
Internet Engineering Task Force SIPPING WG
Internet Draft J. Rosenberg
 dynamicsoft
 H. Schulzrinne
 Columbia U.
draft-rosenberg-sip-call-package-01.txt
March 1, 2002
Expires: September 2002

SIP Event Packages for Call Leg and Conference State

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 To view the list Internet-Draft Shadow Directories, see
http://www.ietf.org/shadow.html.

Abstract

 This document defines two new event packages for the SIP Events
 architecture, along with two new data formats used in notifications
 for those packages. The first is a call-leg package, and the second
 is a conference package. The call-leg package allows users to
 subscribe to another user, an receive notifications about the changes
 in state of call legs that the user is involved in. The conference
 package allows users to subscribe to a URL that is associated with a
 conference. Notifications are sent about changes in the membership of
 this conference, changes in active speaker, and media mixing
 information. These general purpose packages can enable many new SIP
 services, including single line extension, automatic callback,
 unattended consultation-hold transfer, call park and pickup, and IM-

J. Rosenberg et. al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-rosenberg-sip-call-package-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft call-pkg March 1, 2002

 a-call.

J. Rosenberg et. al. [Page 2]

Internet Draft call-pkg March 1, 2002

 Table of Contents

1 Introduction .. 5
2 Dialog Event Package 6
2.1 Event Package Name 6
2.2 Event Package Parameters 6
2.3 SUBSCRIBE Bodies 6
2.4 Subscription Duration 6
2.5 NOTIFY Bodies 7
2.6 Notifier Processing of SUBSCRIBE Requests 7
2.7 Notifier Generation of NOTIFY Requests 8
2.8 Subscriber Processing of NOTIFY Requests 9
2.9 Handling of Forked Requests 9
2.10 Rate of Notifications 9
2.11 State Agents .. 9
3 Dialog Data Format 9
3.1 Structure of Dialog Information 10
3.2 Dialog Sub-Elements 11
3.2.1 Status .. 12
3.2.2 Local SDP ... 12
3.2.3 Remote SDP .. 12
3.2.4 Route Set ... 13
3.2.5 Remote Target 13
3.2.6 Local CSeq .. 13
3.2.7 Remote CSeq ... 14
4 Conference Event Package 14
4.1 Event Package Name 15
4.2 Event Package Parameters 15
4.3 SUBSCRIBE Bodies 15
4.4 Subscription Duration 15
4.5 NOTIFY Bodies 15
4.6 Notifier Processing of SUBSCRIBE Requests 16
4.7 Notifier Generation of NOTIFY Requests 16
4.8 Subscriber Processing of NOTIFY Requests 16
4.9 Handling of Forked Requests 17
4.10 Rate of Notifications 17
4.11 State Agents .. 17
5 Conference Data Format 17
5.1 Structute of the Format 17
5.2 User Sub-Elements 18
5.3 Example ... 19
6 Relationship to User Presence 20

7 Open Issues and To-Dos 20

J. Rosenberg et. al. [Page 3]

Internet Draft call-pkg March 1, 2002

8 Security Considerations 20
9 IANA Considerations 20
10 Acknowledgements 21
11 Changes since -00 21
12 Authors Addresses 21
13 Normative References 21
14 Informative References 22

J. Rosenberg et. al. [Page 4]

Internet Draft call-pkg March 1, 2002

1 Introduction

 The SIP Events framework [1] defines general mechanisms for
 subscription to, and notification of, events within SIP networks. It
 introduces the notion of a package, which is a specific
 "instantiation" of the events mechanism for a well-defined set of
 events. Packages have been defined for user presence [3], watcher
 information [4], and message waiting indicators [5], amongst others.
 Here, we define two new packages - one for dialogs, and the other for
 conferences.

 The need for these packages is driven based on the fact that many
 applications are driven off of knowledge about the progress of
 dialogs and conferences. In the case of dialogs, we see many
 potential applications that require knowledge of dialog state:

 Automatic Callback: In this basic PSTN application, user A calls
 user B. User B is busy. User A would like to get a callback
 when user B hangs up. When B hangs up, user A's phone
 rings. When A picks it up, they here ringing, and are being
 connected to B. In VoIP, this requires A to receive a
 notification when the dialogs at A are complete.

