
Internet Engineering Task Force pipr WG
Internet Draft J.Rosenberg,H.Schulzrinne
draft-rosenberg-sip-pip-00.txt Bell Laboratories,Columbia U.
November 13, 1998
Expires: May 1999

SIP For Presence

STATUS OF THIS MEMO

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress''.

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ftp.ietf.org (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

 ABSTRACT

 We describe an extension to SIP for subscription,
 notification, fetching, and indication of presence
 events. The extensions consist of two new methods,
 SUBSCRIBE and NOTIFY.

1 Introduction

 An event notification service allows a user (called the subscriber)
 to subscribe to some entity. Associated with the entity is some
 state. The subscription is a request to be informed about changes to
 the state. When state changes occur, a notification is delivered
 asynchronously to the subscriber. The applicability of the service is
 extremely broad; events could include things like network management
 events, presence information, device status, system failures, etc.
 Subscriptions can be as simple as "notify me when person X logs in"

J.Rosenberg,H.Schulzrinne [Page 1]

https://datatracker.ietf.org/doc/html/draft-rosenberg-sip-pip-00.txt

Internet Draft SIP Presence November 13, 1998

 or as complicated as "notify me when event X in state machine Y
 occurs if the day is Tuesday and the temperature in Zimbabwe is 85
 degrees fahrenheit".

 Furthermore, different events and subscriptions will vary in their
 requirements for reliability, scalability (in terms of number of
 subscribers for some event), timeliness (in terms of the latency
 between an event and delivery of the notification to the
 subscribers), and control (in terms of the complexity of the
 description of events which may be subscribed to). For example,
 subscribing to a service which notifies you when concert tickets
 become available requires a supporting protocol to be scalable, and
 may mandate multicast. However, reliability is not a concern. On the
 other hand, subscribing to a service which notifies you when the
 temperature in the nuclear reactor hits some threshold requires
 absolute reliability, but scalability is less of a concern.

 Due to this breadth of requirements, we do not believe it practical
 to develop a broad, all-encompassing notification service in the
 context of the current Internet. Our focus, however, is to solve the
 problem in the more restrictive context of presence.

 We define presence (or presence information) as the means of
 communication a user is capable or willing to take part in, and may
 also include contact or address information for those means,
 preferences about which means to use and when, and state about
 availability at those means.

 A presence event occurs when a user logs in or out of a computer,
 changes their preferences about reachability at some location, such
 as a phone or pager, or changes their status at some location. More
 generally, a presence event is any event which changes the current
 presence information.

 Note that this definition is broader than just "logged in" or "logged
 out".

2 Architecture

 An infrastructure for presence can be broken into three elements and
 several protocol components. The elements are:

 o The Subscriber: an element which asks for notification of the
 presence of another user. Usually a subscriber is a human.

 o The Publisher: The user who has been subscribed to.

 o The presence server: a server which performs notification of

J.Rosenberg,H.Schulzrinne [Page 2]

Internet Draft SIP Presence November 13, 1998

 presence, and receives subscription requests. This element may
 or may not be co-resident with the machine on which the
 publisher is located. For reasons of reliability and
 availability, a separate server may perform the actual
 notifications and subscription processing, but this is not
 required.

 The presence server is a key element in a notification system. By
 allowing it to be a physically separate entity, a number of
 advantages are gained. The server can perform a number of services
 for the users it represents, such as proxy encryption, access control
 and authentication, notification routing, logging, firewalling, and
 so on. In effect, a presence server is a proxy for the publisher. It
 is natural to have several presence servers along the protocol
 message paths. For example, notification requests may pass through a
 server at both the subscriber and publisher domains. This allows for
 policy and logging operations to be provided by administrators in
 both domains.

 The server also plays a critical role in providing naming and call
 routing services. This is discussed in more detail below.

 The protocol components in the presence system are:

 o Subscription component: a mechanism for conveying the
 subscription from the subscriber to the presence server. The
 subscription names the publisher, and may contain additional
 information about under what conditions the subscriber would
 like to be notified about presence information related to the
 publisher. For example, the subscriber may only wish to know
 when the publisher can be contacted via video.

 o Fetching component: a mechanism allowing a user to request the
 current status of another user, without actually instantiating
 a subscription. This is effectively a poll, whereas a
 subscription sets up an asynchronous notification.

 o Publication component: When the publisher and presence server
 are not co-resident, some means is required for informing the
 presence server about changes in state of the publisher.

 o Access Control component: The publisher needs to provide input
 about how subscription requests for it will be processed.
 These preferences may restrict the set of users which may
 subscribe, cause only select pieces of information to be
 reported, or potentially even cause false information to be
 reported based on the subscriber. A means is needed to express
 and convey these preferences from the publisher to the

J.Rosenberg,H.Schulzrinne [Page 3]

Internet Draft SIP Presence November 13, 1998

 presence server.

 o Notification component: When there is a change in the presence
 state of a user, it needs to be conveyed to the subscribers of
 that user.

