE (3). The call is routed to the controller. It checks the
 conference ID. It finds that the policy permits up to two
 participants (not a practical example, but simplifies the call flow).
 It stores data indicating that one participant has now joined, and
 the proxies the INVITE request in step (4) to the mixer. The request
 URI in this request will have the same user part as (3), but the host
 part now represents the mixer. The mixer receives the INVITE, creates
 the initial conference state (as this is the first call for that
 URL), and returns a 200 OK (5), which is forward to the caller (6),
 and then ACKed (7 and 8).

 In step (9), the second caller calls in. The controller sees that
 only one participant is on the call so far, so the second call is
 accepted. The controller stores the fact that there are now 2
 participants, and proxies the INVITE (10). The INVITE is accepted by
 the mixer (11), and the response forwarded to the second caller (12),
 and then ACKed (13 and 14). The two participants A and B can now hear
 each other.

 A third caller then calls in (15). The controller checks its records,
 and notices that this conference is now full. So, it rejects the
 INVITE (16), which is acknowleged (17).

 The astute reader will observe that, strictly speaking, the HTTP
 server does not really need to be co-resident with the SIP server in
 the controller. The initial conference setup can be stored in a
 database by a web server, and the controller can simply read this
 database. However, in more complex cases, we may wish to have web
 access to learn dynamic information about the conference as it
 progresses (for example, which users are in the conference). For this
 kind of dynamic session state, using a shared database between
 components is cumbersome. Rather, an integrated HTTP/SIP server is
 much better suited, where integrated implies only that it has built
 in mechanisms for session state sharing between the SIP and HTTP
 components.

 For this simple conferencing service, it was sufficient for the
 controller to act as a proxy. Thats because it does not need to
 forcibly kick anyone out of the conference once they are in. To
 support that kind of functionality, third party call control is
 needed. Let us examine a more complex service in the next section.

6.2.2 Web Scheduled, IVR supported, Time Limited Conference

 In this more complex example, we once again wish to use a web
 interface to set up the conferences. However, we wish to add a stop
 time. If there are participants in the conference when the stop time

Rosenberg/Mataga/Schulzrinne [Page 27]

Internet Draft AS Components March 2, 2001

			(1) HTTP POST	
--------------------------->				
			(2) 200 OK	
<---------------------------				
			(3) INVITE	
	----------------------->	(4) INVITE		
				--------------------->
				(5) 200 OK
			(6) 200 OK	<---------------------
	<-----------------------			
			(7) ACK	
	----------------------->	(8) ACK		
				--------------------->
			(9) INVITE	
		------------------->	(10) INVITE	
				--------------------->
				(11) 200 OK
			(12) 200 OK	<---------------------
		<-------------------		
			(13) ACK	
		------------------->	(14) ACK	
				--------------------->
			(15) INVITE	
			--------------->	
			(16) 500 Full	
			<---------------	
			(17) ACK	
			--------------->	

 Web A B C Controller Mixer

 Figure 6: Web Scheduled Conference Services

Rosenberg/Mataga/Schulzrinne [Page 28]

Internet Draft AS Components March 2, 2001

 arrives, a warning announcement is played 10 minutes prior, and then
 they are kicked off. In addition, when a user joins the conference,
 before they are added, they hear an announcement that states the name
 of the person that set up the conference, and what the start and stop
 times are. They are then asked to speak their name. Then, they are
 dropped in. The conference server then speaks their name, so that
 everyone knows who just joined.

 This seemingly complex service is very easily constructed by adding
 an IVR server as described above. Now, we have a controller, a mixing
 server, and an IVR server, all working together to build the service.
 Each provides a specific component towards the overall solution, yet
 each is an application server in its own right, with both signaling
 and media interfaces.

 We assume that the web setup is done as above. This time, the stop
 time is provided, along with the name of the person setting up the
 conference.

 The call flow for the initial participant is shown in Figure 7.

 The initial participant sends an INVITE, which is forwarded to the
 controller. The controller matches the request URI against the
 conference that the user wishes to join. The controller recognizes
 that it needs to play an announcement. So, in step (2), it initiates
 a call to an IVR server. This call is accepted in step (3), and the
 resulting SDP is passed back to the UAC in step (4) in a provisional
 response. After ACKing the call with the IVR in step (5), the
 controller receives an HTTP GET to fetch the root VoiceXML script in
 step (6). The controller dynamically generates the VoiceXML script,
 whose content will cause the server to read out "Welcome to the
 conference, Bob. The call will start at 10 am, and end at 11am.". The
 name of the caller, Bob, is extracted from the INVITE (1).