 Presence-Enabled Conferencing: In this application, a user A
 wishes to set up a conference call with users B and C.
 Rather than scheduling it, it is to be created
 automatically when A, B and C are all available. To do
 this, the server providing the application would like to
 know whether A, B and C are "online", not idle, and not in
 a phone call. Determining whether or not A, B and C are in
 calls can be done in two ways. In the first, the server
 acts as a call stateful proxy for users A, B and C, and
 therefore knows their call state. This won't always be
 possible, however, and it introduces scalability,
 reliability, and operational complexities. Rather, the
 server would subscriber to the dialog state of those users,
 and receive notifications as it changes. This enables the
 application to be provided in a distributed way; the server
 need not reside in the same domain as the users.

 IM Conference Alerts: In this application, a user can get an IM
 sent to their phone whenever someone joins a conference
 that the phone is involved in. The IM alerts are generated
 by an application separate from the conference server.

 In general, defining dialog and conference state packages allows for
 construction of distributed applications, where the application
 requires information on dialog and conference state, but is not co-

J. Rosenberg et. al. [Page 5]

Internet Draft call-pkg March 1, 2002

 resident with the end user or conference server. We think this is a
 very important piece of the SIP services model.

2 Dialog Event Package

 This section provides the details for defining a SIP Events package,
 as specified by [1].

2.1 Event Package Name

 The name of this event package is "dialog". This package name is
 carried in the Event and Allow-Events header, as defined in [1].

2.2 Event Package Parameters

 This package does not define any event package parameters.

2.3 SUBSCRIBE Bodies

 A SUBSCRIBE for a dialog package MAY contain a body. This body
 defines a filter to apply to the subscription.

 A SUBSCRIBE for a dialog package MAY be sent without a body. This
 implies the default subscription filtering policy. The default policy
 is:

 o Notifications are generated every time there is any change in
 the state of any dialogs for the user identified in the
 request URI of the SUBSCRIBE.

 o Notifications do not normally contain full state; rather, they
 only indicate the state of the dialog whose state has changed.
 The exception is a NOTIFY sent in response to a SUBSCRIBE.
 These NOTIFYs contain the complete view of dialog state.

 o The notifications contain the identities of the participants
 in the dialog, and the dialog identifiers. Additional
 information, such as the route set, remote target URI, CSeq
 numbers, SDP information, and so on, are not included normally
 unless explicitly requested and/or explicitly authorized.

2.4 Subscription Duration

 Dialog state changes fairly quickly; once established, a typical
 phone call lasts a few minutes (this is different for other session
 types, of course). However, the interval between new calls is
 typically infrequent.

J. Rosenberg et. al. [Page 6]

Internet Draft call-pkg March 1, 2002

 We do note that there are two distinct use cases for dialog state.
 The first is when a subscriber is interested in the state of a
 specific dialog (and they are authorized to find out about just the
 state of that dialog). In that case, when the dialog terminates, so
 too does the subscription. In these cases, the refresh interval can
 be very long, since there exists an easy alternative way to destroy
 subscription state. As a result, the default duration of these
 subscriptions is one day. The subscriber MAY request other durations.

 In another case, a subscriber is interested in the state of all call
 legs for a specific user. In these cases, a shorter interval makes
 more sense. The default is one hour for these subscriptions.

 OPEN ISSUE: We should probably have a single default
 subscription duration.

2.5 NOTIFY Bodies

 The body of the notification contains a dialog information document.
 The format of this document is described in Section 3. Its MIME type
 is "application/dialog-info+xml". All subscribers MUST support this
 format, and MUST list its type in any Accept header in the SUBSCRIBE.
 When no Accept header is present in the SUBSCRIBE, its default value
 is "application/dialog-info+xml".