 We further believe that each of these components is separable into
 transport and content. The general problem of transport is to provide
 delivery of the given information in a manner appropriate for the
 service. The notion of content depends on the task. For subscription,
 the content should describe the event to be subscribed to. This
 should effectively define the conditions under which a notification
 is delivered to the subscriber, and the desired content of that
 notification. For both notification and publishing, the content is a
 description of the event which has occured.

 The overall architecture is depicted in Figure 1.

 ------------ A ---------- A ---------- B -----------
subscriber	--->	server	--->	server	<-----	publisher
	<---		<---		<-----	
 ------------ C ---------- C ---------- D -----------
 |
 |E

 |DB, policy|
 | server |

 A = subscription
 B = access control
 C = notification
 D = publishing
 E = database and policy protocols

 Figure 1: Architecture of Presence System

 In the architectural diagram, there are two servers acting as
 proxies. In a real system there may be any number, including zero,
 along the message path. We focus our discussion on the case of two
 servers, one run by the subscriber's service provider, and the other
 by the publisher's service provider.

J.Rosenberg,H.Schulzrinne [Page 4]

Internet Draft SIP Presence November 13, 1998

 Note that our definition of service provider is NOT the same as ISP.
 The service provider is any organization which is making its presence
 servers available to customers. Just as a user can have separate ISP
 and mail services, a user may have its presence services by yet
 another organization.

3 Naming, Addressing and Routing

 A key component of a presence system is naming. Subscribers must be
 named, and subscription requests delivered to them, or to the
 presence servers which represent them. It is critical that the
 publisher be able to log in to the network with different IP
 addresses, and for the system to still function. It is also critical
 that the subscriber be unaware as to whether subscription requests
 are actually delivered to the publisher directly, or through a chain
 of presence servers.

 The publisher must also be named, so that the presence server of the
 publisher can perform access control based on this name. The
 publisher must also provide location information, so that
 notification requests can be delivered to it. As these are two
 seperate functions, the subscription protocol must provide a means
 for indicating the canonical name of the subscriber and the address
 for delivery of notifications as separate components.

 We observe that these requirements for naming are, in fact, identical
 to those for email and the Session Initiation Protocol (SIP) [1]. As
 a result, we propose that naming be performed using URLs constructed
 by email-like identifiers. In cases where a users mail provider and
 presence provider are the same, the identifiers can also be the same.
 For example, a user whose email address is jack@mailcompany.com would
 have a presence URL of the form pip:jack@hotmailcompany.com. This
 saves space on business cards, and allows database queries to be
 based on a consistent naming structure. As presence notifications
 (such as "I'm online now") are often the precursor to actual
 communications, using the same names simplifies integration.

 As a result, a key function of a presence server is the routing of
 notification and subscription requests based on this URL. Since users
 are often known by different email identifiers within different
 scopes, a presence server is also responsible for translation of
 names. For example, a user, Jack, might publish the address
 jack@company.com. A user sending a subscription for Jack would use
 the domain portion of the URI (looking up a pip.udp or pip.tcp SRV
 record, for example) to forward the subscription to the main presence
 server for the company. This server might perform some access
 control, and then, as a result of a lookup in a corporate database,
 translate the name to j.smith@sales.company.com, an internal address.

J.Rosenberg,H.Schulzrinne [Page 5]

Internet Draft SIP Presence November 13, 1998

 The domain name portion of this address is also looked up in the DNS,
 and the subscription request forwarded to the presence server for the
 sales department. This server then notes that j.smith is a local
 user, and it accepts the subscription.

 In the example above, the subscriber for Jack won't be aware of the
 translation or the alternate sales server. As an alternate means of
 processing the subscription request, a server may elect to redirect.
 In this scenario, the company's main server would inform the
 subscriber to contact the server at sales.company.com directly.

 In the example above, the main server for the company used a
 corporate database for the name translation. We observe that any
 number of means, in fact, can be used for the name translation,
 including LDAP [2], finger [3], whois [4], whois++ [5], or even
 multicast queries, with the choice being a purely local matter.