 Once the prompt has been played, the IVR server prompts the caller
 for their name, and the result is recorded into a file. Then, the
 VoiceXML server attempts to fetch the next VoiceXML script from the
 controller (8). Before responding, the controller reconnects the
 media stream from the media server into the conference bridge. To do
 this, it first sends an INVITE to the conferencing server, using SDP
 indicating send only (9). The server accepts (10), and the controller
 ACKs (11). The SDP from the acceptance (10) is passed in a re-INVITE
 (12) to the IVR server. The IVR server then accepts (13) and the
 controller ACKs (14). Now, a unidirectional media stream from the IVR
 server into the conference bridge is set up. The controller returns
 the next VoiceXML script (15), which tells the IVR server to play the
 previously recorded file into the conference, announcing the joining

Rosenberg/Mataga/Schulzrinne [Page 29]

Internet Draft AS Components March 2, 2001

 user. Once this is done, the IVR server fetches the next script (16),
 and gets back an empty response (17). The controller then disconnects
 from the IVR server (18,19). Finally, the controller re-INVITEs the
 conference server (20), updating the SDP to be that from the initial
 INVITE (1). The SDP from the acceptance (21) is passed on to the
 caller (22). Now, the caller is connected to the mixer as the first
 user in the conference.

 The second user would join in much the same way.

 Approximately 10 minutes before the end of the conference, a timer
 fires inside of the controller. It is time to play a warning
 announcement into the conference. The call flow for this is shown in
 Figure 8.

 The basic idea is to initiate a call to the IVR server and mixer,
 connect them using third party call control, and then have the IVR
 server play the announcement into the conference. The controller then
 hangs up.

 In step (1), the controller sends an INVITE to the mixer with a
 single audio stream on hold (i.e., "empty"). The request URI of the
 request is that of the conference. The mixer returns a 200 OK in step
 (2), and an ACK is sent in (3). The SDP from (2) is then used in step
 (4) to call the IVR server, which answers with its SDP in step (5).
 This is used in a re-invite (7,8,9) to the mixer to update the IP
 address and port as that of the IVR server. The IVR server then
 fetches the root VoiceXML document from the controller (11). This
 document instructs the server to read out some kind of conference
 warning - "Warning, your conference will end in 10 minutes". Once
 this is done, the IVR server fetches the next document (13), which is
 empty. The controller then hangs up with both the mixer (17) and the
 IVR server (19), disconnecting the IVR server from the conference.

 These examples demonstrate the component model we are proposing. The
 mixing component does not have application level intelligence. It has
 a call control interface, allowing it to exist anywhere (and be
 provided by any ASP service) and yet be a callable resource by other
 application server components. By combining a controller with an IVR
 server and the mixing server, complex and useful applications can be
 constructed in a distributed fashion.

6.3 Continuous Text-to-Speech

 Another example of an application server component is a continuous
 Text-to-Speech (TTS) converter. This kind of service allows a real
 time text stream (encapsulated in RTP using the RTP payload format

Rosenberg/Mataga/Schulzrinne [Page 30]

Internet Draft AS Components March 2, 2001

 Caller Controller IVR Server Mixing Server
 | | | |
 | (1) INVITE | | |
 |-------------->| (2) INVITE | |
 | |----------------->| |
 | | (3) 200 OK | |
 | (4) 183 |<-----------------| |
 |<--------------| | |
 | | (5) ACK | |
 | |----------------->| |
 | | (6) HTTP GET | |
 | |<.................| |
 | | (7) 200 OK | |
 | |.................>| |
 | | | |
 | | (8) HTTP GET | |
 | |<.................| |
 | | (9) INVITE | |
 | |------------------------------------->|
 | | (10) 200 OK | |
 | |<-------------------------------------|
 | | (11) ACK | |
 | |------------------------------------->|
 | | (12) INVITE | |
 | |----------------->| |
 | | (13) 200 OK | |
 | |<-----------------| |
 | | (14) ACK | |
 | |----------------->| |
 | | | |
 | | (15) 200 OK | |
 | |.................>| |
 | | (16) HTTP GET | |
 | |<.................| |
 | | (17) 200 OK | |
 | |.................>| |
 | | (18) BYE | |
 | |----------------->| |
 | | (19) 200 OK | |
 | |<-----------------| |
 | | (20) INVITE | |
 | |------------------------------------->|
 | | (21) 200 OK | |
 | (22) 200 OK |<-------------------------------------|
 |<--------------| | |
 | (23) ACK | | |