 Other dialog information formats might be defined in the future. In
 that case, the subscriptions MAY indicate support for other formats.
 However, they MUST always support and list "application/dialog-
 info+xml" as an allowed format.

 Of course, the notifications generated by the server MUST be in one
 of the formats specified in the Accept header in the SUBSCRIBE
 request.

2.6 Notifier Processing of SUBSCRIBE Requests

 The dialog information for a user contains very sensitive
 information. Therefore, all subscriptions SHOULD be authenticated and
 then authorized before approval. Authorization policy is at the
 discretion of the administrator, as always. However, a few
 recommendations can be made.

 It is RECOMMENDED that if the policy of a user is that A is allowed
 to call them, dialog subscriptions from user A be allowed. However,
 the information provided in the notifications does not contain any
 dialog identification information; merely an indication of whether
 the user in in one or more calls, or not. Specifically, they should

J. Rosenberg et. al. [Page 7]

Internet Draft call-pkg March 1, 2002

 not be able to find out any more information than if they sent an
 INVITE.

 It is RECOMMENDED that if a user agent registers with the address-
 of-record X, that this user agent authorize subscriptions that come
 from any entity that can authenticate itself as X. Complete
 information on the dialog state SHOULD be sent in this case. This
 authorization behavior allows a group of devices representing a
 single user to all become aware of each other's state. This is useful
 for applications such as single-line-extension.

2.7 Notifier Generation of NOTIFY Requests

 Notifications are generated for the dialog package when a new dialog
 comes into existence at a UA, or when the state of an existing dialog
 changes.

 For the purposes of this package, we define the states of a dialog
 through numeric codes. These codes are equivalent to the most recent
 SIP status codes sent in response to the INVITE which created the
 call leg. The status code "0" is reserved for the case where no
 response has yet been received or sent.

 When a UAC initially creates an INVITE to establish a call, this
 causes a change to state "0". When it receives the first non-100
 provisional response, the state changes to the value of that status
 code. Any further provisional responses cause the UA to change state
 to the value of that status code. When a final response is received,
 the state changes to the value of that response. If the response was
 a non-200, the dialog is considered terminated, and no further state
 changes are possible. Multiple 2xx responses received create
 additional dialogs, each with the state of that specific 2xx.

 When a UAS initially receives an INVITE to establish a call, this
 causes a change to the state of the provisional response which was
 sent. Any subequent provisional responses cause a change in state to
 the value of that response. A final response causes a transition in
 state to that response code. There is no change in state when the ACK
 arrives. However, if no ACK is received, and the UAS destroys the
 call, the state changes to a value of -1.

 When the call is terminated as a result of a BYE, the state changes
 to -1.

 OPEN ISSUE: This is kind of ugly. We could alternately
 define a more formal state machine.

J. Rosenberg et. al. [Page 8]

Internet Draft call-pkg March 1, 2002

2.8 Subscriber Processing of NOTIFY Requests

 The SIP Events framework expects packages to specify how a subscriber
 processes NOTIFY requests in any package specific ways, and in
 particular, how it uses the NOTIFY requests to contruct a coherent
 view of the state of the subscribed resource.

 Typically, the NOTIFY for the dialog package will only contain
 information about those dialogs whose state has changed. To construct
 a coherent view of the total state of all dialogs, a subscriber to
 the dialog package will need to combine NOTIFYs received over time.
 The subscriber maintains is complete dialog list in a table, indexed
 by the id. This ID is different from the formal dialog ID as defined
 in [2], which is the concatenation of the local tag, remote tag, and
 Call-Id. This ID is conveyed in the id attribute of the dialog
 element of the "application/dialog-info+xml" type. If the dialog
 information in a NOTIFY has a dialog listed with an ID not in the
 table, an entry is added to that table. The version number from the
 dialog element is also extracted, and placed in the table. If the
 dialog information in a NOTIFY has a dialog listed with an ID in the
 table, and the version in the NOTIFY is greater than the version
 stored in the table, the dialog information in the table for that
 dialog is updated, including the version number. If a dialog is
 updated such that its status is now "-1", that entry MAY be removed
 from the table at any time.