 This system of name translation and call routing provides
 flexibility. Administrators can instantiate any kind of translation
 logic at servers. Basing the logic on time of day or subscriber
 preferences enables perrsonal mobility services. For example, a user
 can publish a single identifier for their presence, such as
 pip:jdrosen@ieee.org. They can dynamically register new addresses
 with the IEEE server as they move to new locations, just as is done
 for email and SIP.

 We observe that this system for naming, addressing, and routing are
 identical in every regard with those used in SIP.

4 SIP For Presence

 The discussion so far has presented a general framework for a
 presence system. We have observed that this architecture is nearly
 identical to SIP. The presence servers discussed here serve the same
 purpose as SIP servers - name translation, lookup, routing, logging,
 access control, and firewalling. SIP provides the same addressing and
 call routing architecture as proposed. SIP separates content from
 transport, which fits well with the presence application. This
 similarity is due to the fact that session initiation and presence
 subscription are nearly identical functions.

 This section demonstrates how the various protocol components
 required in a presence system are easily implemented with just a few
 new SIP methods, and no new headers. Almost all of the existing SIP
 headers are applicable. In the discussion below, all of the syntax
 and semantics of the headers are the same as in SIP, unless noted
 otherwise.

J.Rosenberg,H.Schulzrinne [Page 6]

Internet Draft SIP Presence November 13, 1998

4.1 Subscription

 The subcription function is accomplished by sending a SIP message
 from the subscriber, addressed to the publisher. The message is a
 standard SIP message, but uses a new method, SUBSCRIBE. The message
 is forwarded until it reaches the server or end user which is
 performing notifications for the named user. The response to the
 request follows the standard SIP response codes. 200-class responses
 indicate success, 300 redirection to an alternate server, 400 client
 error, 500 server error, and 600 global failure. A 200-class response
 contains the current presence status for the user, as if it had been
 fetched.

 The request message must contain To, From, Call-ID, Via, and CSeq
 fields. The To field contains the address of the publisher, and the
 From field contains the address of the subscriber. The Call-ID field
 is a unique identifier which groups transactions associated with the
 subscription. All messages, including notifications from the server,
 and changes or updates to the subscription, will use the same Call-
 ID. In this sense, the Call-ID is a "presence session" identifier.
 The CSeq field provides ordering among messages for the same Call-ID.
 The Via field is used for routing responses to requests.

 A user may resubscribe or update the subscription at any time. In
 this regard, subscription requests are idempotent, as are SIP
 requests in general. Subscriptions are cancelled by sending a new
 SUBSCRIBE with an Expires: 0 in the header.

 There are a number of optional headers which may be included in a
 SUBSCRIBE request. The most important are Contact, which provides a
 contact address where notifications should be sent by the server, and
 Expires, which indicates when the subscription expires. All of the
 other SIP general headers, Date, Encryption, Record-Route, and
 Timestamp, may be present and retain the same meaning as they do in
 SIP.

 There are a number of request headers are relevant for transporting
 the presence information. In particular, Accept, Accept-Encoding, and
 Accept-Language, specify the allowable presence formats which are
 understood by the subscriber. The response to the request will
 contain a body that conveys the presence information. This body will
 be in one of the formats specified by the Accept header in the
 request. Basic presence information can be expressed in SIP without
 need for any body, using the Contact headers, exactly as in the call
 control extensions [6]. These extensions allow for expression of
 various addresses that the user can be reached at, and for each one,
 statements of preferences and attributes.

J.Rosenberg,H.Schulzrinne [Page 7]

Internet Draft SIP Presence November 13, 1998

 Most of the remaining request headers - Hide, Max-Forwards,
 Organization, Priority, Proxy-Authorization, Proxy-Require, Route,
 Response-Key, have the same semantics as in SIP. The Subject header
 makes less sense for the SUBSCRIBE method. The Require header is used
 to indicate extensions which must be understood by the server. For
 presence, the token org.ietf.presence should be included in the
 Require header.

 The subscribe message will normally not contain a body, and thus the
 entity headers are not required. However, future versions of the
 presence extensions might allow a body. The body might contain more
 complex subscriptions, such as "notify me when the user logs in to a
 cell phone, but no other times".

 An example SUBSCRIBE message is depicted in Figure 2.