 |-------------->| (24) ACK | |
 | |------------------------------------->|
 | | | |
 | | | |
 | | | |

 Caller Controller IVR Server Mixing Server

 | (1) INVITE empty SDP | |
 |---------------------->| |
 | (2) 200 OK SDP A | |
 |<----------------------| |
 | (3) ACK | |
 |---------------------->| |
 | | (4) INV SDP A |
 |--->|
 | (5) 200 OK SDP B | |
 |<---|
 | | (6) ACK |
 |--->|
 | (7) INV SDP B | |
 |---------------------->| |
 | (8) 200 OK SDP A | |
 |<----------------------| |
 | (9) ACK | |
 |---------------------->| |
 | | (11) HTTP GET |
 |<---|
 | | (12) 200 OK |
 |--->|
 | | |
 | | |
 | | (13) HTTP GET |
 |<---|
 | | (14) 200 OK |
 |--->|
 | | |
 | (15) BYE | |
 |--->|
 | | (16) 200 OK |
 |<---|
 | (17) BYE | |
 |---------------------->| |
 | (18) 200 OK | |
 |<----------------------| |
 | | |
 | | |

 Controller Mixer IVR Server

 Figure 8: Advanced Web Scheduled Conference Service: Warning

Rosenberg/Mataga/Schulzrinne [Page 32]

Internet Draft AS Components March 2, 2001

 Announcement

 for text [14] to be received, which is then converted to speech and
 returned as an audio stream encoded using a traditional speech codec,
 be it G.723.1, G.711, or what have you.

 Like the IVR server and mixing server, the TTS server acts as a user
 agent server. It answers incoming calls, and basically mirrors
 incoming text back as speech. It continutes to do so until the call
 is hung up by the initiating client.

 A TTS service can be done using VoiceXML with an IVR server, as in
 the examples above. However, the difference is that here, the text
 stream to be converted is in the data path, not the control path. The
 stream is likely to be generated by other entities in the system, not
 the controller.

6.3.1 Service Interface

 It is likely that the text-to-speech conversation process differs
 significantly depending on the language. As such, separate URIs
 SHOULD be used for language specific TTS services. Specifically, the
 convention sip:<server-specific-name>-<language-tag>@<domain> is
 RECOMMENDED. The language tags SHOULD be selected from the set
 defined in RFC1766 [15].

 One of the unfortunate limitations of SDP is that it is not currently
 possible for a single media stream to be composed of separate media
 formats in each direction. The text over RTP stream is, in fact,
 based on the top level text MIME type (text/t140). As a result, two
 media streams are needed for this service - a unidirectional audio
 stream and a unidirectional text stream.

 First, the client INVITEs the server. The SDP MUST indicate a two
 media streams. One stream MUST be of type audio. It SHOULD contain
 the set of audio codecs acceptable to the client. The stream MUST be
 marked as recv-only. The other stream MUST be of type text. It MUST
 contain a single codec, which is a dynamic payload number bound to
 text/t140. The stream MUST be marked as send-only. The 200 OK
 response from the TTS server that accepts the call has SDP with a two
 media lines, one of type audio, and one of type text, in the same
 order the streams appeared in the INVITE, as mandated by RFC2543. The
 audio stream SHOULD contain a subset of the codecs listed in the
 audio stream in the INVITE. The audio stream MUST be marked as send-
 only. The text stream MUST contain a single codec, which is a dynamic
 payload type number bound to text/t140. The stream MUST be marked as
 receive-only.

https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc2543

Rosenberg/Mataga/Schulzrinne [Page 33]

Internet Draft AS Components March 2, 2001

 The client then ACKs the request. The TTS server SHOULD attempt to
 convert all text received on the incoming text stream to speech, and
 return the resulting speech on the outgoing audio stream.

6.3.2 Hearing Impaired Service

 The TTS server is extremely useful in supporting hearing impaired
 services. Examples of such services are described in [16].
 Specifically, Section 2.4 describes a service where a controller
 accesses a TTS service.