2.9 Handling of Forked Requests

 A forked SUBSCRIBE request for dialog state can install multiple
 subscriptions. Subscribers to this package MUST be prepared to
 install subscription state for each NOTIFY generated as a result of a
 single SUBSCRIBE.

2.10 Rate of Notifications

 For reasons of congestion control, it is important that the rate of
 notifications not become excessive. As a result, it is RECOMMENDED
 that the server not generate notifications for a single subscriber at
 a rate faster than once every 5 seconds.

2.11 State Agents

 Dialog state is ideally maintained in the user agents in which the
 dialog resides. Therefore, the elements that maintain the dialog are
 the ones best suited to handle subscriptions to it. Therefore, the
 usage of state agents is NOT RECOMMENDED for this package.

3 Dialog Data Format

J. Rosenberg et. al. [Page 9]

Internet Draft call-pkg March 1, 2002

 We specify an XML-based data format to describe the state of a
 dialog. The MIME type for this format is "application/dialog-
 info+xml", consistent with the recommendations provided in RFC 3023
 [6].

3.1 Structure of Dialog Information

 A dialog-info document starts with a user tag that identitifies the
 user. Within that tag are a series of dialog tags. Each of those use
 attributes to identify the dialog and provide its version number.
 There are also attributes to provide the formal dialog identifier,
 using the local and remote tags, and the Call-ID. Additional
 attributes are present to specify the local and remote URIs. There is
 also an attribute that indicates whether the user initiated this
 dialog or not. Within the dialog tags are a single mandatory tag
 which contains the status, followed by a series of optional tags that
 contain additional information about the dialog.

 The top level tag is user:

 <!ELEMENT user (dialog*)>
 <!ATTLIST user uri CDATA #REQUIRED>

 The mandatory uri attribute is the identifier of the user whose
 dialog state is being reported.

 What follows is a series of dialog tags:

 <!ELEMENT dialog (status,local-sdp?,remote-sdp?,
 route-set?,remote-target?,local-cseq?,remote-cseq?)
 <!ATTLIST dialog id CDATA #REQUIRED
 version CDATA #REQUIRED
 call-id CDATA #IMPLIED
 local-uri CDATA #IMPLIED
 local-tag CDATA #IMPLIED
 remote-uri CDATA #IMPLIED
 remote-tag CDATA #IMPLIED
 direction (iniatiator|recipient) #IMPLIED>

 The local-uri, local-tag, remote-uri, remote-tag and call-id
 attributes convey their corresponding components of the dialog state
 as defined in [2]. The direction attribute is "initiator" if the user

https://datatracker.ietf.org/doc/html/rfc3023

J. Rosenberg et. al. [Page 10]

Internet Draft call-pkg March 1, 2002

 initiated this dialog, and "recipient" if it did not. The remote tag
 attribute won't be present if there is only a "half-dialog",
 resulting from generation of a request that can create a dialog.

 For example, if a UAC sends an INVITE that looks like, in part:

 INVITE sip:callee@foo.com SIP/2.0
 From: sip:caller@bar.com;tag=123
 To: sip:callee@foo.com
 Call-ID: 987@1.2.3.4

 the dialog tag sent out in a notification might looks like:

 <dialog id="as7d900as8" version="0" call-id="987@1.2.3.4"
 local-uri="sip:caller@bar.com"
 local-tag="123" remote-uri="sip:callee@foo.com"
 direction="initiator">

 If a 200 OK is received, which looks like, in part:

 SIP/2.0 200 OK
 From: sip:caller@bar.com;tag=123
 To: sip:callee@foo.com;tag=abc
 Call-ID: 987@1.2.3.4

 The dialog is now confirmed, and the notification sent out will have
 a dialog tag which looks like:

 <dialog id="as7d900as8" version="0" call-id="987@1.2.3.4"
 local-uri="sip:caller@bar.com"
 local-tag="123" remote-uri="sip:callee@foo.com"
 remote-tag="abc" direction="initiator">

3.2 Dialog Sub-Elements

 There are many sub-elements defined for the dialog element.