 SIP/2.0 SUBSCRIBE pip:jdrosen@bell-labs.com
 Via: SIP/2.0/UDP erlang.bell-phone.com:5060
 To: pip:jdrosen@bell-labs.com
 From: pip:hgs@cs.columbia.edu
 Call-ID: 098y0na08fy0h@112.33.58.22
 Contact: pip:hgs@play.cs.columbia.edu:488
 Accept: text/presence
 Organization: Bell Laboratories
 Content-Length: 0

 Figure 2: Example SUBSCRIBE message

 This message then traverses some number of servers, eventually
 arriving at the one which handles presence subscriptions for jdrosen.
 A success response might look like Figure 3.

 The im URL is just illustrative, and reflects what an address for
 Instant Messaging might look like.

 Note that the response includes the currently available presence
 information for the publisher. The basic information is presented
 using the SIP Contact header and the call control extensions.
 Alternatively, the response could contain a body with presence
 information, as shown in Figure 4.

 The presence format listed is just an example - text/presence is not

J.Rosenberg,H.Schulzrinne [Page 8]

Internet Draft SIP Presence November 13, 1998

 200 OK SIP/2.0
 Via: SIP/2.0/UDP proxy.bell-labs.com,
 SIP/2.0/UDP erlang.bell-phone.com:5060
 To: pip:jdrosen@bell-labs.com;tag=98asbd987
 From: pip:hgs@cs.columbia.edu
 Call-ID: 098y0na08fy0h@112.33.58.22
 Contact: mailto:jdrosen@bell-labs.com;q=0.8
 Contact: im:jdrosen@cs.columbia.edu;q=0.7;mobility=fixed
 Contact: sip:jdrosen@alum.mit.edu;q=0.6
 Content-Length: 0

 Figure 3: Example SUBSCRIBE response

 200 OK SIP/2.0
 Via: SIP/2.0/UDP proxy.bell-labs.com,
 SIP/2.0/UDP erlang.bell-phone.com:5060
 To: pip:jdrosen@bell-labs.com;tag=98asbd987
 From: pip:hgs@cs.columbia.edu
 Call-ID: 098y0na08fy0h@112.33.58.22
 Content-Length: 58
 Content-Type: text/presence

 mail-address = jdrosen@bell-labs.com
 phone-address = 555-1212
 phone-status = busy
 im-address = jdrosen@cs.columbia.edu

 Figure 4: Response to SUBSCRIBE with body

 defined. Various new formats can be defined, or existing formats,
 such as the VCard XML format [7] can be used.

4.2 Notification and Publication

 The publication component allows a publisher to inform the
 notification server about its updated contact and presence
 information. We believe that there are many possible ways in which
 publication can take place. For example, a system can be co-resident
 with a Network Access Server (NAS), and presence can be represented
 as simply logged in or logged out. In this case, there is no separate
 protocol for conveying publication of presence information. It is
 done as a natural consequence of logging into the server.

J.Rosenberg,H.Schulzrinne [Page 9]

Internet Draft SIP Presence November 13, 1998

 Other mechanisms include SIP registrations, H.323 gatekeeper
 registrations, telnets, picking up the phone, sensors in the door (or
 in the chair) of someones office. All of these are valid means to
 convey some form of presence to the notification server.

 We propose that if an explicit publication means is needed, it should
 use the notification messages. This is because publication is really
 a form of notification, with the notification is between the
 publisher and the notification server. This is a natural extension of
 the serverless case, where the publisher would be responsible for
 sending the notification requests to the subscriber. It also makes
 simple notification servers easy. They can effectively proxy, without
 modification, a notification request from the subscriber. The only
 change needed is to modify the request URI and fork the request. This
 is a normal operation for a SIP server.

 The process of publication is supported through the NOTIFY method, a
 new method added to SIP for this purpose. A notification request is
 sent by a publisher, and targeted to the notification server just as
 a SIP register message is targeted to a registrar (there is no
 username). No additional header fields are needed to support
 publications and notifications through SIP.

 The mandatory headers are To, From, Call-ID, and CSeq. The To field
 is set the same way as in a SIP REGISTER message - it is the address
 of the entity whose information is being updated, NOT the target of
 the registration. The From field is the entity actually sending the
 notification (this need not be the same as the To field). The Call-ID
 is the same as the one in the SUBSCRIBE which triggered it. Cseq is
 randomly chosen, but must be larger than the CSeq in a previous
 message from the server with the same Call-ID.