6.4 Messaging Servers

 Another type of application server component is a messaging server.
 Messaging servers allow for callers to record audio messages for
 users on the system. Users can also call into the server to retrieve
 these messages, delete them, and file them. The system operates
 through the use of voice prompts combined with DTMF detection and/or
 speech recognition. The prompts that are played are context
 dependent. A messaging server can be viewed as a specialized version
 of an IVR server with an application specific controller associated
 with it. In fact, a messaging server can be implemented in this way
 exactly. However, the combination is also usefully viewed as a
 component in its own right, due to the frequent need for messaging
 components in more complex applications.

6.4.1 Service Interface

 The service interface for communicating with a messaging server is
 described in detail in [7]. The interface provides well known URIs
 for the most common resources within a messaging server - user
 specific message drops with a variety of drop conditions (called
 party busy, called party not there, etc.), message retrievals using a
 variety of authentication mechanisms (PIN, SIP level authentication),
 and message drops that are not user specific, so that the target user
 is queried for as part of the interface.

6.4.2 Web Enabled Message Drops

 An example usage of this application component is a web front end
 that allows users to leave voicemail for company employees through
 the company web page. The page has a URL for each company employee.
 If some user A clicks on a URL for employee B, A's phone rings. When
 A picks up, they hear a greeting to record a message for employee B.

 The call flow for this application is the combination of third party
 call control combined with access to the service. It is shown in
 Figure 9.

Rosenberg/Mataga/Schulzrinne [Page 34]

Internet Draft AS Components March 2, 2001

 | | | |
 | | (1) HTTP GET | |
 |-------------------->| |
 | | (2) 200 OK | |
 |<--------------------| |
 | | (3) INV | |
 | |<-------------| |
 | | (4) 200 OK | |
 | |------------->| |
 | | (5) ACK | |
 | |<-------------| |
 | | | (6) INV |
 | | |--------------------->|
 | | | (7) 200 OK |
 | | |<---------------------|
 | | | (8) ACK |
 | | |--------------------->|
 | | (9) INV | |
 | |<-------------| |
 | | (10) 200 OK | |
 | |------------->| |
 | | (11) ACK | |
 | |<-------------| |
 | | | |
 | | | |
 | | | |

 Web SIP Controller Messaging
 Caller Server

 Figure 9: Web Enabled Message Drops

 The caller, from a web page, clicks on the URL for the user they wish

Rosenberg/Mataga/Schulzrinne [Page 35]

Internet Draft AS Components March 2, 2001

 to leave a message for. The result is an HTTP request (1) to the
 controller. The URI in this request would be some controller-specific
 identifier that tells the controller what it needs to do. The
 controller then calls the user (3) using an SDP with a single media
 stream on hold initially. This is accepted (4), and the resulting SDP
 is used in an INVITE to the messaging server (6). The URI of this
 INVITE is that for message drop with standard greeting (sip:sub-
 jdrosen-deposit@voiceserver.com). The call is accepted (7) and the
 200 OK is used in a re-INVITE to the caller (9) to set the address of
 the media stream to that of the voicemail server. After the call is
 accepted (10) and ACKed (11), the caller hears the voice drop prompt
 for the messaging server, and can record their message.

7 Security Considerations

 In many cases, authorization may need to be made to allow a caller
 access to a session level resource. Traditional SIP level
 authentication mechanisms can be used to accomplish this. Note,
 however, that in many cases the caller is the controller, which is
 acting as a third party call controller. In these cases, a two level
 trust model is really needed. The trust relationship in such
 situations is really between the session level resource and the
 controller (perhaps through an explicit business arrangement), and
 then between the controller and the caller. Thus, controllers should
 authenticate themselves to session resources they contact, rather
 than trying to proxy credentials from the caller.

8 Conclusion

 In this paper, we have argued that rapid deployment of complex
 communications applications will require a distributed model where
 application components are spread across the network. These
 components could be offered by separate providers, for example,
 enabling an ASP component model to evolve. We have observed that many
 of the components can be described as having some kind of session
 level resource that can be communicated with, usually in an automated
 fashion. Access to these resources is typically parameterized. As a
 result, SIP access, using the request URI as a service indicator, is
 an ideal way to communicate across these components.

 To validate this model, we examined the specific service interfaces
 that would be defined by IVR servers, conferencing servers, text-to-
 speech servers and messaging servers. We gave call flows of complex
 applications built up from these components using the specified
 interfaces.