J. Rosenberg et. al. [Page 11]

Internet Draft call-pkg March 1, 2002

3.2.1 Status

 The only mandatory sub-element of dialog is status.

 <!ELEMENT status CDATA>
 <!ATTLIST status code CDATA #REQUIRED>

 The mandatory code attribute contains the status code. This is the
 SIP response code last sent or received for this leg in the initial
 INVITE that established the leg. If no response has been sent or
 received, the value of zero is used. If the call ends, a value of -1
 is used.

 The value within the status tag is a textual phrase that can be
 rendered to described call status. The reason phrase from the
 response is RECOMMENDED.

 Example:

 <status code="180">Ringing</status>

3.2.2 Local SDP

 The local SDP tag contains the SDP used by the notifier for its end
 of the dialog. This tag should generally NOT be included in the
 notifications, unless explicitly requested by the subscriber.

 <!ELEMENT local-sdp CDATA>

 The SDP is included, verbatim, between the tags.

3.2.3 Remote SDP

 The remote SDP tag contains the SDP used by the notifier for the
 other end of the dialog. This tag should generally NOT be included in
 the notifications, unless explicitly requested by the subscriber.

 <!ELEMENT remote-sdp CDATA>

J. Rosenberg et. al. [Page 12]

Internet Draft call-pkg March 1, 2002

 The SDP is included, verbatim, between the tags.

3.2.4 Route Set

 The route-set tag contains the route set as constructed by the user
 agent for this dialog, as defined in RFC BBBB [2]. It is constructed
 from the Record-Route header field used for this dialog. This tag
 should generally NOT be included in the notifications, unless
 explicitly requested by the subscriber.

 <!ELEMENT route-set CDATA>

 The route set is included verbatim. It is structured as a comma
 separated list of URLs.

 Example:

 <route-set>sip:proxy2.example.com;lr</route-set>

3.2.5 Remote Target

 The remote-target contains the remote-target URI as constructed by
 the user agent for this dialog, as defined in RFC BBBB [2]. It is
 constructed from the Contact header of the INVITE. This tag should
 generally not be included in notifications, unless explicitly
 requested by the subscriber.

 <!ELEMENT remote-target CDATA>

 The remote target URI is included verbatim between the tags.

 Example:

 <remote-target>sip:user@pc33.example.com</remote-target>

3.2.6 Local CSeq

J. Rosenberg et. al. [Page 13]

Internet Draft call-pkg March 1, 2002

 The local-cseq tag contains the most recent value of the CSeq header
 used by the UA in an outgoing request on the dialog. This tag should
 generally NOT be included in the notifications, unless explicitly
 requested by the subscriber.

 <!ELEMENT local-cseq CDATA>

 The numeric value of the CSeq is included as the CDATA.

3.2.7 Remote CSeq

 The remote-cseq tag contains the most recent value of the CSeq header
 seen by the UA in an incoming request on the dialog. This tag should
 generally NOT be included in the notifications, unless explicitly
 requested by the subscriber.

 <!ELEMENT remote-cseq CDATA>

 The numeric value of the CSeq is included as the CDATA.

4 Conference Event Package

 The conference event package allows a user to subscribe to a
 conference. A conference is a collection of users that are all able
 to communicate with each other. Generally, when multicast is not
 used, a conference is associated by a set of dialogs that have their
 media mixed together. This is true for all of the non-multicast
 models in [7]. However, some of the models use topologies where there
 is no root to which all dialogs are connected. These topologies do
 not work well with the mechanism here.

 This package allows a user to subscribe to a conference, identified
 by a SIP URI. Ideally, this SIP URI routes the SUBSCRIBE to the
 entity acting as the root of the topology (which is why it doesn't
 work well for the non-centralized topologies). The notifications
 contain information on the participants in the conference. The
 specific information conveyed is:

 o The SIP URI identifying the user.

 o The dialog state associated with that users attachment to the
 conference.