 As with the response to the SUBSCRIBE request, the NOTIFY request may
 either contain a payload which describes the current presence state
 of the user, or this information may be conveyed in the Contact
 headers. A presence server may need to translate any presence bodies
 if some of the subscribers don't understand the format used by the
 publisher. The entire state, not pieces of it, are always sent.

 The request URI of a publication contains just the address of the
 notification server. The notification server will fork the
 notification (after any appropriate modifications), and send copies
 to each of the subscribers by changing the request URI in each of the
 copies. The Request URI contains the value from the Contact header
 received in each registration.

 The Expires header may be used in notifications to indicate that the
 information has a finite lifetime.

J.Rosenberg,H.Schulzrinne [Page 10]

Internet Draft SIP Presence November 13, 1998

 The remaining request header fields have their standard meanings.
 Note that the Requires header is needed here as well.

 The response to a NOTIFY is a 200-class response if it has been
 received correctly. A 400-class response is returned if a subscriber
 receives a notification, but it had never subscribed to that user.

 An example notification sent from a publisher to its notification
 server is depicted in Figure 5.

 SIP/2.0 NOTIFY pip:dnrc.bell-labs.com
 To: pip:jdrosen@bell-labs.com
 From: pip:jdrosen@dnrc.bell-labs.com
 Call-ID: 098n08ayfp@10.0.0.1
 CSeq: 0
 Via: SIP/2.0/UDP machine.dnrc.bell-labs.com
 Contact: sip:jdrosen@bell-labs.com:5061;expires=3600

 Figure 5: Example NOTIFY request

 This is then received at the server. Assume there was a single
 subscription, the example in the previous section. The notification
 server would then generate a single notification, an example of which
 is shown in Figure 6.

 SIP/2.0 NOTIFY pip:hgs@play.cs.columbia.edu
 To: pip:jdrosen@bell-labs.com
 From: pip:jdrosen@dnrc.bell-labs.com
 Call-ID: 098n08ayfp@10.0.0.1
 CSeq: 0
 Via: SIP/2.0/UDP machine.dnrc.bell-labs.com
 Contact: sip:jdrosen@bell-labs.com:5061

 Figure 6: Example NOTIFY response

 This would then be sent to port 488 of the machine play, delivering
 it to the subscriber.

 The NOTIFY request can also be sent by multicast as a configuration-
 less means of publication. It is sent to the all-SIP-servers

J.Rosenberg,H.Schulzrinne [Page 11]

Internet Draft SIP Presence November 13, 1998

 multicast address (224.1.0.75), and the server which is acting as a
 proxy for that user will accept it, send a 200 OK response, and
 perform the notification. As with multicast REGISTER requests, this
 avoids the need for knowledge about the server.

4.3 Fetching

 Fetching presence allows a subscriber to synchronously obtain the
 current state of the publisher, without establishing any
 registration. This is accomplished easily without any additional
 methods. Since the response to a SUBSCRIBE method contains the
 current presence information, a user can fetch the current state by
 sending a SUBSCRIBE with an Expires header with a time of 0. This
 will return the current state without causing a registration.

 To fetch the presence information without modifying an existing
 registration, the fetch should use a different Call-ID than the
 original registration.

5 Access Control

 Access control is an optional part of the presence system. It allows
 a publisher to express preferences to the server about how and when
 notifications get delivered to subscribers. These preferences could
 include things like time of day preferences ("tell people I'm online
 only on Tuesdays"), per-subscriber preferences ("don't tell Joe
 anything"), preferences based on communications means ("only
 advertise my telephone number"), and combinations therein ("on
 Tuesdays, don't tell Joe about my telephone presence").

 To support such a service, there needs to be a syntax, carried from
 the publisher to the server, which expresses these simple rules.
 Currently, such a syntax is under development [8]. The context is
 focused towards telephony preferences, but is easily extended to
 support presence preferences as well. For example, Figure 7 shows an
 example XML based script for controlling call routing.

 The script tells the proxy server that when a call arrives for it, it
 should be proxied to sip:bob@mci.com. If its busy, the caller should
 be redirected to joe@mit.edu. If there is no answer, if the call is
 from hgs@cs.columbia.edu, the call should be proxied to the phone
 number +1 917 555-1212, otherwise the caller should be redirected to
 contact sip:bill@att.com. A simple extension, and example of which is
 given in figure 8 could effectively provide a similar service for
 notifications.