9 Changes from -00

Rosenberg/Mataga/Schulzrinne [Page 36]

Internet Draft AS Components March 2, 2001

 o Minor edits

10 Author's Addresses

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Peter Mataga
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: pmataga@dynamicsoft.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

11 Bibliography

 [1] N. Greene, M. Ramalho, and B. Rosen, "Media gateway control
 protocol architecture and requirements," Request for Comments 2805,
 Internet Engineering Task Force, Apr. 2000.

 [2] M. Arango, A. Dugan, I. Elliott, C. Huitema, and S. Pickett,
 "Media gateway control protocol (MGCP) version 1.0," Request for
 Comments 2705, Internet Engineering Task Force, Oct. 1999.

 [3] F. Cuervo, N. Greene, C. Huitema, A. Rayhan, B. Rosen, and J.
 Segers, "Megaco protocol 0.8," Request for Comments 2885, Internet
 Engineering Task Force, Aug. 2000.

 [4] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Request for Comments 2543, Internet
 Engineering Task Force, Mar. 1999.

Rosenberg/Mataga/Schulzrinne [Page 37]

Internet Draft AS Components March 2, 2001

 [5] J. Rosenberg, H. Schulzrinne, and J. Peterson, "Third party call
 control in SIP," Internet Draft, Internet Engineering Task Force,
 Mar. 2000. Work in progress.

 [6] M. Handley and V. Jacobson, "SDP: session description protocol,"
 Request for Comments 2327, Internet Engineering Task Force, Apr.
 1998.

 [7] B. Campbell and R. Sparks, "Control of service context using SIP
 Request-URI," Internet Draft, Internet Engineering Task Force, Oct.
 2000. Work in progress.

 [8] H. Schulzrinne and S. Petrack, "RTP payload for DTMF digits,
 telephony tones and telephony signals," Request for Comments 2833,
 Internet Engineering Task Force, May 2000.

 [9] V. Bharatia, E. Cave, and B. Culpepper, "SIP INFO method for
 event reporting," Internet Draft, Internet Engineering Task Force,
 Apr. 2000. Work in progress.

 [10] T. Choudhuri, C. Haun, P. Sollee, S. Orton, and S. Whynot, "SIP
 INFO method for DTMF digit transport and collection," Internet Draft,
 Internet Engineering Task Force, Apr. 2000. Work in progress.

 [11] VoiceXML Forum, "Voice extensible markup language (voicexml)
 version 1.00," voicexml forum specification, VoiceXML Forum, Mar.
 2000.

 [12] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 Session initiation protocol," Internet Draft, Internet Engineering
 Task Force, Aug. 2000. Work in progress.

 [13] S. Donovan, "The SIP INFO method," Request for Comments 2976,
 Internet Engineering Task Force, Oct. 2000.

 [14] G. Hellstrom, "RTP payload for text conversation," Request for
 Comments 2793, Internet Engineering Task Force, May 2000.

 [15] H. Alvestrand, "Tags for the identification of languages,"
 Request for Comments 1766, Internet Engineering Task Force, Mar.
 1995.

 [16] J. Rosenberg, H. Schulzrinne, and H. Sinnreich, "Sip enabled
 services to support the hearing impaired," Internet Draft, Internet
 Engineering Task Force, July 2000. Work in progress.

Rosenberg/Mataga/Schulzrinne [Page 38]

Internet Draft AS Components March 2, 2001

 Table of Contents

1 Introduction .. 2
2 Why Decompose 2
3 Tightly Coupled Decomposition 4
4 The Decoupled Model 6
4.1 Architecture .. 6
4.2 Benefits of the Decoupling 10
5 Architecture for the Interfaces 11
5.1 Naming .. 12
5.2 Additional Message Content 14
5.3 Session Duration 14
5.4 Third Party Call Control 15
5.5 Side Channels 18
6 Patterns for Accessing Components 19
6.1 Interactive Voice Response Services 19
6.2 Conferencing Servers 23
6.2.1 Web Scheduled Conference Services 26

 6.2.2 Web Scheduled, IVR supported, Time Limited
 Conference ... 27

6.3 Continuous Text-to-Speech 30
6.3.1 Service Interface 33
6.3.2 Hearing Impaired Service 34
6.4 Messaging Servers 34
6.4.1 Service Interface 34
6.4.2 Web Enabled Message Drops 34
7 Security Considerations 36
8 Conclusion .. 36
9 Changes from -00 36
10 Author's Addresses 37
11 Bibliography .. 37

Rosenberg/Mataga/Schulzrinne [Page 39]