J. Rosenberg et. al. [Page 14]

Internet Draft call-pkg March 1, 2002

 o Their status in the conference (active, declined, departed).

 o Their status in terms of receiving media in the conference.

 This section provides the details for defining a SIP Events package,
 as specified by [1].

4.1 Event Package Name

 The name of this event package is "conference". This package name is
 carried in the Event and Allow-Events header, as defined in [1].

4.2 Event Package Parameters

 This event package does not define any event package parameters.

4.3 SUBSCRIBE Bodies

 A SUBSCRIBE for a dialog package MAY contain a body. This body
 defines a filter to apply to the subscription.

 A SUBSCRIBE for a conference package MAY be sent without a body. This
 implies the default subscription filtering policy. The default policy
 is:

 o Notifications are generated every time there is any change in
 the set of users participating in the conference, or a change
 their state (dialog state, media mixing state, etc.)

 o Notifications do not normally contain full state; rather, they
 only indicate the state of the participant whose state has
 changed. The exception is a NOTIFY sent in response to a
 SUBSCRIBE. These NOTIFYs contain the complete view of
 conference state.

 o For a given user, the notifications contain the identity
 information and status.

4.4 Subscription Duration

 The default expiration time for a subscription to a conference is one
 hour. Of course, once the conference ends, all subscriptions to that
 particular conference are terminated, with a reason of "noresource"
 [1].

4.5 NOTIFY Bodies

 The body of the notification contains a conference information

J. Rosenberg et. al. [Page 15]

Internet Draft call-pkg March 1, 2002

 document. The format of this document is described in Section 5. Its
 MIME type is "application/conference-info+xml". All subscibers MUST
 support this format, and MUST list its type in an Accept header in
 the SUBSCRIBE. The default value for the Accept header when it is not
 present in a request is "application/conference-info+xml".

 Other conference information formats might be defined in the future.
 In that case, the subscriptions MAY indicate support for other
 formats. However, they MUST always support and list
 "application/conference-info+xml" as an allowed format.

 Of course, the notifications generated by the server MUST be in one
 of the formats specified in the Accept header in the SUBSCRIBE
 request.

4.6 Notifier Processing of SUBSCRIBE Requests

 The conference information contains very sensitive information.
 Therefore, all subscriptions SHOULD be authenticated and then
 authorized before approval. Authorization policy is at the discretion
 of the administrator, as always. However, a few recommendations can
 be made.

 It is RECOMMENDED that all users in the conference be allowed to
 subscribe to the conference.

4.7 Notifier Generation of NOTIFY Requests

 Notifications SHOULD be generated for the conference whenever a new
 participant joins, a participant leaves, and a dial-out attempt
 succeeds or fails. Notifications MAY be generated for the conference
 whenever the media mixing status of a user changes.

4.8 Subscriber Processing of NOTIFY Requests

 The SIP Events framework expects packages to specify how a subscriber
 processes NOTIFY requests in any package specific ways, and in
 particular, how it uses the NOTIFY requests to contruct a coherent
 view of the state of the subscribed resource.

 Typically, the NOTIFY for the conference package will only contain
 information about those users whose state has changed. To construct a
 coherent view of the total state of the entire conference, a
 subscriber to the conference package will need to combine NOTIFYs
 received over time. The subscriber maintains is complete user list in
 a table, indexed by the id in the dialog element. If the dialog
 information in a NOTIFY has a dialog listed with an ID not in the
 table, an entry is added to that table. The version number from the

J. Rosenberg et. al. [Page 16]

Internet Draft call-pkg March 1, 2002

 dialog element is also extracted, and placed in the table. If the
 dialog information in a NOTIFY has a dialog listed with an ID in the
 table, and the version in the NOTIFY is greater than the version
 stored in the table, the dialog information in the table for that
 dialog is updated, including the version number. If a dialog is
 updated such that its status is now "-1", that entry MAY be removed
 from the table at any time.

4.9 Handling of Forked Requests

 By their nature, the conferences supported by this package are
 centralized. Therefore, SUBSCRIBE requests for a conference should
 not generally fork. Users of this package MUST NOT install more than
 a single subscription as a result of a single SUBSCRIBE request.