J.Rosenberg,H.Schulzrinne [Page 12]

Internet Draft SIP Presence November 13, 1998

 <call>
 <proxy dest="sip:bob@mci.com" timeout="8s">
 <busy>
 <redirect dest="sip:joe@mit.edu"/>
 </busy>
 <timeout>
 <condition from="hgs@cs.columbia.edu">
 <match>
 <gateway dest="phone:+19175551212"/>
 </match>
 <nomatch>
 <redirect dest="sip:bill@att.com"/>
 </nomatch>
 </condition>
 </timeout>
 </proxy>
 </call>

 Figure 7: SIP Call Processing Script

 <notify>
 <condition uri="hgs@cs.columbia.edu">
 <match>
 <proxy/>
 </match>
 <nomatch>
 <condition contact="phone:5551212">
 <match>
 <no-proxy/>
 </match>
 <nomatch>
 <proxy>
 </nomatch>
 </condition>
 </nomatch>
 </condition>
 </notify>

 Figure 8: PIP Call Processing Example

J.Rosenberg,H.Schulzrinne [Page 13]

Internet Draft SIP Presence November 13, 1998

 This script has the effect of causing all notifications for
 hgs@cs.columbia.edu to be delivered. However, notifications for
 everyone else are only delivered if they don't contain a phone
 contact, otherwise they are dropped.

 The Call Processing Language for iptel is ideal for caller, time of
 day, and simple rule based preferences. More complex policies for
 delivery of notifications will require more flexible means of
 expression.

6 Aggregating Subscriptions

 Since SIP readily supports hopping requests and responses through
 many servers, and also supports loop detection, it can be used to
 provide aggregation of subscriptions. Consider the configuration in
 Figure 9.

 | A |\
 --- \ ---
 --- -- | X |
 | B |/ --- \
 --- \ ---
 --- - | Z |
 | C |\ / ---
 --- \ ---/
 --- -- | Y |
 | D |/ ---

 Figure 9: Aggregation Scenario

 A, B, C, and D are subscribers. X and Y are intermediate proxy
 servers, and Z is the subscription server. A, B, C, and D all
 generate subscriptions for the same user. However, instead of passing
 these subscriptions to Z, servers X and Y only pass the first
 subscription. Furthermore, X and Y replace the Contact header in the
 subscription with their own address. X and Y also keep a list of all
 users who subscribe to a given user. So, when B subscribes to a user
 for whom A has already subscribed, X makes a note of it but does not
 propagate the subscription. Z will think that only X and Y have
 subscribed to a given user.

J.Rosenberg,H.Schulzrinne [Page 14]

Internet Draft SIP Presence November 13, 1998

 When a notification is generated, it is forwarded to X and Y. They,
 in turn, generate additional copies, and forward them to A, B, C and
 D. This effectively forms a hop by hop acknowledged multicast
 distribution tree.

 This mechanism becomes less effective when the various servers have
 different access control policies.

7 Event Splitting and Merging

 In some systems, a presence server can take a more active role in
 presence notifications. For example, a simple publisher may only
 indicate basic events, such as "logged in", or "logged out". The
 presence server may take this information, and combine it with other
 state, to generate different presence notifications. For example, if
 the date was Tuesday, the server might generate events of the form
 "logged in on Tuesday". Similarly, a publisher may generate the
 events "business phone is 555-1212, home phone 888-8888" and then
 "available only at home", and the server may combine them to generate
 the aggregate event "home phone is 555-1212". Combination of multiple
 notifications is referred to merging.

 Similarly, a publisher may generate a single event, such as "logged
 out", and the server may generate multiple events as a result, such
 as "not available at home" and "not available at home". This is
 referred to as splitting.

 The operations of merging and splitting are available to a server.
 They may be used to provide additional services to users of the
 system. The merging operation can also be used to provide additional
 scalability, by reducing the number of messages sent by a server.

 Of course, a publisher which makes use of end to end authentication
 will eliminate the possibility of merging and splitting at a server.

8 Reliability and Scalability

 SIP works with either TCP or UDP (or both, in the case of multiple
 servers, each using a different protocol). In the case of UDP, it
 provides its own simple reliability mechanisms. These mechanisms are
 based on a simple retransmit timer at the client. This is appropriate
 for a message oriented protocol such as SIP. It is much less complex
 than TCP, since the flow and congestion control aspects are not
 needed.

 The reduced complexity directly improves scalability. A server can
 handle more SIP subscriptions through UDP than TCP. Furthermore,
 servers which simply act as proxies, without processing or changing a

J.Rosenberg,H.Schulzrinne [Page 15]

Internet Draft SIP Presence November 13, 1998

 message, can forward requests and the responses they generate without
 any state.