4.10 Rate of Notifications

 For reasons of congestion control, it is important that the rate of
 notifications not become excessive. As a result, it is RECOMMENDED
 that the server not generate notifications for a single subscriber at
 a rate faster than once every 5 seconds.

4.11 State Agents

 Conference state is ideally maintained in the element in which the
 conference resides. Therefore, the elements that maintain the
 conference are the ones best suited to handle subscriptions to it.
 Therefore, the usage of state agents is NOT RECOMMENDED for this
 package.

5 Conference Data Format

 The conference data format is an XML document of MIME type
 "application/conference-info+xml", consistent with the
 recommendations provided in RFC 3023 [6].

5.1 Structute of the Format

 The conference data format has the top level tag of conference. It
 consists of a set of sub-tags of type user, which contain information
 on the users in the conference. Each user tag contains the identity
 of the user, their dialog information, their status in the
 conference, and their media reception information.

 The top level tag is conference:

 <!ELEMENT conference (user*)>

https://datatracker.ietf.org/doc/html/rfc3023

J. Rosenberg et. al. [Page 17]

Internet Draft call-pkg March 1, 2002

 <!ATTLIST conference uri CDATA #REQUIRED>

 The mandatory uri attribute contains the URI used to join the
 conference call (and to subscribe to its state).

 What follows are a series of user tags:

 <!ELEMENT user (status,dialog,media-status?)>
 <!ATTLIST user uri CDATA #REQUIRED
 name CDATA #IMPLIED>

 The uri attribute contains the URI for the user. This is a logical
 identifier, not a machine specific one (i.e., its taken from the
 To/From, not the Contact). The name is a textual name for rendering
 to a human. It is ususally taken from the display name.

5.2 User Sub-Elements

 The sub-elements of the user tag are status, dialog aned media-
 status.

 Status contains the status of the user in the conference.

 <!ELEMENT status>
 <!ATTLIST status
 value (active|departed|booted|failed) "active" >

 The statuses have the following meaning:

 active: The user is in an active dialog with the conference
 host.

 departed: The user sent a BYE, thus leaving the conference.

 booted: The user was sent a BYE by the conference host, booting
 them out of the conference.

 failed: The conference host is a dialout conference server, and
 its attempt to contact the specific user resulted in a
 non-200 class final response.

J. Rosenberg et. al. [Page 18]

Internet Draft call-pkg March 1, 2002

 The dialog element is the same one from the dialog package above.

 The media-status attribute is a series of media streams. Each media
 stream is associated with a media type, a sending status, and a
 receiving status.

 <!ELEMENT media-status (media-stream*)>
 <!ELEMENT media-stream>
 <!ATTLIST media-stream
 type (audio|video|message|application) #REQUIRED
 send-status (received-by-all|muted) "received-by-all"
 recv-status (receiving-all|anchor-only) "receiving-all">

 If the send-status is "received-by-all", it means that the media for
 that stream that is being generated by the user is being mixed by the
 server and sent to all recipients. "muted" means that no one is
 receiving their media. If the receive-status is "receiving-all" it
 means that the user is hearing all other participants. If it is
 "anchor-only", the user is hearing media from just a single
 participant.

5.3 Example

 The following is an example conference information document:

 <conference>
 <user uri="sip:jdrosen@dynamicsoft.com" name="Jonathan Rosenberg">
 <status value="active"/>
 <dialog id="as7d900as8" version="0" call-id="987@1.2.3.4"
 local-uri="conference3@example.com"
 local-tag="123" remote-uri="sip:jdrosen@dynamicsoft.com"
 remote-tag="abc" direction="recipient"/>
 <media-status>
 <media-stream type="audio"/>
 </media-status>
 </user>
 <user uri="sip:hgs@cs.columbia.edu" name="Henning Schulzrinne">
 <status value="active"/>
 <dialog id="as7d900as8" version="0" call-id="654@8.8.7.7"
 local-uri="conference3@example.com"
 local-tag="xyz" remote-uri="sip:hgs@cs.columbia.edu"
 remote-tag="efg" direction="recipient"/>
 </user>
 </conference>

J. Rosenberg et. al. [Page 19]

Internet Draft call-pkg March 1, 2002

 This document describes a conference with two users, both of which
 are active.

6 Relationship to User Presence

 The SIP events package for user presence [3] has a close relationship
 with these two event packages. It is fundamental to the presence
 model that the information used to obtain user presence is
 constructed from any number of different input sources. Examples of
 such sources include SIP REGISTER requests and uploads of presence
 documents. These two packages can be considered another mechanism
 that allows a presence agent to determine the presence state of the
 user. Specifically, a user presence server can act as a subscriber
 for the dialog and conference packages to obtain additional
 information that can be used to construct a presence document.

7 Open Issues and To-Dos

 o There is a strong relationship between the dialog event
 package, and the notifications used by the REFER specification
 [8]. Should these be unified, so that a REFER basically
 implies a subscription to the dialog state created by that
 REFER?.

 o Reuse of dialogs for conference and dialog subscriptions needs
 to be discussed. It has an implication for the dialog state
 package. Now, the session may be terminated, but the dialog
 remains.

 o Need to add IANA considerations

 o Should we split this into two documents, or even four?
 Probably two.

8 Security Considerations

 Subscriptions to dialog state and conference state can reveal very
 sensitive information. For this reason, the document recommends
 authentication and authorization, and provides guidelines on sensible
 authorization policies.

 Since the data in notifications is sensitive as well, end-to-end SIP
 encryption mechanisms using S/MIME SHOULD be used to protect it.

9 IANA Considerations

 TODO.

J. Rosenberg et. al. [Page 20]

Internet Draft call-pkg March 1, 2002

10 Acknowledgements

 The authors would like to thank Dan Petrie for his comments.

11 Changes since -00

 o Alignment with bis and sip-events

 o Added direction attribute to dialog format

 o Removed To-Join and To-Replace header, along with joining and
 replacing URIs from the various formats.

 o Conference data format reuses dialog formats

 o Added media mixing information to conference format

 o Removal of example services (will go into service examples
 specification)

 o Removal of floor control from conference package; rather,
 place it into a separate event package, as was done in

12 Authors Addresses

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

13 Normative References

 [1] A. Roach et al. , "SIP-specific event notification," Internet
 Draft, Internet Engineering Task Force, Feb. 2002. Work in progress.

 [2] J. Rosenberg, H. Schulzrinne, et al. , "SIP: Session initiation

J. Rosenberg et. al. [Page 21]

Internet Draft call-pkg March 1, 2002

 protocol," Internet Draft, Internet Engineering Task Force, Feb.
 2002. Work in progress.

14 Informative References

 [3] J. Rosenberg, "SIP extensions for presence," Internet Draft,
 Internet Engineering Task Force, Nov. 2001. Work in progress.

 [4] J. Rosenberg, "A SIP event sub-package for watcher information,"
 Internet Draft, Internet Engineering Task Force, July 2001. Work in
 progress.

 [5] R. Mahy and I. Slain, "SIP event package for message waiting
 indication," Internet Draft, Internet Engineering Task Force, Nov.
 2001. Work in progress.

 [6] M. Murata, S. S. Laurent, and D. Kohn, "XML media types," Request
 for Comments 3023, Internet Engineering Task Force, Jan. 2001.

 [7] J. Rosenberg and H. Schulzrinne, "Models for multi party
 conferencing in SIP," Internet Draft, Internet Engineering Task
 Force, Nov. 2001. Work in progress.

 [8] R. Sparks, "The refer method," Internet Draft, Internet
 Engineering Task Force, Oct. 2001. Work in progress.

 Full Copyright Statement

 Copyright (c) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

J. Rosenberg et. al. [Page 22]

Internet Draft call-pkg March 1, 2002

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

J. Rosenberg et. al. [Page 23]