 In cases where there are large numbers of subscribers, multicast may
 be appropriate. Since SIP works with UDP, additional headers can be
 defined to support multicast notifications. SIP can work with
 existing reliable multicast protocols, or new means for SIP in
 particular are easily defined.

 These features of SIP make it ideal for providing reliability in a
 scalable fashion over the operating range of a presence protocol.

9 Security

 SIP supports http's basic and digest authentication [9], in addition
 to PGP or other public key based schemes. SIP also supports end-to-
 end and proxy encryption, and hiding of key hop-by-hop headers. These
 can all be reused as is for the presence extensions.

10 Requirements

 We considered the requirements in [10] to determine how many are met
 by SIP with these extensions:

 4.1 A client MUST be able to communicate its presence information,
 either directly or via intermediaries such as servers, to other
 clients.

 SIP, with the NOTIFY method, supports such presence notification.
 Presence is conveyed by URLs and URL parameters. SIP supports proxy
 and redirect through many servers, with headers for loop detection
 and prevention.

 4.2 All clients MUST implement some common presence format for
 presence information.

 Our proposal is to define the URL as a basic notion of presence.

 4.3 The common presence format MUST include a means to represent an
 individual name (a personal name in the case of a person), and
 organizational or other disambiguating information.

 URL's contain such information.

 4.4 The common presence format MUST include a means to represent
 contact information, such as email address, telephone number, postal
 address, or the like.

J.Rosenberg,H.Schulzrinne [Page 16]

Internet Draft SIP Presence November 13, 1998

 URL's provide exactly this. They exist for email (mailto), telephone
 (phone), multimedia (sip), to name a few.

 4.5 The common presence format MUST include a means to represent at
 least the following conditions: active, inactive, unavailable, do not
 disturb.

 These are easily supported through URL parameters, such as those
 described in the SIP call control extensions.

 4.6 There MUST be a means of extending the common presence format to
 represent additional information not included in the common format,
 without undermining or rendering invalid the fields of the common
 format.

 SIP allows for bodies to be transported in all of its messages.
 Simple presence can be conveyed with URL's with paramaters. More
 complex notions of presence are supported through bodies carried in
 any SIP message. SIP makes use of the Accept, Content-Type, and
 Accept-Language headers to provide naming and negotiation of the
 types of bodies which are supported. This allows for numerous formats
 for presence to be defined.

 4.7 A client MUST be able to indicate its interest in the presence
 information of other clients, even when those other clients are not
 available or not reachable.

 This is supported by the SUBSCRIBE method proposed here. SIP
 deliveres requests to either proxy servers or user agent servers (end
 system). Thus, they can be delivered whether or not the end user is
 logged in and available.

 4.8 When a client changes its presence information, and another
 client has indicated interest in the presence information of that
 client, the interested client MUST receive the changed information
 rapidly enough that the delay is not objectionable. For most
 applications, this implies a delay of no more than a few seconds.

 These kind of delay requirements are identical to those for
 initiating multimedia sessions (when a user answers the phone, the
 caller must be notified rapidly). SIP has carefully tuned its timing
 to meet these objectives.

 4.9 The protocol MUST provide a means so that a client receiving an
 update can be confident that it represents the correct presence
 information (that is, it has not been corrupted or delayed).

 SIP supports message integrity of end to end headers and the body.

J.Rosenberg,H.Schulzrinne [Page 17]

Internet Draft SIP Presence November 13, 1998

 4.10 The protocol MUST provide a means so that a client receiving an
 update can be confident that it represents the presence information
 of the client claimed (that is, it has not been forged).

 SIP supports cryptographically strong authentication via PGP, S/MIME,
 or other means.

 4.11 The protocol MUST provide a means for changing presence
 information automatically in circumstances such as broken network
 connections, which cannot be anticipated by a client providing its
 presence information.

 SIP Registrations time out eventually. SIP supports clients defining
 the time out interval, with servers reducing it based on policy. This
 would allow presence information that has been registered to time out
 in the case of long term network failures.

11 Open Issues

 1. Call-IDs: What is the scope of the Call-ID? Should it be
 the same for subscriptions and the notifications they
 generate?

 2. REGISTER vs. NOTIFY: The registration message in SIP
 provides a similar function to NOTIFY. Both contain a
 description of the current addresses and communications
 means supported by a client. However, their function at a
 server is different. A NOTIFY method is an FYI - its
 propagated by the server to subscribers. In most cases, the
 publisher won't even know who the subscribers are. In the
 case of REGISTER, the message establishes call routing
 state in a single proxy server. The information is not
 propagated. For this reason, usage of different methods
 seems appropriate. However, there is no restriction about
 using REGISTER as a publication means. As pointed out
 above, a publisher can use any mechanism to notify the
 server about their presence.

 3. pip scheme: Is it necessary to use a new URL scheme for
 presence, or can the existing sip scheme be used? Having
 them separate makes it apparent whether the address is for
 presence or communications. Having a pip URL in a web page
 might cause a SUBSCRIBE to be sent, whereas a sip URL might
 cause an INVITE to be sent. On the other hand, the method
 tag in the SIP URL could be used to provide disambiguity.

 4. BYE: Do we allow a subscription to be cancelled with a BYE?
 It seems appropriate.

J.Rosenberg,H.Schulzrinne [Page 18]

Internet Draft SIP Presence November 13, 1998

12 Conclusion

 In this document, we have discussed the presence notification
 problem, and presented an architectural solution to the problem. We
 then showed that the Session Initiation Protocol, extended with just
 two new methods and no new headers, can serve as a fully functional,
 easily extendable, integrated presence system.

13 Acknowledgements

 The authors would like to thank William Nagy for his comments and
 input.

14 Full Copyright Statement

 Copyright (C) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implmentation may be prepared, copied, published and
 distributed, in whole or in part, without restriction of any kind,
 provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works.

 However, this document itself may not be modified in any way, such as
 by removing the copyright notice or references to the Internet
 Society or other Internet organizations, except as needed for the
 purpose of developing Internet standards in which case the procedures
 for copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

15 Bibliography

 [1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Internet Draft, Internet Engineering
 Task Force, Sept. 1998. Work in progress.

J.Rosenberg,H.Schulzrinne [Page 19]

Internet Draft SIP Presence November 13, 1998

 [2] T. Howes, S. Kille, and M. Wahl, "Lightweight directory access
 protocol (v3)," Request for Comments (Proposed Standard) 2251,
 Internet Engineering Task Force, Dec. 1997.

 [3] D. Zimmerman, "The finger user information protocol," Request for
 Comments (Draft Standard) 1288, Internet Engineering Task Force, Dec.
 1991. (Obsoletes RFC1196).

 [4] E. Feinler, K. Harrenstien, and M. Stahl, "NICNAME/WHOIS,"
 Request for Comments (Draft Standard) 954, Internet Engineering Task
 Force, Oct. 1985. (Obsoletes RFC812).

 [5] C. Weider, J. Fullton, and S. Spero, "Architecture of the whois++
 index service," Request for Comments (Proposed Standard) 1913,
 Internet Engineering Task Force, Feb. 1996.

 [6] H. Schulzrinne and J. Rosenberg, "SIP call control services,"
 Internet Draft, Internet Engineering Task Force, Feb. 1998. Work in
 progress.

 [7] F. Dawson, "The vcard v3.0 XML DTD," Internet Draft, Internet
 Engineering Task Force, July 1998. Work in progress.

 [8] H. Schulzrinne and J. Lennox, "Call processing language
 requirements," Internet Draft, Internet Engineering Task Force, Aug.
 1998. Work in progress.

 [9] J. Franks, P. Hallam-Baker, and J. Hostetler, "An extension to
 HTTP: digest access authentication," Request for Comments (Proposed
 Standard) 2069, Internet Engineering Task Force, Jan. 1997.

 [10] M. Day, "Requirements for presence and instant messaging,"
 Internet Draft, Internet Engineering Task Force, Mar. 1998. Work in
 progress.

16 Authors Addresses

 Jonathan Rosenberg
 Lucent Technologies, Bell Laboratories
 101 Crawfords Corner Rd.
 Holmdel, NJ 07733
 Rm. 4C-526
 email: jdrosen@bell-labs.com

 Henning Schulzrinne
 Columbia University
 M/S 0401

https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc1288
https://datatracker.ietf.org/doc/html/rfc1196
https://datatracker.ietf.org/doc/html/rfc954
https://datatracker.ietf.org/doc/html/rfc812
https://datatracker.ietf.org/doc/html/rfc1913
https://datatracker.ietf.org/doc/html/rfc2069

J.Rosenberg,H.Schulzrinne [Page 20]

Internet Draft SIP Presence November 13, 1998

 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

J.Rosenberg,H.Schulzrinne [Page 21]

